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Part I. Introduction

1. Formulation and background. The problem indicated in the title is one

of the most important hitherto unsolved problems of the calculus of varia-

tions, namely:

Given any family of <x>2" curves (paths) in («+1)-dimensional space (x, y,),

ü —1, • • • ,n), as represented by a system of differential equations

(Li) y'! = F{(x, yj, yj) (l-i, •• • ,*);

to determine whether these curves can be identified with the totality of extremals

of some variation problem

(1.2) ^ <b(x, y,-, yl)dx = min,

and in the affirmative case to find all the corresponding functions <p.

The present paper solves this problem for the most important and inter-

esting case of 3-dimensional space (n = 2), where the given family consists of

a>4 curves defined by differential equations of the form

(1.3) y" = F(x, y,z, y',z'),      z" - G(x, y, z, y', z'),

and the variation problem sought for is of the form

(1.4) J 4>(x, y, z, y', z')dx = min.

Our essential results and methods have already been published in two pre-

liminary notes(1).

Basically, our procedure consists in an application of the Riquier theory

of systems of partial differential equations to a certain linear differential sys-

tem @ on which the inverse problem can be made to depend. This differential

system has already appeared—derived in a different way—in the interesting

work, of little more than a decade ago, by D. R. Davis on the inverse prob-

lem^); but, as he stated, its general solution—even existence-theoretically—

presented difficulties which he could not overcome.

Presented to the Society, January 1, 1941; received by the editors March 13, 1940.

Q) Numbers 8 and 9 of the list of references at the end of §2.

(2) See numbers 6 and 7 of the list of references at the end of §2.
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In this paper we succeed in obtaining a complete solution of the differ-

ential system © in the following sense. We determine in all cases whether or

not a solution exists corresponding to given (F, G)—that is, a classification

is made of all curve families (F, G) into "extremal" and "nonextremal." In

each case of consistency of the system © we derive an equivalent completely

integrable differential system [©] which determines <p. This system [©] is

either given explicitly—that is, the coefficients in its equations (all linear) are

expressed as functions of the partial derivatives of (F, G)—or else (when this

seems to lead to calculations too lengthy to be worth while) we describe pre-

cisely those differentiations and algebraic processes (additions and multiplica-

tions), finite in number, which will furnish this completely integrable system.

The explicit formulation of [©] is found to be feasible in all the important

cases. Standard criteria of the theory of differential systems then enable us to

determine the degree of generality of the solution <j>, that is, the number and

nature of the arbitrary functions or constants which are involved.

It may be emphasized that the coordinates (x, y3) are by no means neces-

sarily cartesian, but may be perfectly general point coordinates. Indeed, as is

evident a priori, the fundamental group of our problem is that of all (analytic)

point transformations (or, otherwise interpreted, all coordinate transforma-

tions) ; for if the curves (1.1) are the extremals of the integral (1.2), this rela-

tion obviously continues to subsist, after arbitrary transformation of the vari-

ables (x, y3), between the transformed curves and the transformed integral.

We assume the functions Fi, <p and any others that may enter into our in-

vestigations to be analytic about a particular linear element (x(0), yj0), y^(0))

which we may take to be located at the origin along the x-axis, that is, with

all coordinates zero.

The principal formulas of a tensor form of treatment of the inverse prob-

lem, based on parametric representation, have been given in one of our

preliminary notes(3). In the present exposition the non-parametric form of

representation, as in all the preceding formulas, will be employed throughout.

Analytic formulation. Analytically expressed, our inverse problem consists

in the solution for <p, as unknown function, of the Euler-Lagrange equations

Here the operator d/dx denotes total differentiation with respect to x along

an arbitrary curve of the given family; that is, as applied to any function of

*i y j, yf,

(1.5)
deb      d d<j>

= 0 (* — 1, • • • , »).
dyt    dx dy'i

(1.6)
dy!

(3) Number 8 of the list at the end of §2.
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where, as throughout this paper, the summation convention applies to repeated

indices.

In expanded form, the Euler-Lagrange equations are, then:

d(t>   /a       a d
(1-7)    ir-\T + yl j- + Fi-^^ = 0      (i = i, •••,«),dji     \dx djj djj

1 \ °4>

tj ) dyi

where Fj are given and <p is to be found. Further, these equations must be

solvable uniquely as a linear algebraic system for the quantities Fj or y/',

in order that the differential equations of the given curve family may have the

prescribed form (1.1). Therefore a solution of (1.7) is required such that

(1.8) Det [ <Pij \ ^ 0,

where

d2<j>

(1.9) *u
dyldyj

The determinant (1.8) is, of course, the Hessian of <p.

For n = l, or a 2-dimensional containing space, the solution of the inverse

problem is classic, being given in the standard textbooks(4). The system (1.7)

then consists of but a single equation, whose solvability for <j> is assured by

known existence theorems. Thus, any given family of w2 curves in the plane,

as defined by a differential equation

(1.10) y"=F(x, y,y'),

can be regarded as the totality of extremals of a problem

J <b(x, y, y')dx = min.

Indeed, <p can be explicitly determined by quadratures if the differential equa-

tion (1.10) has been integrated: y=f(x, a, b). The formula for <p involves

essentially one arbitrary function of two arguments(5), so that the class of

integrals corresponding to a given curve family assigned as extremals is quite

extensive.

The difficulty of the problem resides in the case » = 2, that is, for a 3- or

higher dimensional space. Then the number of equations (1.7) to be satisfied

exceeds the number (one) of unknown functions, and for this reason it has

always been presumed (correctly) that for arbitrarily given Fj the equations

(1.7) have no solution except the trivial one of any total derivative:

(4) See Bolza, Lectures on the Calculus of Variations, New York, 1931, pp. 31-32. Cf. also

the reference to the work of Darboux in §2.

(*) fn this count we omit the arbitrary function v(x, y) in the exact differential dv(x, y)

that may be added to <t>(x, y, y')dx.
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d dv 6V
<t> = —      y,) = — + — y!,

dx ox dy,

which evidently does not satisfy the condition (1.8) since each element (1.9)

is equal to zero. In other words, the presumption is that a given family (1.1)

of oo2" curves in (w-f-l)-space is, in general, not an extremal family.

However, it may be an indication of the difficulty of discussing the system

(1.7) directly that hitherto no proof has ever been given of this surmisal. That

is to say, no example has ever been given of a 2«-parameter curve family in

(w + l)-space which is certainly not an extremal family(6).

In the course of the general solution of the inverse problem that occupies

this paper, many examples of nonextremal families are found and proved to

be such; for instance, in xyz-space

(1.11) y" = y2 + 32,     z" = y

is a non-extremal family(7), so is

(1.12) y" = y2 + z2,      z" = 0(8);

and as many others as are desired can be constructed.

2. Historical survey. Darboux in his geometrical treatise(9) stated and

solved the inverse problem for the 2-dimensional case.

G. Hamel, in 1903, gave a solution of a particular case of the inverse prob-

lem in 3-space where the assigned extremals are the totality of straight lines.

Along another line, Jacobi, in his fundamental memoir of 1837 on the

calculus of variations, proved that if 5E = 0 is the variational equation for the

Euler equation (of 2wth order):

d<b     d d<p      d2    d<f> dn dip
(2.1) Em-+ —-._...+(_ 1)»-= 0,

dy    dx dy'    dx2 dy" dxn &y<*>

corresponding to a 2-dimensional problem of any order n

(2.2) f <b(x, y, y', y", • • • , y^)dx = min,

then 8E is always self-adjoint as a linear differential expression in 6y.

In 1897, A. Hirsch proved that, conversely, if

«(*. y,y', ■ ■ ■ , y(2n))

is any differential expression whose variation 8o> (a linear differential expres-

(6) Except in the preliminary notes to this paper, cited in Footnote 1.

(') Cf. §18.
(8) Cf. §17.

(9) See, throughout, the list of references at the end of this section.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1941] CALCULUS OF VARIATIONS 75

sion in by) is self-adjoint, then oj must be identifiable with the Euler expression

E corresponding to some integrand <p, as defined by (2.1). Later, J. Kiirschak

extended this result to expressions involving partial derivatives.

D. R. Davis, in a Chicago dissertation of about a decade ago, proved the

corresponding converse theorem for a system of n differential expressions

Ui(x, jj, yl, y/'): if their variations 5to; form a self-adjoint linear differential

system in by,, then <j>(x, y,-, yj) exists such that the are the first members of

Euler's equations for f<pdx = min. On this basis, Davis transformed the inverse

problem in (« + l)-space into the determination of multipliers P</(#, y*, y* )

for the given differential equations (1.1) such that the following differential

expressions:

Ei = Pif{Fj(x, yk, yl) - yj'},

have variations bEi which are self-adjoint.

By imposing this condition of self-adjointness, Davis obtained for the mul-

tipliers Pij precisely the differential system © which we shall derive in an en-

tirely different way in the present paper (Part II)(10). In attempting, however,

to solve the system © even existence-theoretically, Davis met with difficulties

which, as he stated, he was unable to overcome. He therefore contented him

self with the study of certain three particular examples^1).

The present paper accomplishes the solution of the system © from the exist-

ence-theoretic standpoint. This includes the determination in all the various

cases of the existence and generality (in terms of arbitrary functions and con-

stants) of the solution. In the case of existence of a solution, a completely

integrable differential system is given, either explicitly or implicitly, for the

determination of this solution.

Incidentally, we derive the fundamental differential system © from an en-

tirely new point of view, based on certain identities which we have found to

be obeyed by the Euler expressions. Self-adjoin tness thus plays no role what-

ever in our theory and may be omitted entirely from consideration.
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The last two are preliminary notes to the present paper.

3. Statement of results. Because of the number and variety of our results,

it seems desirable to present them first before proceeding to their detailed

development and proof. In this section we therefore collect the theorems

whose establishment is the goal of the main body, Part IV, of this paper. We

shall also give an example of each of the important types which arise in our

classification.

Of central importance is a certain matrix

(3.1) A =

A    B C

At  £i C,

Ai  B2 C2

whose elements are known functions depending on the given curve family

(F, G), being expressions in the partial derivatives of F, G. Explicitly:

A = —Fz
dx

2FZ - $F,.(F,'+G.>),

(3.2)     B = - ~Fy. + -j-Gz> + 2{Fy - G.) + Wf ~ Gz>)(Fy> + Gz,),
dx dx

C = Gy>   +   2Gy +  lGy'(Fyl   + GZ'),

where for the 3-dimensional case given in (1.3), the differential operator d/dx

of (1.6) is

(3.3)
d      d d d d d

— ■ — + y— + z' —+F—7 + G —
dx    dx       dy       dz        dy dz

A\, B\, Ci are derived from A, B, C by the formulas
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dA
A,. =-Fy.A - \FZ.B,

dx

(3.4) Si

Ci

dB

dx

dC

dx

Gy'A - Wtf + G,)B - FZ.C,

\Gy'B — GZ'C t

while Ai, Bi, C2 are derived from A\, B\, C\ by the same formulas (recursion).

