PHY422/820: Classical Mechanics

FS 2021
Homework \#1 (Due: Sep 10)

September 2, 2021

Problem H1 - Useful Identities in Cylindrical and Spherical Coordinates

[10 Points] Here, we want to prove some useful identities in cylindrical and spherical coordinates (cf. worksheet \#1).

1. Show that

$$
\begin{equation*}
\dot{\vec{r}}=\dot{\rho} \vec{e}_{\rho}+\rho \dot{\phi} \vec{e}_{\phi}+\dot{z} \vec{e}_{z}=\dot{r} \vec{e}_{r}+r \dot{\theta} \vec{e}_{\theta}+(r \sin \theta) \dot{\phi} \vec{e}_{\phi} \tag{1}
\end{equation*}
$$

2. Using Eqs. (1) and the properties of the basis vectors, show that the kinetic energy for a particle of mass m is given by

$$
\begin{equation*}
T=\frac{1}{2} m \dot{\vec{r}}^{2}=\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\left(r^{2} \sin ^{2} \theta\right) \dot{\phi}^{2}\right) . \tag{2}
\end{equation*}
$$

No Cartesian coordinates allowed!
3. Show that the force field generated by a spherically symmetric potential is of the form

$$
\begin{equation*}
\vec{F}(\vec{r})=-\vec{\nabla} V(r)=-\frac{\partial V}{\partial r} \vec{e}_{r} \tag{3}
\end{equation*}
$$

Problem H2 - Conservative Forces

[10 Points] Consider the force field

$$
\begin{equation*}
\vec{F}(\vec{r})=V_{0} \frac{e^{-(r-b) / a}}{a\left(1+e^{-(r-b) / a}\right)^{2}} \vec{e}_{r}, \quad r=|\vec{r}|, a, b=\text { const. } \tag{4}
\end{equation*}
$$

1. Compute $\vec{\nabla} \times \vec{F}(\vec{r})$ to show that the force is conservative, and determine the underlying potential $V(\vec{r})$.
2. Explicitly calculate the work that is required to move a mass m from the origin to the point $\vec{r}=(x, y, z)$: (i) along a straight line, and (ii) from the origin to $(0,0, r)$, where $r=|\vec{r}|=$ $\sqrt{x^{2}+y^{2}+z^{2}}$, and from there along a great circle to \vec{r}.
Hint: Exploit the properties of the unit vectors before you start computing integrals!

Problem H3 - Force Fields with Singularities

[10 Points] For force fields with singularities, we must be careful when we want to argue that the force is conservative based on the properties of $\vec{\nabla} \times \vec{F}(\vec{r})$. Consider, for example, the forces

$$
\begin{equation*}
\vec{F}_{1}(\vec{r})=\frac{a_{0}}{\rho} \vec{e}_{\phi}, \quad a_{0}=\text { const. } \tag{5}
\end{equation*}
$$

in cylinder coordinates (ρ, ϕ, z), and the central force

$$
\begin{equation*}
\vec{F}_{2}(\vec{r})=-\frac{k}{r^{2}} \vec{e}_{r}, \quad k>0, \tag{6}
\end{equation*}
$$

in spherical coordinates.

1. Calculate $\vec{\nabla} \times \vec{F}_{1}(\vec{r})$ and $\vec{\nabla} \times \vec{F}_{2}(\vec{r})$!

2. For both forces, compute the work for moving a mass m on a circle with radius ϵ in the $x y$-plane whose center is the origin. What do you find for $\epsilon \rightarrow 0$?
3. What is the work if the mass is moved along the closed contour that excludes the origin, as shown in the figure?
Hint: Use your results for the integrals along a circle from the previous part, and mind the directions in which the circles and linear segments of the contour are traversed.

Formulas

$$
\begin{align*}
\vec{\nabla} \times \vec{A}= & \frac{1}{\rho}\left(\partial_{\phi} A_{z}-\rho \partial_{z} A_{\phi}\right) \vec{e}_{\rho}+\left(\partial_{z} A_{\rho}-\partial_{\rho} A_{z}\right) \vec{e}_{\phi}+\frac{1}{\rho}\left(\partial_{\rho}\left(\rho A_{\phi}\right)-\partial_{\phi} A_{\rho}\right) \vec{e}_{z} \tag{7}\\
\vec{\nabla} \times \vec{A}= & \frac{1}{r \sin \theta}\left(\frac{\partial}{\partial \theta}\left(A_{\phi} \sin \theta\right)-\frac{\partial A_{\theta}}{\partial \phi}\right) \vec{e}_{r}+\frac{1}{r}\left(\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \phi}-\frac{\partial}{\partial r}\left(r A_{\phi}\right)\right) \vec{e}_{\theta} \\
& +\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial A_{r}}{\partial \theta}\right) \vec{e}_{\phi} \tag{8}
\end{align*}
$$

