PHY422/820: Classical Mechanics

FS 2021
Homework \#14 (Due: Dec 10)

November 29, 2021

Problem H29 - Poisson Brackets for Laplace-Runge-Lenz Vector

[15 Points] The Hamiltonian of the Kepler problem is given by

$$
\begin{equation*}
H=\frac{\vec{p}^{2}}{2 m}-\frac{k}{r}, \quad k>0 . \tag{1}
\end{equation*}
$$

Compute the Poisson brackets $\left\{l_{i}, H\right\}$ und $\left\{A_{i}, H\right\}$, to show that the angular momentum and the Laplace-Runge-Lenz vector

$$
\begin{equation*}
\vec{A}=\frac{\vec{p} \times \vec{l}}{m k}-\frac{\vec{r}}{r} \tag{2}
\end{equation*}
$$

are conserved.
Hint: Start by proving

$$
\begin{equation*}
\left\{f(r), p_{i}\right\}=\frac{\partial f}{\partial r} \frac{x_{i}}{r} \tag{3}
\end{equation*}
$$

and use the properties of the Poisson brackets.

Problem H30 - Complex Transformations

[15 Points] The Hamiltonian of a harmonic oscillator with a single degree of freedom is given by

$$
\begin{equation*}
H(q, p)=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2} . \tag{4}
\end{equation*}
$$

Hamilton's equations can be decoupled by introducing the new variables

$$
\begin{equation*}
a=\sqrt{\frac{m \omega}{2}} q+\frac{i p}{\sqrt{2 m \omega}}, \quad a^{*}=\sqrt{\frac{m \omega}{2}} q-\frac{i p}{\sqrt{2 m \omega}} . \tag{5}
\end{equation*}
$$

1. Show that this transformation is not canonical.
2. Construct the Hamiltonian in the new variables.
3. Evaluate the Jacobian of the transformation and show that

$$
\begin{equation*}
\{f, g\}_{\left(a, a^{*}\right)}=\frac{\partial f}{\partial a} \frac{\partial g}{\partial a^{*}}-\frac{\partial g}{\partial a} \frac{\partial f}{\partial a^{*}}=i\{f, g\}_{(q, p)} \tag{6}
\end{equation*}
$$

4. Derive the dynamical equations for a and a^{*} by performing the change of variables in Hamilton's equations, as well as using the algebraic approach with the new Poisson bracket.
5. Solve the equations of motion and determine $q(t), p(t)$.