The rank of A is the principal basis of classification of curve families {F, G)

with respect to our inverse problem; accordingly, we begin by a separation

into cases according to this rank, which will be followed by the appropriate

sub-classifications in the statement of our theorems.

Case I. \\A B C\\ = 0, that is, A =0, 13 = 0, C = 0.
Case II.

Case III.

ABC

Ai it c\

ABC

Ax   Si Ci

At   B2 C2

= 0,

= 0,

\A B C  * 0.

ABC

A,  B, Ci
^ 0.

Case IV.

ABC

A,   Bx Ci

Ai   Bi d

9* 0.

Here, in writing a matrix =0, we mean that each determinant resulting

therefrom by the suppression of columns (only) is equal to zero, and f^0

means that at least one such determinant is not equal to zero.

It is seen by reference to the recursion formulas (3.4) that the cases thus

described are precisely those of rank 0, 1 2,3 of the matrix A, respectively.

Case II is the most difficult and varied in its results. Fundamental in its

treatment is the quadratic equation

(3.5) Ap + Bt + C-0,

whose roots we denote by X, u. It is important to distinguish the case of un-

equal roots from that of equal roots:

Case IIa. B*-4A C^0, X^ju;

Case lib. J32-4^1C = 0, X=yu.
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X, ju are known functions of x, y, z, y', z' when the curve family is given,

being algebraic functions of the partial derivatives of F, G.

The investigation of Case Ha leads to an interesting division into three

subcases according to the following criteria:

Case Hal. XXZ'— X„' = 0, MMz'— M»' = 0;

Case Ila2. XX2' — X,,'=0, ppz> — pvj^O;

Case Ila3. XX*< — X„- 5*0, p;pv — ßy< 9*0.

For reasons that will appear in our later detailed discussion (cf. end §10), we

shall refer to these cases respectively as "separated," "semi-separated," and

"non-separated."

Case lib will be subdivided into

Case I lb 1. XXj<— X„'=0;
Case IIb2. XX^-X„'^0.

Case Ilbl will be further divided into

Case Ilbl'. XX*<-X„.=0, (IX') =0;

Case Ilbl". XX^-Xv- = 0, (IX')^O:
where (IX') is a certain expression in the partial derivatives of F, G, given

explicitly by formula (14.10) modified according to the remarks following

formula (15.2).

In Case III, let Ai, A2, A3 denote the second order determinants contained

in the matrix of A, B, C and A %, Bi, Ci:

Ai = Bd - B£,      A2 = CA1-C1A,      A3 = ABx - AXB.

The vanishing or nonvanishing of

D = AiA3 — A2

is important in the discussion of Case III; accordingly, we subdivide this case:

Case Ilia. ZMO,

Case Illb. F> = 0.

We shall indicate the generality of the solution of a given differential sys-

tem by the notation

(3.6) 00 mi/(ni)+ms/(nj)H-hmJ/(nj)+p(12)

to represent the presence in the general solution of mi arbitrary functions of n\

arguments, m2 arbitrary functions of w2 arguments, • • • , mk arbitrary func-

tions of nk arguments, and p arbitrary constants.

We remark that the extremals of J<pdx = mm and f[<pdx-\-dv(x, y, z) ] =min,

where v denotes an arbitrary function, are evidently the same. For

/• P% r>P%[<pdx 4- dv(x, y, z)] = I    <pdx 4- v(xs, y2, z2) — v(xu yu Zi),
Pi *^ p.

(12) This symbol is due to E. Kasner, appearing in his review of Riquier's treatise on differ-

ential systems, Bulletin of the American Mathematical Society, vol. 19 (1913), p. 14.
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where Pi (xi, yi, Zi) and P2 (x2, y2, z2) are any two points of space. Since the

difference between the values of the two integrals is independent of the path

followed from Pi to P2, a minimizing path for one is also minimizing for the

other.

It is also evident that <j> and c<p, where c denotes an arbitrary nonzero con-

stant factor, have the same extremals.

In estimating the generality of the integrand 4>(x, y, x, y', z') correspond-

ing to given F, G, we shall omit the arbitrary function v(x, y, z) and the arbitrary

constant c, considering the class of integrands

d
(3.7) c<p(x, y, z, y', z') + — v(x, y, z)

dx

as defining essentially a single variation problem equivalent to f<pdx = min.

We are now ready to state our results and to cite our illustrative examples.

As has been said, in all cases where the given curve family is of extremal

type, that is, a corresponding variation problem exists, we shall give (in

Part IV) a completely integrable differential system for the determination

of the integrand <p. All these systems are linear in the partial derivatives of

the unknown functions.

Theorem I. In Case I the given curve family is always of extremal type,

and the generality of the corresponding variation problem is expressed by the

symbol * tf<»+*«».

This theorem is illustrated by the straight lines: y" = 0, z" = 0; also more

generally by y" =f(z'), z" = 0, the function/being arbitrary.

Theorem II. In Case Hal (separated) the given curve family is of extremal

type and the generality of the corresponding variation problem is <x>2/(2). The ex-

plicit determination of the integrand <p depends on the solution of two separate

complete systems of linear partial differential equations of the first order(u), with

respective unknown functions p(x, y, z, y', z'), a(x, y, z, y', z'); there are three

equations in each system.

Example, y" = F(x, y, y'), z" = G(x, z, z'), with B?*0. The inverse problem

here separates into one in the xy-plane and one in the xz-plane, whose solu-

tions by addition give the integrand <p for the space problem.

Theorem III. In Case IIa2 (semi-separated) the solution of the inverse prob-

lem depends first on the solution for a of a certain system of linear partial differ-

ential equations of first order in that unknown function, which system may be

rendered complete in the usual way by the adjunction of alternants. Its solution

is then substituted in a system of three linear partial differential equations of first

(ls) See the reference in Footnote 24.
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order involving p together with a, whereupon this system becomes a complete one

for p. According to the number of linearly independent equations in the complete

system for a (4, 5, or 6), the generality ofthe integrand <p is oo '/(^i+^tn^ 0r oo,•''(2,,

or else <p is nonexistent, that is, the given curve family is nonextremal.

Example. The <»* catenaries which lie in planes perpendicular to the xz-

plane (pictured as horizontal) and the directrix of each of which coincides

with the trace of its plane upon the xz-plane. This family of catenaries is

represented by the system of differential equations

1 4- y'2 + z'2
y" = -,      z" = 0.

y

The generality of the corresponding variation problem is coW+l't1',

The discussion of the non-separated case, IIa3, is, in the nature of the mat-

ter, not as simple or neat as that of the others. Nevertheless, every eventuality

is followed out in the detailed considerations given in §13. Even in the most

favorable hypothetical possibility, the generality of the corresponding varia-

tion problem is certainly not higher than oo w, as will be seen by a review

of §13.

Theorem IV. In Case Ilbl' the given curve family is of extremal type and

the generality of the corresponding variation problem is <*>2/(2). The determination

of <p depends on the solution of a complete system of three partial differential

equations of first order for a(x, y, z, y', z') followed by the solution of a similar

system for p(x, y, z, y', z').

Example. y"=z, z" = 0 (see §15).

Theorem V. In Case Ilbl" no corresponding variation problem exists.

An example is given at the end of §15.

Case IIb2 is discussed in §16.

Theorem VI. In Case Ilia the solution of the inverse problem depends on a

certain differential

Exdx 4- Etdy + Esdz + Edy' 4- Ehdz',

whose coefficients E( are definite functions of the partial derivatives ofF, G—in-

deed, rational functions having D for denominator. In case this differential is ex-

act, the corresponding variation problem exists and is essentially unique(u); in

the contrary case, no corresponding variation problem exists.

Example, y" =z2, z"=y2. The corresponding integral is

Jfr V + \y% + ¥3)dx,

(14) Cf. formula (3.7) and the associated remarks.
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uniquely determined up to the possibility of the addition of an arbitrary exact

differential and multiplication by an arbitrary constant factor (cf. formula

3.7).

Theorem VII. In Case 11 lb no corresponding variation problem exists.

Example. y"=y2+z2, z" = 0.

Theorem VIII. In Case IV no corresponding variation problem exists.

Example, y" =y2-\-z2, z" =y.

Part II. The fundamental differential system %

4. Derivation of ©. The first step in our procedure is to make the solution

of the original Euler-Lagrange equations (1.7) for the unknown function <p

depend on an equivalent differential system ©, more easily manageable, where

the unknowns are the functions <pa defined by (1.9). We find it convenient to

conduct the discussion for a general value of the dimensionality »4-1, after-

wards putting re = 2.

Our derivation of the system @ is based on certain new identities which we

establish involving the Euler expressions

dtb      d deb
(4.1) WjS (;=!,..., re).

dyi    dx dyi
These identities are

du>i       du,- d dFk dFk
(4-2) 77 + 77 + 27^ + 7T^ + 7T*'» = °'

dy,      ay,         dx dy, oyi

d / dwi       du,- \        /doii du3\      1   dFk / dco,-      do)& \

dx\dyf     dy! )    2\dyi dyj     2   dyTxöyi dyi)

1 dFk / doii       dojjt \

2 dyi \dy{ + dyi )

(4.3)

4- Ajk4>ik — Aik<p,k = 0,

where

,     , d   dFk dFk      1   dFm dFk
(4.4) Ajh-2-

dx dyi dy,-      2   dyi dyJ

Their verification may be left to the reader with the remark that here and

frequently afterwards in this paper it is helpful to observe the following "al-

ternating relations" between differential operators:

d    d      d    d        dFk d
(4.5)

dy,- dx    dx dy,-      dy,- dyi

d    d      d    d d dFk
(4-6) 777-TT7-- +

dyi dx    dx dyi      dy,-     dyi dyi
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If the Euler-Lagrange equations co, = 0 are satisfied, then the preceding

identities imply the following equations obeyed by the functions <p,,-:

d 1   BFk 1 dFk
(4.7) —       — —T <bik + — —■ 0yfe = 0,

dx        2  dyj 2 dy'i

(4.8) - Aik4>jk = 0.

We also have evidently from (1.9):

(4.9) -=-;
dyk dyl

and we take explicit notice of the symmetry of <pa in its indices:

(4.10) 4>a = *jr

The differential system in <bij consisting of the equations (4.7)-(4.10) to-

gether with the inequation (1.8):

(4.11) Det I 4>tl\ 9* 0,

is our fundamental differential system @.

It is to be observed that all the equations of © are linear.

5. Equivalence of the system © to the Euler-Lagrange equations. Con-

versely, let <pij be any system of functions of x, yk, y£ which obeys the sys-

tem ©.

Then (4.9) implies the existence of functions

(5.1) 4n = j <t>iidyj,

since the differential under the integral sign is exact. We have d<pi/dyj =4>u',

therefore by (4.10), d<pi/dyj =dqbj/dy! , from which it is possible to conclude

the exactness of the differential (pidyi and the existence of a function

(5.2) 4> = f tidy! .

Evidently the functions (p,,- are the second partial derivatives of <p, as re-

quired by (1.9).

