PHY422/820: Classical Mechanics

FS 2021
Homework \#13 (Due: Dec 3)

November 24, 2021

Problem H26 - Change of Canonical Variables

[10 Points, cf. Lemos 7.5] The Lagrangian of a system with one degree of freedom is given by

$$
\begin{equation*}
L(q, \dot{q}, t)=\frac{m}{2}\left(\dot{q}^{2} \cos ^{2} \omega t-q \dot{q} \omega \sin 2 \omega t-\omega^{2} q^{2} \cos 2 \omega t\right) . \tag{1}
\end{equation*}
$$

1. Construct the Hamiltonian $H(p, q, t)$. Is it a constant of the motion?
2. Introduce a new variable $Q=q \cos \omega t$, and derive the associated Hamiltonian $H(P, Q)$. Is this new Hamiltonian conserved? What type of system does it describe?

Problem H27 - A Time-Dependent Lagrangian

[15 Points] Consider the following time-dependent Lagrangian for a system with a single degree of freedom:

$$
\begin{equation*}
L=e^{\beta t}\left(\frac{1}{2} m \dot{q}^{2}-\frac{1}{2} k q^{2}\right), \tag{2}
\end{equation*}
$$

where $k>0$ and β are constants.

1. Derive the Lagrange equation. What type of physical system does the Lagrangian describe?
2. Introduce the new variable $Q=e^{\beta t / 2} q$, and rewrite the Lagrangian in terms of Q and \dot{Q}. Identify terms that are proportional to $Q \dot{Q}$ and argue that they can be dropped without changing the dynamics, leading to a new Lagrangian $L^{\prime}(Q, \dot{Q})$.
3. Derive the Lagrange equation for Q. Transform the general solution of the equation of motion back to the original coordinate $q(t)$, and compare it with known solutions for the system under consideration.
4. Construct the Hamiltonians $H(p, q), H(P, Q)$, and $H^{\prime}\left(P^{\prime}, Q\right)$, where $P^{\prime}=\frac{\partial L^{\prime}}{\partial \dot{Q}}$. Which of them are conserved?
5. Express P^{\prime} in terms of P and determine how $H(P, Q)$ and $H^{\prime}\left(P^{\prime}, Q\right)$ are related.

Problem H28 - Hamiltonian in a Rotating Frame

[10 Points, cf. Lemos 7.15] The motion of a particle in a central potential $V(r)$ is described in a reference frame that rotates with a constant angular velocity ω with respect to an inertial frame. The center of the potential lies on the rotational axis.

1. Show that the conjugate momentum for \vec{r}^{\prime}, the position vector in the rotating frame, is $\vec{p}=$ $m\left(\dot{\vec{r}}^{\prime}+\vec{\omega} \times \vec{r}^{\prime}\right)$.
2. Construct $H\left(\vec{p}^{\prime}, \vec{r}^{\prime}\right)$.
3. Show that $H\left(\vec{p}^{\prime}, r^{\prime}\right)$ is conserved, but that it does not correspond to the total energy in the rotating frame, i.e., $H \neq \frac{\vec{p}^{\prime 2}}{2 m}+V\left(r^{\prime}\right)$ (where $\left.r^{\prime}=\left|\vec{r}^{\prime}\right|\right)$.

Hint: For the form of the Lagrangian in rotating frames, you can refer to our discussions of the three-body system or the rigid-body dynamics.

