PHY422/820: Classical Mechanics

FS 2021
Homework \#7 (Due: Oct 22)

October 14, 2021

Problem H13 - Kepler Problem with Perturbation

[15 points; cf. problems G17, H12] Consider the potential

$$
\begin{equation*}
V(r)=-\frac{k}{r}-\frac{\alpha}{r^{2}} \tag{1}
\end{equation*}
$$

with constants $k>0$ and α, which corresponds to the traditional Kepler problem with an additional perturbing potential.

1. Construct the effective potential $V_{\text {eff }}(r)$. For which angular momenta l and energies E will we obtain bounded motion, i.e., orbits?
Hint: Use your results from G17.
2. The trajectory $r(\phi)$ for a given potential can be obtained by solving the integral equation (cf. worksheet \#7)

$$
\begin{equation*}
\phi-\phi_{0}=\int d r \frac{l}{r^{2} \sqrt{2 m\left(E-V_{\mathrm{eff}}(r)\right)}}, \tag{2}
\end{equation*}
$$

with integration constant ϕ_{0}. Show that

$$
\begin{equation*}
r(\phi)=\frac{\lambda}{1+\epsilon \cos \beta\left(\phi-\phi_{0}\right)}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta^{2}=1-\frac{2 m \alpha}{l^{2}}>0, \quad \lambda=\beta^{2} \frac{l^{2}}{m k}, \quad \epsilon=\sqrt{1+\beta^{2} \frac{2 l^{2} E}{m k^{2}}} . \tag{4}
\end{equation*}
$$

Hint: Use the substitution $u=1 / r$ and

$$
\begin{equation*}
\int d u \frac{1}{\sqrt{a+b u-u^{2}}}=-\arccos \frac{2 u-b}{\sqrt{4 a+b^{2}}}+c, \quad \text { if } 4 a+b^{2}>0 . \tag{5}
\end{equation*}
$$

3. Which values of β correspond to attractive $(\alpha>0)$ and repulsive perturbations $(\alpha<0)$, respectively?
4. Show that orbits in this potential will be closed if β is rational. Why does this not contradict Bertrand's theorem?
5. Create and (briefly) discuss polar plots of the trajectories for $\epsilon=\frac{4}{5}$ and $\beta=\frac{1}{2}, \frac{1}{3}, \frac{4}{5}, \frac{2+\pi}{2 \pi}, 3, \frac{3+8 \pi}{3 \pi}$. Use a sufficiently large range of values for ϕ to illustrate whether the orbits are closed or not.

Problem H14 - Laplace-Runge-Lenz Vector in Scattering

[15 points] For classical scattering off a repulsive potential $V(r)=\frac{k}{r}$ with $k>0$ (e.g., Rutherford scattering), the relationship between the scattering angle θ and the impact parameter b is

$$
\begin{equation*}
b(\theta)= \pm \frac{k}{2 E} \cot \frac{\theta}{2} \tag{6}
\end{equation*}
$$

Validate this relationship using the conservation of the Laplace-Runge-Lenz vector by computing \boldsymbol{A} for the incoming and outgoing particle(s), whose trajectories and velocities are

$$
\begin{align*}
t \rightarrow-\infty: \quad \boldsymbol{r}(-\infty) & =(b,-d, 0)^{T} \\
\dot{\boldsymbol{r}} & =\left(0, v_{\infty}, 0\right)^{T} \tag{7}\\
t \rightarrow \infty: \quad \boldsymbol{r}(\infty) & =\left(d \tan \theta+\frac{b}{\cos \theta}, d, 0\right)^{T} \\
\dot{\boldsymbol{r}} & =\left(v_{\infty} \sin \theta, v_{\infty} \cos \theta, 0\right)^{T} \tag{8}
\end{align*}
$$

respectively. Here, we can assume that d is large at an appropriate stage of our calculation (see figure).
Hint: Use energy and angular momentum conservation. It is sufficient to consider a single component of \boldsymbol{A}.