The existence of a function <p whose second partial derivatives d2(p/dy/dy/

are precisely the functions </>,-,■ being thus assured, it is next evident that <p is

determined only up to the addition of an arbitrary linear function of the yl '■

(5.3) 4> ** * + Xo + X*yi

where <p denotes any fixed determination and Xo, X;t are functions of x, y,-.
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Let functions be deduced from any fixed determination by formula

(4.1). Then by the identities (4.2, 3) and the equations (4.7, 8), it follows that

däit düj
(5.4) 77 + TT = 0'

dyi dyi

(5.5) — (—--)-2[--) = 0.
dx\dyf     dyi /       Xdy, dyj

Applying d/dyk to (5.4), we get

d2ö}i d2<ä,-

dyjdyi     dy- dyk

and cyclic permutation of i,j, k gives three equations of this type, wherefrom

d2üi
-■ = 0.
dy'j dyl

This expresses that cö» is linear in the variables yl:

(5.6) 0>i = tmfi 4- ßi,

where a^, ßi are functions of x, y,-. Formula (5.4) then implies the skew-sym-

metry of etij:

(5.7) an 4- oca = 0.

Substituting (5.6) in (5.5), we find

dan      dotici dctjk

(5.8) —L + — + — = 0,
dyk       dy,- dy{

dan      dßi dßi
(5.9) -L + JL^= o.

dx       dyt dy,-

If we extend the range 1, • • • , n of the indices i,j in an to include the index 0

by defining oiiQ=ßi, <XQi=—ßi, aoo = 0 (which agrees with (5.7)), then (5.9)

becomes
dan      dajo da<n

(5.10) -- + — +-= 0;
dx       dyi dyj

we may say therefore that (5.8) holds for the range 0,1, ■ • • , ft of the indices

(provided, further, that yo is identified with x).

Let now <p be replaced by the general determination <p according to (5.3).

Then, as is readily calculated from (4.1), &j; is transformed into

/d\i     dX0\    /d\i a\A
(5.11) <* = -.•-(—-—)-(--— )y£.

\dx      dyj     \dyk dyj
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By the substitution (5.6), we see that coj = 0 if and only if

3X,- d\k
—-= aik, (i, k = 1, ■ • • , n),

(5.12) dn *

d\{ d\0
-= ßt = em, (* *» 1, • • • , n).
dx dji

These conditions express that the curl of the unknown vector

X = (Xo, Xi, • • • , X„) shall be the known skew-symmetric tensor apir

(p, er = 0, 1, • • • , n). It is well-known that the established relations (5.8),

(5.10) are exactly necessary and sufficient in order that such a vector X

exist. X is then determined up to the addition of an arbitrary gradient

(dv/dx, dv/dyi, • • • , dv/dy„) where v is any function of x, y,-. That is, ac-

cording to (5.3), <p is determined up to the addition of an arbitrary total deriva-

tive as to x:
d dv dv

— v(x, yk) = — + — yl.
dx dx dyic

As we have already remarked, it is evident a priori that we could not ex-

pect to determine <p any more closely than this, since the addition of an exact

differential dv(x, yk) to <pdx has no effect on the extremals of Jcpdx.

In summary, we may state the following

Proposition (15). To every solution <pn of the system @ there corresponds a

solution <p of the Ruler-Lagrange equations having (pi, as the system of its second

partial derivatives as to the y"s: d2<p/dyl dyj =<bij. For a given solution tpn, the

function <p can be found by successive quadratures^*), and is uniquely determined

except for the inevitable addition of an arbitrary total derivative dv(x, yk)/dx.

In other words, the inverse problem of the calculus of variations is pre-

cisely equivalent to the solution for 4>a of the differential system ©.

Part III (§6). Outline of the general theory of

differential systems

The essence of this paper consists in an application of the general theory

of differential systems, as presented in the standard treatises(17), to the par-

ticular system ©. Referring the reader to these works, we shall presuppose

the vocabulary, ideas, and facts of this theory. However, for purposes of ex-

(15) This proposition, as well as the proof here given (essentially), is contained in the papers

of Davis referred to in §2.

(16) The determination of a vector, given its curl, can be effected by a series of quadratures.

(17) These are, principally: C. Riquier, Les Systemes d'Equations aux Derivees Partielles,

Paris, 1910; M. Janet, Lecons sur les Systemes d'Equations aux Derivees Partielles, Paris, 1929;

J. F. Ritt, Differential Equations from the Algebraic Standpoint, American Mathematical Society
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position—particularly, to render the sequel intelligible to those not well ac-

quainted with the theory of differential systems, as developed principally by

Riquier—it seems desirable to give here a brief outline of the procedure for

testing the consistency of any given differential system and, in case a solution

exists, for obtaining an equivalent completely integrable system which will

give this solution. The application of the general theory to our particular case

is very considerably simplified by the circumstance that © is linear.

By a differential system we understand any finite number of equations in

which appear any finite number n of independent variables x,-, and any finite

number m of unknown functions ui of these variables, together with a certain

finite number of partial derivatives of the functions Ui with respect to the x,-

up to any order. Each member of each equation is supposed to be an analytic

function of the variables d those partial derivatives of the u, which it

involves effectively, this function being regular, that is, representable as a

power-series, about certain initial values of all these variables. The system

may also contain a certain finite number of inequations; that is, certain ana-

lytic functions of x,-, U{ and some of the partial derivatives of the may be

required to be 9*0.

If a differential system is in a form solved for certain derivatives of the

unknown functions Ui, we term any derivative of a function w; which can be

obtained by differentiation of a first member to any order with respect to

the independent variables x,- a principal derivative. (This definition is

interpreted to include the first members themselves among the principal

derivatives, as their own derivatives of zeroth order.) All other partial deriva-

tives of the functions w; are termed parametric.

Riquier introduced the device of cotes. With each independent variable

Xj is associated a composite integer with any fixed number 5 of components:

ci = (cji. cj2, • • • i Cjs)> where each c,* is an integer SrO; this composite integer

is what is called the "cote" of x,-. Similarly a cote is assigned to each unknown

function Ui: c/ = (d{ , C& , ■ • ■ , cu). The cote of any partial derivative

dxrldxr* ■ ■ • dxr*
12 n

is then, by definition,

T ■ (71, 72, • • • , 7»)

where yk = c'ik+riclk + r2c2ic-r- ■ ■ ■ +rncnk.

Colloquium Publications, vol. 14, New York, 1932; J. M. Thomas, Differential Systems, Ameri-

can Mathematical Society Publications, vol. 21, New York, 1937.

See also an exposition of the Riquier theory by Thomas, Annals of Mathematics, (2), vol. 30

(1929), p. 285 et seq.

Particularly relevant from our viewpoint are: Riquier, chap. 7; Janet, pp. 74-75; Ritt,

chap. 9; Thomas, §§36, 37, 75, 76.
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All the derivatives of all the unknown functions(18) are arranged according

to their cotes in "dictionary order," that is, given any two derivatives 8ui,

8'uj with respective cotes

T = (71, 72, • • ■ , 7,),      r m (y{, yi, ■■■ , vi),

dui is called "higher" than S'u, if the first of the differences

7i — 7i , 72 — 72', • • • , 7» — 7»'

which is not zero is positive; if the first of these nonzero differences is nega-

tive, hui is called "lower" than b'uj, or 5'u, higher than 8u{. In case r = r",

that is, Vk =7* for k = 1, • • • , s, no distinction of higher and lower is created

between bui and b'uj. The cotes can always be assigned so that this eventual-

ity never occurs, and the ordering of derivatives produced by the cotes is then

said to be complete.

It is an essential condition, always supposed verified in the Riquier theory,

that the first cote c,-i of each independent variable Xj be equal to 1.

Riquier terms a differential system © orthonomic if it obeys the following

three conditions:

1° it is solved for distinct derivatives of the unknown functions;

2° no second member contains any principal derivative effectively;

3° cotes have been assigned, in accordance with the stipulation Cj\ = 1, so

that each first member is higher than any derivative which appears effectively

in the corresponding second member.

The prolonged system ©' of any given differential system © is the infinite

system which is derived from © by subjecting each of its equations to

every possible differentiation with respect to the independent variables #,-:

Qri+n+ ■ ■ ■+'n/dxridxT£ ■ ■ ■ }dxTn. In this differentiation each member of each

equation of © is considered as a composite function of the x,- through the in-

termediary of those partial derivatives of the functions u, which appear in

this member, and the differentiation is effected according to the composite

function rule.

The important idea of a passive system © is defined as follows. © is called

"passive" if its prolonged system ©' is equivalent to a system ©" which con-

sists of a unique expression for each principal derivative in terms of a finite

number of parametric derivatives. This means that the equations of ©' will

be satisfied identically in the parametric derivatives if we substitute for each

principal derivative its expression from ©".

A fundamental theorem of the Riquier theory is that every differential sys-

tem which is passive and orthonomic is completely integrable. The meaning of

this is that a unique solution of the given differential system exists which

(18) The unknown functions will be regarded throughout as their own derivatives of zeroth

order.
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corresponds to initial data of the following nature: the values of all the para-

metric derivatives are assigned arbitrarily for any fixed initial values xj0) of the

independent variables Xj, provided only that we have convergence of that part

of the Taylor series of each unknown function w, about xj0) which involves these

parametric derivatives as coefficients. In other words, the initial values of all

principal derivatives may be regarded as having been put equal to zero to

give this "initial determination" of the functions «t.

The same initial determination may be represented in the manner now to

be described. It is a fact, proved in the general theory, that all parametric

derivatives may be obtained from a certain finite number among them, called

a complete set, as follows. With respect to each parametric derivative of the

complete set, we distinguish the independent variables x, according to a cer-

tain rule as multipliers and non-multipliers. Then each parametric derivative

is obtainable from a unique one of the complete set by a unique differentiation

with respect to its multipliers. From this, one can infer that the initial assign-

ment of all parametric derivatives subject to the stated convergence condition

is equivalent to assigning to each partial derivative but of the complete set

an arbitrary convergent Taylor series in the multipliers x,- of du, (power-series

P(xj—Xj0)) in the quantities Xj—xf*) and requiring but to reduce to this series

when the non-multipliers xk are set equal to their initial values: 8ui = P(xj — xf^)

for each Xic = xt°K This type of initial condition then fixes a solution of the

given differential system uniquely.

One may consult J. M. Thomas, loc. cit., §§75, 76, or Ritt, loc. cit., p. 139

for the notion of complete set, both of principal and of parametric derivatives,

and for the definition of multipliers and non-multipliers of each derivative be-

longing to a complete set. It is convenient here, as throughout the theory of

differential systems, to employ an obvious isomorphism between partial de-

rivatives of a given function u(x\, „) and algebraic monomials in the

variables xf. thus dri+T2+' • '+rnu/dxrxdxri ■ ■ ■ dx'n corresponds to the mono-

mial xTiXr2 ■ ■ ■ xr£, and any successive operations of differentiation with re-

spect to the independent variables x,- correspond to multiplication of the

associated monomials.

