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Problem P5 – Pendulum on Inclined Plane

A mass M is free to slide down a frictionless plane inclined at an angle β. A pendulum of length l
and mass m hangs from M (see figure) (assume that M extends a short distance beyond the side
of the plane, so the pendulum can hang down).

1. Show that the Lagrangian of the machine is given by

L =
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Mż2 +
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m

(
ż2 + l2θ̇2 + 2lżθ̇ cos(θ + β)

)

+Mgz sinβ +mg (z sinβ + l cos θ) , (1)

where z is the distance traveled on the plane and θ is
the angle between the pendulum and the vertical axis.

2. Find the equations of motion and determine the equi-
librium positions. Solve them for small displacements
from equilibrium. (Equivalently, you can determine the
normal modes and frequencies.)
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Therefore, µ(t) = C cos(!t + ¡), where
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. (6.173)

The general solutions for µ and x are therefore

µ(t) = C cos(!t + ¡), x(t) = ° Cm`

M + m
cos(!t + ¡) + At + B. (6.174)

The constant B is irrelevant, so we’ll ignore it. The two normal modes are:

• A = 0: In this case, x = °µm`/(M + m). Both masses oscillate with the frequency !
given in eq. (6.173), always moving in opposite directions. The center of mass does not
move (as you can verify).

• C = 0: In this case, µ = 0 and x = At. The pendulum hangs vertically, with both
masses moving horizontally at the same speed. The frequency of oscillations is zero in
this mode.

Remarks: If M ¿ m, then ! =
p

g/`, as expected, because the support essentially stays still.

If m ¿ M , then ! !
p

m/M
p

g/` ! 1. This makes sense, because the tension in the rod is very

large. We can actually be quantitative about this limit. For small oscillations and for m ¿ M , the

tension of mg in the rod produces a sideways force of mgµ on M . So the horizontal F = Ma equation

for M is mgµ = Mẍ, But x º °`µ in this limit, so we have mgµ = °M`µ̈, which gives the desired

frequency. |
6.15. Pendulum support on an inclined plane

Let z be the coordinate of M along the plane, and let µ be the angle of the pendulum (see
Fig. 6.48). In Cartesian coordinates, the positions of M and m are
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Figure 6.48 (x, y)M = (z cosØ,°z sinØ),

(x, y)m = (z cosØ + ` sin µ,°z sinØ ° ` cos µ). (6.175)

DiÆerentiating these positions, we find that the squares of the speeds are

v2
M = ż2,

v2
m = ż2 + `2µ̇2 + 2`żµ̇(cosØ cos µ ° sinØ sin µ). (6.176)

The Lagrangian is therefore
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m
≥
ż2 + `2µ̇2 + 2`żµ̇ cos(µ + Ø)

¥
+ Mgz sinØ + mg(z sinØ + ` cos µ). (6.177)

The equations of motion obtained from varying z and µ are

(M + m)z̈ + m`
≥
µ̈ cos(µ + Ø) ° µ̇2 sin(µ + Ø)

¥
= (M + m)g sinØ,

`µ̈ + z̈ cos(µ + Ø) = °g sin µ. (6.178)

Let us now consider small oscillations about the equilibrium point (where µ̈ = µ̇ = 0). We
must first determine where this point is. The first equation above gives z̈ = g sinØ. The
second equation then gives g sinØ cos(µ + Ø) = °g sin µ. By expanding the cosine term, we
find tan µ = ° tanØ, so µ = °Ø. (µ = º ° Ø is also a solution, but this is an unstable
equilibrium.) The equilibrium position of the pendulum is therefore where the string is
perpendicular to the plane.14

14This makes sense. The tension in the string is perpendicular to the plane, so for all the pendulum bob
knows, it may as well be sliding down a plane parallel to the given one, a distance ` away. Given the same
initial speed, the two masses slide down their two “planes” with equal speeds at all times.
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