PHY422/820: Classical Mechanics

FS 2021
Homework \#9 (Due: Nov 5)

November 3, 2021

Problem H18 - The Group of Rotations $S O(3)$

[10 points] Rotations in \mathbb{R}^{3} can be represented by special orthogonal 3×3 matrices, which have the following properties:

$$
\begin{equation*}
\operatorname{det} \boldsymbol{R}=1, \quad \boldsymbol{R} \boldsymbol{R}^{T}=\boldsymbol{R}^{T} \boldsymbol{R}=\mathbb{1}, \quad \boldsymbol{R}^{T}=\boldsymbol{R}^{-1} . \tag{1}
\end{equation*}
$$

Show that these matrices form a group by proving that the following axioms are satisfied:

1. The product $\boldsymbol{R}_{3}=\boldsymbol{R}_{1} \boldsymbol{R}_{2}$ of two rotation matrices $\boldsymbol{R}_{1}, \boldsymbol{R}_{2} \in S O(3)$ is also a rotation matrix, $\boldsymbol{R}_{3} \in S O(3)$.
2. There exists a neutral element $\boldsymbol{E} \in S O(3)$ such that $\boldsymbol{E} \boldsymbol{R}=\boldsymbol{R} \boldsymbol{E}=\boldsymbol{R}$ for all $\boldsymbol{R} \in S O(3)$.
3. For each $\boldsymbol{R} \in S O(3)$ there exists an inverse element $\boldsymbol{R}^{-1} \in S O(3)$ which satisfies $\boldsymbol{R}^{-1} \boldsymbol{R}=$ $\boldsymbol{R} \boldsymbol{R}^{-1}=\boldsymbol{E}$.

Now we relax the condition on the determinant and consider the more general group of orthogonal matrices $O(3)$.
4. Show that the determinant of a real orthogonal matrix can only be $\operatorname{det} \boldsymbol{O}= \pm 1$.
5. Show that the orthogonal matrices with $\operatorname{det} \boldsymbol{O}=-1$ do not form a group.

Hint:

$$
\operatorname{det} \boldsymbol{A} \boldsymbol{B}=\operatorname{det} \boldsymbol{A} \operatorname{det} \boldsymbol{B}, \quad \operatorname{det} \boldsymbol{A}^{-1}=\frac{1}{\operatorname{det} \boldsymbol{A}}, \quad \operatorname{det} \boldsymbol{A}^{T}=\operatorname{det} \boldsymbol{A}
$$

Problem H19 - Infinitesimal Rotations and SO(3) Generators

[10 points] A counter-clockwise rotation by an angle ϕ around the axis \vec{n} can be expressed in vector form as

$$
\begin{equation*}
\vec{r}^{\prime}=\vec{r} \cos \phi+\vec{n}(\vec{n} \cdot \vec{r})(1-\cos \phi)+(\vec{n} \times \vec{r}) \sin \phi . \tag{2}
\end{equation*}
$$

1. Show that for infinitesimal angles

$$
\begin{equation*}
\vec{r}^{\prime}=\vec{r}+(\epsilon \vec{n}) \times \vec{r}=(\mathbb{1}+\boldsymbol{\epsilon}) \vec{r}, \tag{3}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
\epsilon \equiv \Phi(\epsilon \vec{n}), \tag{4}
\end{equation*}
$$

with Φ as defined in problem G23.
2. Use the mapping Φ between vectors and antisymmetric matrices to show that

$$
\begin{equation*}
\boldsymbol{\epsilon}=\epsilon n_{x} \boldsymbol{L}_{x}+\epsilon n_{y} \boldsymbol{L}_{y}+\epsilon n_{z} \boldsymbol{L}_{z}, \tag{5}
\end{equation*}
$$

where

$$
\boldsymbol{L}_{x}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{6}\\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad \boldsymbol{L}_{y}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad \boldsymbol{L}_{z}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

are the so-called generators of infinitesimal rotations.
3. Show that the generators satisfy

$$
\begin{equation*}
\left[\boldsymbol{L}_{x}, \boldsymbol{L}_{y}\right]=\boldsymbol{L}_{z}, \quad\left[\boldsymbol{L}_{y}, \boldsymbol{L}_{z}\right]=\boldsymbol{L}_{x}, \quad\left[\boldsymbol{L}_{z}, \boldsymbol{L}_{x}\right]=\boldsymbol{L}_{y} \tag{7}
\end{equation*}
$$

where the commutator is defined as

$$
\begin{equation*}
[\boldsymbol{A}, \boldsymbol{B}]=\boldsymbol{A B}-\boldsymbol{B} \boldsymbol{A} . \tag{8}
\end{equation*}
$$

4. The generators can be used to construct arbitrary antisymmetric matrices. Show that the matrix exponential of any antisymmetric matrix is a rotation matrix, i.e.,

$$
\begin{equation*}
\left(e^{\boldsymbol{A}}\right)^{T}=\left(e^{\boldsymbol{A}}\right)^{-1}, \quad \operatorname{det} e^{\boldsymbol{A}}=1 \tag{9}
\end{equation*}
$$

The matrix exponential is defined by the series

$$
\begin{equation*}
e^{\boldsymbol{A}}=\sum_{k=0}^{\infty} \frac{1}{k!} \boldsymbol{A}^{k} . \tag{10}
\end{equation*}
$$

Problem H20 - Tensors

[10 points] A rank- n tensor on \mathbb{R}^{3} is an n-tuple of real numbers which has the following behavior under rotations:

$$
\begin{equation*}
T_{i_{1} \cdots i_{n}}^{\prime}=\sum_{j_{1}, \cdots, j_{n}=1}^{3} R_{i_{1} j_{1}} \cdots R_{i_{n} j_{n}} T_{j_{1} \cdots j_{n}}, \quad i_{k}, j_{k}=1, \ldots, 3, \tag{11}
\end{equation*}
$$

where $R \in S O(3)$. In the special case of a scalar, i.e., a rank-0 tensor, this implies $T^{\prime}=T$ (there are no indices to transform).

1. Show through an explicit calculation that the scalar product of two arbitrary vectors $\vec{a}, \vec{b} \in \mathbb{R}^{3}$ is invariant under rotations. Interpret this result geometrically.
2. Show that the moment of inertia tensor

$$
\begin{equation*}
I_{i j}=\int d^{3} r \rho(\vec{r})\left(\vec{r}^{2} \delta_{i j}-r_{i} r_{j}\right) \tag{12}
\end{equation*}
$$

is a rank-2 tensor in the sense of Eq. (11).
Hint: Prove that $d^{3} r$ is a scalar by considering how the volume element is related to the Cartesian unit vectors.