The importance of the passive nature of a differential system makes it

essential to have a criterion for the passivity of a given orthonomic differen-

tial system ©. Each equation of the prolonged system ©' expresses a certain

principal derivative in terms of parametric derivatives and of principal de-

rivatives of lower cote; this follows from the orthonomic nature of ©, which

can be proved to extend to the prolonged system ©'. The expressions for the

principal derivatives thus furnished by ©' are said to be direct. It is much to

be emphasized that a given principal derivative may occur as first member in

many different equations of ©', that is, be obtainable in many different ways

by differentiation of first members of ©. For example, if d3u/dxdy2,

d3u/dx2dy, du/dx are first members of ©, the derivative d5w/dx3dy2 may
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be obtained from these respectively by the differentiations d2/dx2, d2/dxdy,

dt/dx2dy2. Accordingly, any principal derivative may, and generally will,

have various direct expressions.

Imagine the principal derivatives arranged in order of cote from lower to

higher as first, second, third, • • • : Pi, P2, P3, • • • . Then the lowest principal

derivative Pi must, as can easily be shown, be a first member of @, and has

therefore, by condition 1° for an orthonomic system, a unique expression in

terms of parametric derivatives exclusively (the independent variables x, are

supposed to figure throughout as parameters). Consider next the second low-

est principal derivative P2; each of its direct expressions involves, besides

parametric derivatives, only the lowest principal derivative Pi; if the expres-

sion just mentioned for this is substituted, then a certain number of expres-

sions are obtained for P2 in terms of parametric derivatives exclusively—these

are termed the ultimate expressions of P2. Next, the third lowest principal

derivative P3 has a certain number of direct expressions in terms of parametric

derivatives and the two Lower principal derivatives Pi, P2. If in each of these

direct expressions for P3 we substitute the unique ultimate expression for Pi

and, in succession, all the different ultimate expressions already obtained for

P2, we get a certain number of ultimate expressions for P3 in terms of para-

metric derivatives exclusively. Continuing step-by-step in this way, we ob-

tain for each principal derivative Pk a certain number of ultimate expressions

in terms of parametric derivatives.

A criterion for the passivity of the given differential system is that all the

various ultimate expressions of each principal derivative Pk shall be identical.

This criterion may be considerably simplified by basing the test for passivity

on only a certain finite number of principal derivatives, called cardinal (fema-

les, instead of the infinite set of all of them. If drl+n+ '" '+rnUi/dxri dxT2 ■ ■ • dxrnn

and dsl+SJ+'' '+,nUi/dx[ldx22 ■ ■ • dx% are any two first members of © which

are partial derivatives of the same unknown function u,, then the correspond-

ing cardinal derivative is, by definition, d'l+tt+" '+tnUi/dx'l dx'i ■ ■ ■ dx'j

where each tj is the greater of r, and s,(19)- Then, as proved by Riquier, the

following is a necessary and sufficient condition for the passivity of ©: the

various ultimate expressions for each cardinal derivative shall be identical.

This is the form of test which will be used in the applications that follow.

If © is not passive, the application of the preceding criterion, that is, the

equating of every two different ultimate expressions for a cardinal derivative,

will lead to relations among the parametric derivatives which are not verified

identically. By solving these for the parametric derivatives of highest cote(20),

we obtain an orthonomic differential system @i equivalent to © in the sense

that any solution of the one must be a solution of the other.

(ls) In terms of the isomorphism between partial derivatives and monomials mentioned

earlier in this section, cardinal derivative corresponds to least common multiple.

(20) Cf. Janet, loc. cit., p. 75.
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The passage from © to ©i clearly enlarges the class of principal derivatives

and narrows that of parametric derivatives.

If we next apply our passivity test to ©i, then either it is verified that ©i

is passive, or else new equations not identically satisfied are obtained among

parametric derivatives of ©i. In the latter case a system ©2 is derived as be-

fore, equivalent to © and ©1, and with a still wider class of principal deriva-

tives and a narrower one of parametric derivatives.

It is a standard fact of the theory of differential systems that this process,

accompanied by successive enlargement of the class of principal derivatives

and restriction of the class of parametric derivatives, can go on for only a finite

number k of steps. That this is so is a direct consequence of the following theo-

rem due to Riquier: if in a sequence of monomials x^x'^ ■ ■ ■ xTn {each r,- an in-

teger = 0) no monomial is a multiple of a predecessor, the sequence can contain

only a finite number of terms. (Cf. Janet, loc. cit., p. 11; Ritt, loc. cit., p. 135;

and refer also to the isomorphism between partial derivatives and monomials

mentioned earlier in this section.)

At the end of the finite process just described, either the conditions for

passivity are found to be verified, or else we obtain a non-identical relation

involving only the independent variables, or a relation contradicting one of

the specified inequations of ©. In the latter two eventualities the system ©

is inconsistent with itself, or has no solutions; in the former case we obtain a

passive orthonomic system [©] =©& equivalent to ©, which has therefore a

unique solution corresponding to initial data of the type previously described;

that is, [©] is completely integrable.

The main body of this paper, which follows, is concerned with applying

the general theory just outlined to the particular differential system © on

which depends the inverse problem of the calculus of variations.

7. The system © in the three-dimensional case. We have derived the

differential system © in §§4, 5 for a general value of the dimensionality ra+1.

For the three-dimensional inverse problem, which alone will be considered in

this paper, n = 2, and we adopt the notation (x, yu y%, y( ,y{) = {x, y, z, y', z'),

(Fi, F2) = (F, G), so that, as already written in §1, the differential equations

of the given curve family are

Part IV. Solution of the differential system ©

(7.1) y" = F(x, y, z, y', z'), z" = G(x, y, z, y', z'),

while the variation problem sought for is

(7.2)

For the functions <pn (i,j = 1, 2) we write
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(7.3) L = <by,y,,      M = 4>y-Z',      N = <bz>z>.

The differential operator (1.6) is now

d      d d         d d d
(7.4) —m-h/-\-z'-\-F-VG-•■

dx    dx        dy        dz        dy' dz'

By comparison with (4.7)-(4.11), we see that the fundamental differential

system <© now consists of the following six linear equations and quadratic

inequation in L, M, N as unknown functions:

dL
-\-Fy,L+Gy.M = 0,
dx

dM
-+ \FZ.L 4- Wv + Gz-)M 4- WyN = 0,
dx

dN
(7.5) -4- Fz.M 4- Gz'N = 0,

dx

AL + BM + CN = 0,

Lz> = My>,

AV = Mz;

LN - M2 9* 0.

In the purely algebraic equation (7.54) of the system, the coefficients

A,B, Care, by (4.4),

d
A = —TV - 2FZ - hFz>{Fy. 4- Gz,),

dx

(7.6) B= - ^-Fy. + -^Gz- + 2(Fy - G.) 4- Wl ~ G%
dx dx

C =   - ^-Gy, + 2Gy + %Gy>(Fy. + Gz-).
dx

Applying successively to (7.54) the operator d/dx, and using the first three

equations of (7.5), we obtain the following two additional purely algebraic

linear equations in L, M, N:

(7.7) AiL + B^M + CiN = 0,

(7.8) A2L 4- B2M + C2N = 0.

Here At, Bi, Ci are derived from A, B, C by the formulas
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(7.9)

dA
At-Fy.A - tf..B,

dx

dB
Bt =-GyA - Wv + G.>)B - F..C,

dx

Ci =
dC

dx
\Gy'B — G,>C,

while A2, B2, C2 are derived from At, B\, C\ by the same formulas (recursion).

Since (L, M, N)y*{Q, 0, 0)—for the contrary would be inconsistent with

the last condition of (7.5)—we infer from the system of linear equations (7.54),

(7.7), (7.8) the following property of all extremal curve families:

(7.10)

ABC

At   Bt Ci

A2   B2 C2

= 0.

This necessary condition gives a very easy way of constructing nonex-

tremal curve families, namely, by the nonvanishing of the determinant just

written. The readily verified example given in (1.11) was found in this man-

ner^1).

8. Case I. When the fundamental matrix is of rank zero. As stated in §3,

the principal basis of our classification into cases is the rank of the matrix

(8.1) A ss

A

At
At

B C

Bt C,

B2 C2

The first case to consider is that of rank zero, that is, when

(8.2) A = 0,      5 = 0,      C = 0.

It is evident by the recursion formulas (7.9) that every element of A is then

zero; that is, the rank of A is indeed zero.

The fourth equation (7.5) now disappears identically, so that the system ©

is now constituted by the remaining five equations and the inequation of (7.5).

We proceed to consider © from the standpoint of the Riquier theory.

This is the place to make the following preliminary remark. In the theory

of the system © we may use d/dx instead of d/dx, that is, we may take as

fundamental the differential operators d/dx, d/dy, d/dz, d/dy', d/dz' in-

stead of d/dx, d/dy, d/dz, d/dy', d/dz'. In doing this, it is important to

have always in mind the following "alternating relations":

(2l) Cf. §18.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



92 JESSE DOUGLAS [July

(8.3)

d    d d d

dy dx dx dy

d    d d d

dz  dx dx dz

d    d d d

d d
Fy-T" Gy -

dy' dz'

d d
Fz —- + Gz —-

av dz'

dy' dx    dx dy' dy
= ~+Fy

d d d d

dz' dx    dx dz'

d
-— + Fz

dz

dz

d
— + Gz' —
dy' dz'

dy'

d

Then, for instance, instead of employing such a passivity condition as

(8.4)

we use

(8.5)

Lx Lz
dxdz'

d   dL d
—:—■-— LZ' = Lz 4- Fz>Ly> 4~ GZ'LZ
dz   dx dx

and likewise in all similar cases.

We now adopt the following system of cotes for the independent variables

and unknown functions of <2>:

(8.6)

1

0

0

1

0

0

0

1

0

0
0

1
0

0

1

0

0

0
0

1
0

1

0
0

0

0

0

1

M

0

1
0

0

0

0

0

N

0

2

0

0

0

0

0

This is equivalent to arranging all the derivatives of L, M, N first with regard

to their total order in all the independent variables, then with regard to the

unknown function in the order L, N, M (note that M is last), then as to the

order in x, in y, in s, in y', in z'. The cote of x is thought of as associated with

the operator d/dx rather than d/dx.

With these cotes, the system © is seen to be orthonomic, for it has the

three characteristic properties stated in §6.

There are two passivity tests to be applied, the first associated with (8.5),

the second with
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8   dN d
(8.7) —-— Ny-   -   Ny + Fy'Ny'   + GfN*.

dy dx dx

In all such passivity tests involving the operation d/dx we may proceed

systematically as follows. The first three equations of (7.5) represent d/dx

of L, M, N as linear expressions in L, M, N. By use of the alternating relations

(8.3), we may then represent d/dx of any first partial derivative of L, M, N

as a linear expression in these partial derivatives and L, M, N themselves,

that is, as a linear differential expression of the first order in L, M, N. Con-

tinuing step-by-step in this way, we can represent d/dx of any kth order

partial derivative of L, M, N as a linear differential expression of kth order

in L, M, N.
Accordingly, by applying d/dx to any linear differential relation in L, M,

N we obtain another one of the same order. By eliminating from this all prin-

cipal derivatives, as we may do, we have a relation among parametric deriva-

tives which is a consequence of the original differential relation. According

to the general theory of §6, this new relation must be satisfied identically for

a passivity condition; otherwise, it must be adjoined to the given differential

system so as to form an extended system.

