

PHY422/820: Classical Mechanics

FS 2020

Exam Preparation

December 1, 2020

Problem P9 – Precessing Orbits

In the following, we want to study the precession of nearly-circular orbits in the potentials

$$V_1(r) = -\frac{k}{r} + \frac{\alpha}{r^2}, k > 0, \alpha \in \mathbb{R},$$
(1)

$$V_2(r) = -\frac{k}{r}e^{-r/a}, \quad a > 0, k > 0,$$
(2)

using intermediate results from the proof of Bertrand's theorem that relate the change in angle per round trip between the apses, $\Delta \phi$, to the potential V(r).

Note: $V_2(r)$ is a so-called Yukawa potential. It plays an important role in Quantum Field Theory, where it emerges for interactions that are involve the exchange of particles with non-zero mass.

- 1. Show that the approximate rate of precession for the perturbed Kepler potential is $-\frac{2\pi\alpha}{kR}$, where R denotes the radius of the circular trajectory.
- 2. Prove that the range of the Yukawa potential must exceed a critical value $a_c = (\sqrt{5} 1)\frac{R}{2}$ to admit bounded orbits. Show that the approximate rate of precession for the nearly-circular orbit is $\pi \frac{R}{a}$. Discuss the limits of your expressions.

HINT: It is not necessary — and for the Yukawa potential, not even be possible — to determine the radius of the circular trajectory analytically.