Let us then apply d/dx to the fifth equation (7.5), obtaining

d d
— Lz- = — My-.
dx dx

By (8.5) and the first equation of (7.5),

d d
— Lz-=-(- Fy-L - Gy-M) — Lz — Fz-Lv- - Gz-Lz-.
dx dz'

Similarly,

d a .
— My - —- [- \FZ-L - \(Fy- + GZ-)M - \Gy-N] - My- Fy-My- - Gy-MZ-.
dx dy'

Equating the last two expressions, we find, after writing Lz- = My-, Ny> = Mz<,

the following relation among parametric derivatives of ©:

L. = My - \FZ-Ly- + §(7V - GZ-)My- + \Gy-MZ-

-   tfy'z'L  +   h(Fy-y-   ~ Gy-Z-)M  +   \Gy-y-N.

Treating the sixth equation of (7.5) in a similar way:

d d
— Ny>   - — Mz-,
dx dx

we get
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Ny = M, + hFsMy, - Wv ~ GZ,)MZ, - yjy-Nz-

4- \FZ.Z-L - Wyz. - GZ,Z-)M - hGy,z.N.

The relations (8.8), (8.9) must be adjoined to (7.5), or ©, so giving the

first extended system ©i, which is seen to be arranged in orthonomic form.

We have next to form the passivity conditions of ©i.

First we apply d/dx to (8.8) and (8.9). We express all such quantities as

d/dx of Lz, My, Ly>, etc., in the manner previously described and then elimi-

nate all principal derivatives, taking due account of the defining conditions

of Case I:

A = 0,      B = 0,      C = 0.

Then the resulting relation among parametric derivatives is found to disap-

pear identically. Thus, these particular passivity conditions are satisfied, and

no new equations need be adjoined on their account.

There are two further passivity conditions of ©i to consider, represented

by

dLz dLz, dNy dNy>

dz'        dz dy' dy

Upon calculation, these two conditions turn out to be the same, namely:

My.'   =   M.y.   +   \FZMy.y   -   J (F' y.   - GZ-) M y z>   -   ̂ G yM Z> Z'

(8.10) + \Fz,z,Ly + \Gz.zMy - \Fy,yMz, - \Gy.y.Nz.

4~ vFy'z'z'L        2(Fy'y'z'       Gy'zfz.)M '^Gy'y'z'N.

The relation (8.10) among parametric derivatives of @i must be adjoined

to that system to form a second extended system ©2.

The system ©2 is subject to just one passivity test, namely that in which

we take d/dx of (8.10) and then substitute for d/dx of Myz., Mzy., My.y, etc.,

the linear differential expressions of second order obtainable in the manner

previously described—after which we eliminate all principal derivatives.

When this is done, with due account taken of A =0, B =0, C = 0, it is found

after long calculations that the result is an identity: 0=0.

Therefore: in Case I, the second extension ©2 of the differential system © is

passive.

©2, we recall, consists of (7.5)—except AL-t-BM+CN = 0, which disap-

pears identically—(8.8), (8.9), (8.10).

©2 is also orthonomic, as we see by reference to the table of cotes (8.6);

therefore, by the Riquier theory, ©2 is completely integrable.

A complete set of parametric derivatives of ©2 with their corresponding

multipliers is seen, by the rules of the theory of differential systems(22), to be

C22) Cf. J. M. Thomas, loc. cit., §§75, 76.
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l: multipliers y, y';

n: multipliers z, z';

(8.11)
m: multipliers y, z, y ;

.MV: multipliers z, yf, z'.

This means that every parametric derivative of @2 can be expressed in one and

only one of the forms: dr+°/dyrdy's of l, dr+s/dzrdz'* of n, dr+°+'/dyrdzady"

of m, dr+°+t/dzrdy'>dz" of m...

It follows that a solution of @2 (equivalent to ©) exists and is uniquely

determined if we assign as arbitrary analytic functions, regular about

(0, 0, 0, 0, 0) (which, without essential loss of generality, we may take as

initial values of x, y, z, y', z'), the following:

£(0, y, 0, /, 0),

A(0, 0, z, 0, z'),

m(0, y, z, y', 0),

mao, o, z, y, z').

It is only necessary to provide that

(8.13) /(0, 0)f(0, 0) - h(Q, 0, 0)2 9* 0

in order to take care of the inequation ln— m29*0.

Instead of (0, 0, 0, 0, 0), we may use any system of initial values (xo, yo,

3o> yo', 20') about which functions F, G are regular analytic.

Thus, the general solution of <S in Case I depends on two arbitrary func-

tions of three arguments, and two arbitrary functions of two arguments. As

will be seen by comparison with the later cases, this is the highest possible

degree of generality of the variation problem corresponding to a given curve

family as extremals.

The results of this section have been summarized in Theorem I, stated in

§3.
Example. Case I is illustrated in a fairly general way by the example

(8.14) y"=f(z'),      z" = 0,

/denoting an arbitrary function; this is easily verified to obey the requisite

conditions (8.2). For/(z') =0, we have the particular case of the straight lines,

already treated in the paper by G. Hamel cited in §2.

We may use this example to show also the advantages that may be de-

rived from a knowledge of the finite equations of the given curve family.

The differential equations (8.14) may be integrated, giving

(8.12)

f(y, y')

h(y, z, y')

Hz, y, z')

(8.15) y = |/(öi)x2 + azx + a4,      z = a-ix + a2,
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which expresses the given curve family in terms of four parameters: ai, a2, a3, a4.

By differentiation of (8.15),

(8.16) y1 = f(ai)x + a3,      z' = ai.

The system (8.15), (8.16) may be solved for ci, a2, a3, a4:

ai = >fi .
Ü2 = Z — z'x,

(8.17)
a3 = y' — f(z')x,

«4 = y — y'x + %f(z')x2;

and we may transform from x, y, z, y', z' as independent variables to

x, <ii, di, a3, a4. d/dx then denotes an operation of differentiation as to x

while ai, a2, a3, a4 are kept constant, that is, partial differentiation as to x

of a function of x, ßi, a2, a3, a4.

The first three equations of (7.5) now become

dL dM dN
(8.18) — = 0,      — = - if'iaJL, —- = - f (at)M.

dx dx dx

This is a linear system of ordinary differential equations, whose general solu-

tion is readily expressed by means of three parameters X, p, v, arbitrary func-

tions of ai, a2, a3,     as follows:

L = X,

(8.19) M = - i/'(ai)Xx + m,

N = if'2(ai)\x2 - f'iajux + v.

We substitute these values in the other two relations of (7.5): LZ' — MV>,

Ny> = Mz>, and transform the independent variables to x, ai, a2, a3, ai accord-

ing to (8.17); in this way we arrive at the following differential system, where

the subscripts 1, 2, 3, 4 denote differentiation as to ai, a2, 03, a4, respectively:

Xl = M3i

(8.20) X2 = u4 - i/'(ai)X3,

v3 = Mi,

Vi = M2 4- + i/"(öi)X.

This replaces completely the original differential system (7.5).

The system (8.20) has two passivity conditions: Xi2=X2i, v3i = vi3; but on

calculation these give the same relation among parametric derivatives of

(8.20) (as was to be expected from our previous general theory; cf. the state-

ment preceding (8.10)), namely:

(8.21) fiU = M23 4- if(ai)M33 + i/"(«i)X3.
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Since there is no other equation in the system (8.20), (8.21) whose first

member is a derivative of p, there is no further passivity test to be made, and

the system in question is passive.

In the case of the straight lines, f(ai) =0, and the passive system to be

integrated reduces to

(8.22) Xi - ps,   X2 = Pi',      Vi = pi,   Vi = p2;      pu = ^23-

A general solution of the last equation, in p alone, is uniquely determined if

p(ai, a2, a3, 0), ßi(0, a2, dz, di) are assigned arbitrarily. Then the differentials

p3dai-\-pida% and pida3-^-p2dai are exact, and give by their integration:

X = J (pzdai + pida2) + g(a3, ai),

v = J (pida3 + p2dat) + h(alt a2),

where the functions g, h are arbitrary. By (8.19) with/(öi)=0, (L, M, N)

= (X, p, v), where, by (8.17), we may transform back to x, y, z, y', z' as inde-

pendent variables. Then <p can be found by the procedure of §5.

9. Case II. The critical cone. Case II, the most complicated and varied

in its results and treatment, is that of rank 1 of the matrix A, expressed by

(9.1)
ABC

Ax   Bx Ci
= 0,      \\A B C  9* 0.

These conditions imply the existence of a factor r(x, y, z, y', z') such that

(9.2) Ax = rA,      Bi = rB,     d = rC.

Then by the recursion formulas (7.9), we have, with a common factor s,

A2 =sA, B2=sB, C2=sC, so that (9.1) indeed expresses rank 1 of the matrix A.

Let us consider the equation

(9.3) LN — M2 = 0,

whose negation constitutes the basic inequation of the system (7.5) or ©. If

L, M, N are interpreted as cartesian coordinates in an auxiliary 3-space, this

equation represents a quadric cone with vertex at the origin. This cone, which

will play a very important part in our theory, will be referred to as the "criti-

cal cone" Ä7

It is evident that an arbitrary point on the critical cone is represented in

terms of parameters p, £ by

(9.4) L = Pe,      M = p£,      N = p.
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We may also say that these equations represent any vector from the origin

along an element of the cone; £ fixes the element and p determines the position

of the end-point of the vector on that element.

The linear algebraic equation (7.54) of the system ©:

(9.5) AL + BM + CN = 0

—not disappearing identically because of the second condition (9.1)—repre-

sents a plane <P in the space (L, M, N) passing through the vertex of the criti-

cal cone. A definite position of this plane corresponds to any given values of

(x, y, z, y', z') considered as parameters.

The intersection of the plane <P with the critical cone is determined by

substituting (9.4) in (9.5), which leads to the quadratic equation

(9.6) A? + B£ + C = 0.

The two values of £ furnished by this equation determine the two elements

in which the plane <P intersects the critical cone. These elements may be real

and distinct, conjugate imaginary, or real and coincident.

We shall denote by X, p the two roots of the fundamental quadratic equa-

tion (9.6)(23); so that we have

(9.7) A\2 + B\ + C = 0,      Ap2 4- Bp + C = 0;

- B + (B2 - 4.4C)1'2 - B - (B2 - 44C)1'2

(9.8) X =->       p = -;
24 ; 24

(9.9) \ + p=-B/A,      \p = C/A.

It is of fundamental importance for the subsequent theory to know

whether these roots X, p—known functions of x, y, z, y', z' determined by

the given curve family—are distinct or coincident, that is, whether the plane <P

intersects the critical cone in two distinct elements (real or conjugate imagi-

nary) or, on the other hand, is tangent to this cone along an element.

We therefore divide the following discussion into two cases accordingly:

Case IIa. B2-\ACr±§,\r*p;

Case IIb. B2-4AC = 0, X =p.
10. Case Ha. The plane <P intersects the critical cone in two distinct

elements. Let Ci, e2 denote the two distinct elements of intersection; then

these may be considered as coordinate axes in the plane CP. According to

(23) If A =0, one of X, p is infinite; and if A =0, B = 0, both X and ß are infinite. These diffi-

culties may be met, provided by interchanging the y and z coordinates, which also inter-

changes fand G, and will be seen by (7.6) to have the effect of interchanging A and — C, while

converting B into —B. There remains only the case A =0, C = 0, B^0 (if also B = 0, we are in

Case I). By the defining conditions (9.1) of Case II, this implies Ai = 0, Ci = 0, and, by reference

to (7.6), (7.9): 7v=0, F2 = 0, &V=0, G„ = 0. We thus have precisely the example (11.5), which

is given separate treatment later on.
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(9.4), arbitrary vectors from the origin along e\, e2 respectively are represented

by
L = pX2, M = pX, N = p;

L  - 0-p2,      M = op,      N = <r;

and any vector from the origin lying in the plane 9 is representable as the

sum of two such vectors:

(10.1) L = pX2 4- <tm2,      Üf = pX 4- <rp,      -¥ = p + ff.

Here p, <r may be regarded as the oblique cartesian coordinates (real or con-

jugate imaginary) of any point (L, M, N) in the plane <P, referred to the vec-

tors (X2, X, 1), (p2, n, 1) along the elements e±, e2 respectively as unit vectors.

Our next step is to make the substitution (10.1) in the equations of the

system © or (7.5), so deriving a differential system in the two unknown func-

tions p(x, y, z, y', z'), o(x, y, z, y', z') that will be fundamental in the treatment

of Case IIa. Before proceeding to do this, we establish the following relations:

d\
— = iTvX2 - W* ~ G..)\ - $G,>,
ax

(10.2)

^ = l^'p2 - Ww - GzOm - \G,.
ax

Their proof is as follows. By differentiation of (9.7),

d\    /   dA        dB dC\
(10.3) (2^X4-5) —+   X2—4-X — + —) = 0.

dx    \   dx        dx     dx /

By (9.2) and the formulas (7.9),

dA
— = (py + r)A + 2F*,B<
dx

dB
(10.4) -= Gy.A + (|Ft. 4- \G< 4- r)B +

dx

dC
— = hß*'B 4- (G,. + r)C.
dx

Substituting (10.4) in (10.3), we get, with account taken of (9.7):

d\
{2A\ + B) — + hFy\{2A\ + B) + iGv.(2A\ + B)

(10.5) dx

+ hGAB\ + 2C) + if2-X(5X +O = 0.

Now by (9.8).
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2A\ + B = (B2 - 44 C)1'2;

and by (9.7, 8),

B\ + 2C = - X(2,4X + B) = - \(B2 - 4AC)1'2.

Substituting in (10.5) and cancelling the factor (B2— 4AC)1I29£0, we obtain

(10.2), as was desired.

Let us then write (10.1) in the first three equations of (7.5); these become,

with the help of (10.2):

W-T + (f*'x + g*')p, + m2{^ + (TVm + G..)a\ = 0,
\dx ) \dx )

(10.6) X      + (FvX + G.Op} +        +        + G.0»|   = 0,

+ (F,.\ + G.0p| +       + ^ + g*>}    = °-

Since X— p. 5*0, these equations obviously imply the zero value of each of the

two brackets, that is:

dp d<r
(10.7) -(TvX + G,-)p,       — = - (tvp- + G.>)ff.

dx dx

The fourth equation, AL+BM+ CN = 0, of (7.5) disappears identically

after the substitution (10.1).

The remaining equations of (7.5),

Lz. = My,      Ny. = Mz>,

give, by the substitution (10.1), two relations, which may be solved for py,

ov; we thus obtain

(10.8) pv> = \pz- + (X2- + a)p + pV,       ay = pa,' + (pz> — ß)ff — ap,

where

XXZ' — \y' ppz< — py

(10.9) « = -ß = —-—•

The inequation LN — M29*0 of the system © means that the point

(L, M, N) shall not lie upon the critical cone; according to the remarks con-

nected with (10.1), this is expressed by the requirement that both

(10.10) p f* 0, o-5*0.

The same is also seen from the formula: LN' — M2 = pcr(X — p.)2, following from

(10.1)—since X-M5*0.
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The fundamental differential system X of Case Ha consists of the four equa-

tions (10.7), (10.8) and the inequations (10.10).

The vanishing or nonvanishing of the quantities a, ß defined by (10.9) is

of fundamental importance in the study of the differential system X; accord-

ingly, we make the following division of Case IIa into subcases:

Case Hal. The "separated case":

(10.11) XX,- - X„< = 0,      ßßz> - ßv. = 0.

Case IIa2. The "semi-separated case":

(10.12) XX,- - X„' = 0, ßßz--ßy>9*0.

Case IIa3. The "non-separated case":

(10. 13) XX3<  - X„'  9*  0, ßßz.  - ßy>  9* 0.

Since X, p are defined as the roots of A^2-\-B^+C = 0, the preceding con-

ditions can also be expressed in terms of A, B, C; we find, by calculations that

the reader may easily supply, for the separated case:

I = B(BAZ> - ABZ>) +A(BAV, - ABy>) + A(ACZ> - CAZ>) = 0,

(10.14)
J m B(BCy> - CBy.) 4- C{BCZ. - CBZ.) + C{CAy, - ACy) = 0;

for the semi-separated case:

(10.15) C37/2 4- {B3 - 3ÄBQIJ + A3J2 = 0, with either I 9* 0, or / 9* 0;

for the non-separated case:

(10.16) C3I2 + (B3 - 3ABQIJ + A3J2 9* 0.

The names we have given to our three subcases refer to the fact that,

first, when a = 0, 5 = 0, the system X separates into two parts involving re-

spectively p alone and o~ alone:

(7<VX 4- GZ')p,      /v = Xpz- -f Xj-p;

{Fz<p -f GZ')c,       <jy> = pov 4" PZ'O.

Second, when a = 0, ß9*0, we have a system of two equations involving a

alone, namely:

da
(10.19) — = - (F..p + G.>,      ay = ßoz. + (ßz> - ß)a,

dx

(10.17)

and

(10.18)

dp

dx

da

dx
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combined with a mixed system where a and p occur together:

(10.20) d-l= - (Fz,\ + G,.)P,      py = Xp,- + X2-p + pV;
ax

hence the name "semi-separated."

Finally, when a?*0, /S5= 0, we have the original system (10.7), (10.8) with

no separation into partial systems one or both of which involve only one of

the unknowns p, <r; hence "non-separated."

Throughout the discussion of Case IIa, in all its parts, we shall adopt the

following system of cotes:

(10.21)

1

1
0
0
0
0
0

1
0

1
0

0

0
0

1

0
0
1
0
0
0

1

0

0
0
1

0
0

1

0
0
0
0
1
0

0

0
0
0
0
0
2

0

0
0
0

0

0
1

This is equivalent to arranging the derivatives of p, a first as to their total

order, then as to their order in x, in y, in y', in z, in z', then as to the unknown

function in the order p, a.

We shall solve all our equations for the derivative of highest cote which

appears effectively, or—even if this is not done explicitly—our equations may

always be thought of as solved for this highest derivative. Thus all the differ-

ential systems to be treated will have the orthonomic form essential for appli-

cation of the Riquier theory. Sometimes, however, a form in which some addi-

tional terms are transposed will be employed as technically more desirable.

This will be done on those occasions when we shall form the passivity condi-

tion of two equations by building the alternant of corresponding linear differ-

ential operators of first order. Advantageous here will be the simplification

which arises from the fact that the alternant is again of the first order, all

second order terms which are apparently introduced cancelling. This device

of alternants will not interfere, however, with the applicability of the Riquier

theory of orthonomic systems, in which it produces only inessential modifica-

tions.

11. Case Hal. The separated case. Here we have to solve the system con-

sisting of (10.17), (10.18), (10.10), under the conditions (10.11).

Each of the partial systems comes under the classic theory of simultaneous

linear partial differential equations of first order in a single unknown func-
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tion(24). Forming the alternant of the two equations of (10.17), we find

(11.1) Py = Xp* + HPz, + Ftp,

where

d\
H = — = iFz,X2 - \{Fy ~ G,>)\ - \Gy, by (10.2),

dx

Pi = \z + HZ'.

If we next form the alternant of (11.1) with (10.17i), this can be calculated to

disappear identically as a consequence of the equations already in the system.

The alternant of (11.1) with (IO.I62) can be calculated to be

(11.2) (XX, - X„0p* + UPz> + XlP = 0,

where
d

U = — (XX, - X,.) + (Fyi - XFZ-)(XX2- - X,0.
dx

Xi = 77, + — (XX, - X„0.
az

But since XX,— X„'=0, equation (11.2) disappears identically; therefore

(10.17), (11.1) constitute a complete system for p.

Similarly, we find the following complete system for a: (10.18) together

with

(11.3) o-y = p<rz + Kaz. + Qicr,

where

dp
K m — - \Fz,p2 - W* - GZ')p - \Gy', by (10.2),

dx

Ql = P*+ Kz:

Indeed, the alternant of (11.3) with (IO.I82) is

(11.4) (/W - + V<rz> + Y10 = 0,

where

d
V = — (ppz'  — Py')  +  (Fy'  — pFz')(ppzr  ~ Py'),

dx

Fi = Vz- 4-(ppZ' — py');
dz

(**) For a presentation of this theory, see Goursat-Hedrick, Differential Equations (vol. 2,

part 2 of A Course in Mathematical Analysis, Boston, 1917), p. 265 et seq.
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so that the equation (11.4) disappears identically because of pfxZ'—pV'=0.

Since each function p, <r involves five independent arguments and is a solu-

tion of a complete system of three equations, the corresponding variation

problem has the generality co2/<2>(26).

Example.

(11.5) y" = F(x, y, y'),      z" = G(x, z, z'),      B ^ 0.

As we shall see, our inverse problem separates into one in the xy-plane and

one in the xz-plane.

It is evident by (7.6) and (7.9) that A =0, C = 0, 4i = 0, Ci=0, so that by
(9.1) we are indeed in Case II.

Since by hypothesis, Br*0, the formula AL+BM+CN = 0 gives M = 0 as

the equation of the fundamental plane <P. We may regard L, N instead of p, a

as the coordinates in this plane. The system (7.5) becomes in the present case:

dL
(11.6) -b7v£ = 0,       Lz, = 0;

dx

dN
(11.7) -\-GZ'N = 0,      Ny> = 0;

dx

which is clearly of the separated type. Forming alternants, we find

(11.8) Lz = 0,      Nv = 0.

By (11.8), and the second equations of (11.6), (11.7),

(11.9) L = L(x, y,y'),      N = N(x, z, z').

Equations (11.6i), (H.7i) may then be written

(11.10)
r a       d 31

•-+ z'-4- G(x, z, z') — TV = - Gz-N.
L dx dz dzJ

Since L =</>„'„'> M=<py>z>, N = <pz>zi, the condition M = 0 together with (11.9)

implies for <p the separated form

(11.11) <p = 6(x, y, y') 4- 4>(x, z, z'),

within an additive expression of the linear form

(11.12) a(x, y, z) + ß(x, y, z)y' + y(x, y, z)z'.

Clearly,

P») Cf. Goursat-Hedrick, loc. cit., p. 270.
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(11.13) L = &V»'.     N -

The formulas (11.10), (11.13) are precisely those which are met with in

solving the following inverse problems in the xy- and xz-planes respec-

tively (26):

(a) find fd(x, y, y')dx=m'm, given the extremals y" = F(x, y, y');

(b) find J\p(x, z, z')dx =min, given the extremals z" = G(x, z, z').

According to (11.11), the solutions of these planar problems are to be added

to give the solution of the space problem. The undetermined additive expres-

sion (11.12) can be proved, as usual, to be an arbitrary total derivative,

Vx+vyy'-\-VzZ' where v = v(x, y, z).

12. Case IIa2. The semi-separated case. Here we have to deal with the

differential system (10.19), (10.20), (10.10), under the conditions (10.12).

The alternant of the two equations of (10.19) is

(12.1) <r„ = p<r2 -f- isTov + Q<r,

while the integrability condition of the two equations of (10.20), arising from

formation of the alternant

d / d d \     id d \d

dx\dy' dz')    \dy'         dz') dx\dy' dz'/ \dy'

applied to p, is

(12.2) Py = Xp2 + HPz, + PlP + Sa.

Here

(12.3)

d\
H = — = a/^VX2 - i(F, - G,)X - JGV,

dx

du,
K = — = i^-p2 - KF, - G,)m - \Gr \

dx '

Pi = X, + Hz;

Q = p. + Kz.- 5;

dß
S = - — - (F„. - nFz,)ß.

dx

The alternant of (10.19i) and (12.1) can be calculated to disappear identi-

cally in virtue of the equations of the system, and the same is true of (10.20i)

and (12.2)

The alternant of (10.192) and (12.1) is

(12.4) (pp2, - uy,)az + Foy + F2<r = 0.

where

(26) Cf. Bolza. loc. cit. (see Footnote 4).
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— (pM,   —   /V)   +   (F„<   —   ßFz>)(ßpZ>   — fly'),
ax

d
Vz' + — (MM, - M„0 + Sy> - ßSz' ~ ßy+ ßßz + Kßz>.

dz

It is remarkable that precisely the same equation (12.4) is also the integrability

condition of (10.202) and (12.2), as found by forming the alternant of the

linear differential operators

d d

dy' dz'
and

d d d
-X-II-
dy dz dz'

applied to p. It follows that if any solution a of the system (10.19), (12.1),

(12.4) is substituted in (10.20), (12.2), this becomes a complete system for p.

All depends then on solving the system (10.19), (12.1), (12.4) for a. It is

evident that the formation of further alternants—(12.4) with (10.20i), with

(10.202), with (12.1)—gives new equations of the form

(12.6) -0, +  or = 0,

where the dots represent calculable known coefficients. There are just two of

this type, since the one arising from (10.20i) and (12.4) can be shown to dis-

appear identically.

If the two equations (12.6) are independent as algebraic linear equations

in ov, cr (determinant 9*0), then o" = 0, in contradiction with our prescribed

inequation a 9*0. The given curve family is then nonextremal.

If the two equations (12.6) disappear identically (each coefficient equal to

zero), then (10.20i), (10.202), (12.1), (12.4) constitute a complete system of

four equations for cr, with a solution, therefore, of the generality 00 V(»). Any

such solution substituted in the system for p renders this a complete system

containing three equations, whose solution therefore has the generality 00 lfW>.

The given curve family is consequently of extremal type and the correspond-

ing integrand <p has the generality 00 WS+WD,

Finally, let the two equations (12.6) amount to exactly one independent

equation (coefficient-matrix of rank one). If the coefficient of ov in this equa-

tion is zero, then that of a cannot be zero (because of the rank one); it follows

that o = 0, in contradiction with the stipulated inequation a9*0, and we have

a nonextremal family. On the other hand, if the coefficient of ov is not equal

to zero, then we have a system of five equations of the form

F =

(12.5)

F2 =

(12.7) <t x = 'O,   o~y = • a,   <rz= -o~,   dy' = -a,   az< — -a,
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where the dots represent known coefficients. The solvability of this system

for <t (?*0) depends on the exactness of the differential

■dx -f- -dy + -dz + -dy' -f- -dz',

where the dots are respectively the coefficients in (12.7). The solution, if exist-

ent, is unique up to a constant factor (which may be ignored according to the

remarks associated with (3.7)). The generality of the corresponding variation

problem is 001/(2), arising out of that degree of generality in the system for p.

The results of this section have been summarized in Theorem III of §3.

Example. Catenaries. The y-axis in xyz-space being taken vertical, the dif-

ferential equations

1 + y'2 + z'2
(12.8) y" =-,      z" = 0

y

represent all vertical catenaries the directrix of each of which coincides with

the trace of its plane on the horizontal xz-plane.

Here we calculate by (7.6), (7.9):

4y'z'                    4(1 + z'2)
A = -^—,       B=--,        C = 0;

-y2 •y2

(12.9)
12y'V 12/(1 + 2'2)

Ax = —-, Sx = ——-—,      Ci = 0.
yS yZ

Thus the defining conditions (9.1) of Case II are verified.

The fundamental quadratic equation (9.6) is here

(12.10) yVf* + (1 +       - 0,

whose roots are

1 4- z'2
(12.11) X = 0,      ß = -

y z

The system (10.19, 20) can in this case be calculated to be

dp 1
(12.12) -f = 0,      Py, =

dx y'z'2

.da 1 -f z'2 1 4- z'2 2 - z'2
(12.13) — =2 —-■ cr,      oy =-ay 4-——" <r;

dx yy' y'z' y'z'2

with the prescribed inequations p?*0, a9*0.

Forming the alternant of the two equations of (12.12), we get

1 4- y'2 4- z'2
(12.14) p,-    ^J J a.
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If we form the alternant of the two equations of (12.13), we obtain the

equation

1 + z'2
(12.15) <7y=-o~z + Kaz. + Q(T,

y'z'

where

K =
(l + z'2)(i + y2 + z'2)

yy'2z'

- 2(1 + y2) + (l + y2)z'2 + 3z'*

yyv2

The alternant of (12.15) with the first of (12.13) disappears identically in

virtue of the equations of the system. The alternant of (12.15) with the second

of (12.13) is simply

(12.16) o~z — 0.

(12.13), (12.15), (12.16) can be verified to constitute a complete system

for a, all further alternants being linear consequences of the equations of the

system.

The integrability conditions of (12.12), (12.14) are satisfied in virtue of

the complete system for a. Accordingly, all our equations form a completely

integrable (passive orthonomic) system in p, a, the generality of whose solu-

tion is seen to be coVra+Vd),

13. Case IIa3. The non-separated case. It may first be remarked that the

class of curve families (F, G) coming under this case is quite extensive. For

the conditions for Case IIa3 are that the two partial differential equations of

third order in F, G:

Ai    Bi Ci
(13.1 — = _ = _,v ABC

have a solution which obeys at least one of the inequations A 9*0, .735*0, C9*0

and also the inequation (10.16). Now, according to standard existence theo-

rems (Cauchy-Kovalevsky), the differential system (13.1), consisting of two

equations for two unknown functions, has a solution involving a number of

arbitrary functions in its initial data. It is easy to adjust these arbitrary func-

tions so as to obey all the specified inequations.

We proceed, then, to deal with the differential system of Case IIa3, which

consists of (10.7), (10.8) and the inequations (10.10), under the conditions

(10.13).
Forming the integrability conditions of (10.7i) with (10.8i) and of (10.72)

with (IO.82), we find
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(13.2)

where

py = Xpz + Tip, + Pp + Sc,

<rv = po-z + K(tz' + Qff + Rp,

d\
H = — = JF,X2 - Wv ~ GZ')\ - |C7„S

dx

dp
K = — = |F,p2 - Wv ~ G*>)p - \Gy,

dx

da
(13.3) R - — + (iV - XF,)«,

ax

5 = - — - (F,. - MF,)/3;
dx

P = \Z + HZ, - R,

Q = Pz+ Kz> - S.

The integrability condition of (10.7i) with (13.2i) disappears identically

in virtue of the equations of the system, and the same is true of (10.72) and

(13,2,).
On the other hand, the integrability condition of (10.8X) with (13.2i) is

found after calculation to be

(13.4) (XV - \y,)p, + Up,. + Xp = (pp., - ßy')o-z + VcZ' + Fff,

where

U = X„ - XX, - 77X, + X77, - Hy

d
= — (XX, - X,.) + (Fy - XF,)(XX, - X,0

dx

= (H - K)a + (X - p)R,

V =   Py   —   PPz   —   KpZ-   +  PKZ>   — Ky>

d
(13.5) = — (ppz> — Py') + (Fy' — pFz')(pPz' — Py')

dx

= (H - K)ß - (X - p)S;

d
X = ßR + aS + UZ' + — (XX, - X„.) + Ry- - XR, + av- \az - Haz',

dz

d
Y = - ßR - aS + F, + — (pp.' - py) + Sy - pSz' - ßy + pßz + KßZ'.

dz
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If we interchange X with p, the effect, as seen by our defining formulas,

is to interchange a and —ß, H and K, R and S, P and Q, U and V, X and Y.

If at the same time we interchange p and a, the equation (13.4) is seen to go

over into itself. This is at the basis of the important fact that the same equation

(13.4) is also obtained as the integrability condition of (10.82) with (13.22).

Let us introduce a third unknown function r to denote the common value

of the two members of (13.4):

T   =   (XX,   —   \y')pZ 4"   UpZ'  4- -X>,
(13-6)

r = (up, — pv>)<r, 4- Vaz> 4- Ya.

Since, by hypothesis, XX,— \y-5*0, ppz> — pyy*0, we can then give our dif-

ferential system the form:

dp

dx

Pv' = "P*' 4- -p 4- '<f>

Pv =   Ptf + -P 4"      + -T,

Pz = pz< 4- p 4-    4- -r;
(13.7)

ocr

dx

OV = " °V + ' P + "a + " T>

<r» = • cr, -f- • p 4" • <r -f- • T,

<r2 = -cr, 4" -P 4- '» 4" -r;

where the dots represent calculable known coefficients. If now we form the

new integrability conditions of this system(27), we find that the resulting equa-

tions are solvable for the first partial derivatives of r (in which circumstance

the requirement X—p9*0 plays a part); indeed, we get a result of the form

dr
— = -P+ ■*+ r(«),
dx

Ty = 'Pz' +  -0~z' +  ■ P +  -O- + -T,

(13.8)
t* = • p*' 4- • oy 4" • P 4- ' <r 4" • r,

r»' = • Pz' 4- • ov 4" • P 4" • <r 4" • r,

Tz' = • Pz' 4- • 0V 4- • P 4" -ff + • r.

(27) We may use the formulas (13.6) as convenient for this purpose, building alternants

of the linear operators in the second members of (f 3.6) with the linear operators occurring in

(10.7), (10.8), (13.2).
(28) Two expressions are obtained for dr/dx, but these can be calculated to be equal in

virtue of our other formulas. The coefficient of t in the first equation of (13.8) is — (Fy>-\-G,>).
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The differential system we now have to consider is (13.7), (13.8) in the

three unknown functions p, cr, t.

Referring to (10.21), we give t a last cote of 3 and all other cotes 0, thus

ranking r higher than p, cr. The differential system in question then has the

orthonomic form.

Forming the integrability conditions of (13.8) (such as dry/dz = dTz/dy),

we obtain, after reduction with the help of (13.7), a number of equations of

the form

(13.9) p.v + -ay, +   Pz' + -<r, +   P + -cr + -t = 0.

If all these equations disappear identically, the system (13.7), (13.8) is

passive, and has a solution corresponding to arbitrarily assigned values of

p(0, 0, 0, 0, z'), tr(0, 0, 0, 0, z'): generality «2'<».

Laying this case aside, we may find it possible to eliminate some of the

partial derivatives from (13.9) by linear combination of these equations. If

the rank of the whole system is r, while the rank of the coefficients of py«»,

ff,v, Pz', <Tz' is r — p (p necessarily =^0), it will be possible to infer in this way

exactly p independent relations of the form

(13.10) p + -<r + -T = 0.

In case p = 3, (13.10) implies p=0, cr = 0, t = 0, in contradiction with the

prescribed inequations tf*0, <T9*0.

If p = 2, it is possible to eliminate t and derive a relation of the form

cr= p (or p= cr). By substitution in the original differential system (10.7),

(10.8), this takes the form

(13.11) Px=   -P,     Py =   -P,     Pz =    P,     Py' =    P,     Pz' = p,

together with a condition of the form ( )p = 0—all the dots representing cal-

culable known coefficients. The integrability conditions of (13.11) are of the

form (-)p =0, so that it is necessary and sufficient for the existence of a solu-

tion p?*0 that all the coefficients (•) be equal to zero. If this is the case, p is

determined uniquely up to a constant factor.

In case only one independent equation of the type (13.10) can be ob-

tained, we may suppose it solvable for t:

(13.12) t = -p+ <r;

otherwise we find ourselves in the situation just discussed. Substituting

(13.12) in (13.7), we have a system in p, cr, whose integrability conditions are

those which result by substituting (13.12) in (13.18). The first equation of

(13.8) gives in this way a relation of the form -p-\- cr = 0 which—if it does not

disappear identically, or imply p=0 or cr = 0—puts us in the preceding case.

If this relation, • p + ■ cr = 0, does disappear identically, the substitution of

(13.12) in the other relations of (13.8) may be used, with (13.7), to give in-
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tegrability conditions of the form

(13.13) -p, + -oy + -p + -a = 0.

If (13.13) disappears identically, we have in (13.7) (with r replaced by its

value (13.12)) a passive system in p, tr.

If, by linear combination of the equations of (13.13), we can eliminate

pz>, crz>, that is, infer a relation of the form p+ cr =0, we are in a previously

discussed case.

If we cannot do this, it must be that the rank of the whole system (13.13)

is the same as the rank of the coefficients of pz>, oy. This common rank may

be 2 or 1, since we have disposed of the case of rank zero of the system.

If the rank is 2, we can solve for pz-, oy:

(13.14) pz> = -p + -a-,      oy = -p 4- -<r.

Now by substituting (13.12), (13.14) in (13.7), every first partial derivative

of p, cr is expressed in the form -p-f- a:

c7p da
— = -P> — = •f,
dx dx

Pv = ■ P 4~ ■ <r, ay = ■ p -\- -a,

(13.15)
pz = ■ P + ■ o; az = ■ p 4" • o,

Pv' = P 4" '*i o-y' = ■ p -\- -a,

pZ' = -P + -o-; ay = -p + -a.

This is a system of a well-known type, easily amenable to treatment by stand-

ard methods(29). It is obvious that here all the integrability conditions are

of the form -p+ cr = 0. If there are two such independent conditions, we infer

p=0, cr = 0, in violation of the prescribed inequations p9*0, cr9*0. If there is

only one such condition, then, first, neither coefficient may be zero, otherwise

we again have contradiction with either p9*0 or a 9*0. Assuming neither co-

efficient zero, our system has a solution for p, a, which is essentially unique

(within a constant factor). Finally, if all the integrability conditions • p -f- ■ er = 0

disappear identically, (13.15) is a completely integrable system, with a solu-

tion involving linearly two arbitrary constants (only one of which is essential).

If the rank mentioned in the second preceding paragraph is 1, then (13.13)

consists of just one equation solvable for either pz> or ay, say the former:

(13.15a) pz> = • <tz> -f- • p 4" • a.

Substituting this, as well as (13.12), in (13.7), we have a differential system

in p, cr, whose integrability conditions are a set of equations of the form

(29) Cf. Eisenhart, An Introduction to Differential Geometry, Princeton, 1940, p. 114.
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(13.15b) -oy2< + <r, + p + a = 0.

If, by elimination, we can derive from these equations a relation of the form

oy = ■ p -f- • cr, or ■ p + • ff = 0 (non-identically vanishing), then we are evidently

in previously discussed cases ((13.15) or (13.11)). If not, it must be that

(13.15b) contains just one independent equation, and that solvable in the

form

(13.15c) oy, = -ay + -p + -a.

Adjoining this to the equations already in our possession, we have a differ-

ential system in which the only parametric derivatives are oy, p, cr. All further

integrability conditions are therefore of the form

(13.15d) -ay + -p + -a = 0.

Either all of these disappear identically, in which case we have a passive

system, or else we derive at least one relation of the form oy = •p+ o", or

•p+ <r = Q—wherewith our investigation is reduced, as before, to previously

discussed cases.

We have now disposed of the case where even one relation of the form

(13.10) can be inferred linearly from (13.9).

If this cannot be done, it may still be possible to eliminate p,,, oy, from

(13.9) and obtain relations of the form

(13.16) -p, + -oy + -p+ -<x+ -T = 0.

Let r denote the rank of (13.9) and r — q (gü?0) the rank of the coefficients

of p,,, oy,; then exactly q independent relations of the form (13.16) can be

inferred by linear combination of (13.9). We are thus supposing q^ 1—other-

wise no relations of the type (13.16) are derivable by the elimination process

mentioned.

If q were as large as 3, we could eliminate p,, oy from (13.16) and obtain

a relation of the form (13.10); but we have supposed this not to be the case.

If q = 2, then we can solve the two relations (13.16) for p,, ay (otherwise

it would be possible to eliminate these, contrary to hypothesis) and get:

(13.17) p, = -p + -o- + -T,       oy =   p + -<r + -t.

Substituting in (13.7), (13.8), we have a system where every first partial de-

rivative of p, ff, t is expressed in the form -p + ■<?+ -t, that is, a system of the

standard type (13.15) with three unknown functions instead of two. All the

integrability conditions of this system are of the form ■ p+ a + - t = 0, so that

we have an easy discussion based on the number of such independent condi-

tions (0, 1, or 2) not in contradiction with p9*0, cr;*0.

If 2=1, we can solve the single equation (13.16) for p, or oy, say:

(13.18) P, = -oy + -p + -o- + -T.
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The integrability conditions of this with the first group of (13.7) are of the

form

(13.19) -o„ + -<r, +  p + -a + -r = 0.

If we can eliminate oy*' from these equations, we clearly have cases already

discussed. Otherwise, (13.19) must consist of just one equation and this solv-

able for oy,:

(13.20) o„ = -oy +  p +  <r + -T.

After adjunction of this to the preceding equations of our system, the only

partial derivatives which remain are the four: oy, p, a, t, so that all further

integrability conditions must involve only these in linear homogeneous form.

Accordingly, with the formation of at most four additional integrability con-

ditions we come to a decision as to the solvability of our system (in conformity

with pr*0, 0-9*0) and as to the number of arbitrary constants (at most four)

in the solution.

Now there remains for the system (13.9) only the case where no relations

can be derived by elimination of p,,, oy,. In this case, the rank of the entire

system is equal to the rank of the coefficients of p,,, ovz'. The possible values

of this common rank 5 are 2, 1, since 5 = 0 has already been laid aside as a

case of passivity of the system.

If 5 = 2, we can solve (13.19) in the form

pz'z' = ■ Pz' + ■ oy + • P + ■ ff + • T,

(13.21)
o„ = -p, + -ay +   p + -a + "T.

Then the five quantities appearing in the second member are the only re-

maining parametric derivatives. All further integrability conditions have the

form of a linear homogeneous relation in these quantities, so that with the

formation of at most five of these relations (supposed independent) we come

to a decision.

Finally, let s = l. Then (13.9) consists of exactly one relation, which is

solvable for either p,, or oy,(30), say:

(13.22) p„ = -ct„ + -p, + -ay +   p + -9 + -T.

The integrability conditions of this with the system (13.7), first part, are of

the form

(13.23) -o,„ + -ay, + -pz' + -er,' + -p + -a +   r = 0.

If we can eliminate oy,,, we are in previously discussed cases. The only al-

ternative is that (13.23) contain just one equation, and this solvable for oy,,:

(13.24) oy„ = -oy, 4" ■ Pz' + •«■*» + -p + -a + -r.

(30) Otherwise, we are obviously in the case associated with (13.16).
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After adjunction of this equation, the only parametric derivatives remain-

ing in our differential system are the six which appear in the second member

of (13.24). All further integrability conditions are linear homogeneous rela-

tions in these quantities, so that after formation of at most six such (inde-

pendent) relations, we arrive at a decision as to the consistency of our

differential system and the degree of generality of its solution.

We may conclude by emphasizing that the determination of the explicit

value of any of the coefficients symbolized by dots throughout the preceding

discussion requires only differentiations, multiplications, and additions.

We may also call attention to the fact that throughout the discussion of

Case Ha, even in the most unfavorable eventualities, the only derivatives of

an order higher than the first which have occurred are pz>z', o>,, a ,•,>,>.

14. Case lib. The plane <P is tangent to the critical cone. In the case in-

dicated by the title of this section, let the element of contact e be the one

containing the point (X2, X, 1). As X varies, the locus of this point is a conic,

whose tangent vector is (2X, 1, 0). The plane <P determined by these two vec-

tors is the one which is tangent to the cone along the element e. The equa-

tion of this plane being AL+BM+CN = 0, X is evidently determined as the

double root of the quadratic

(14.1) AX2 + B\ + C = 0, (B2 - 4AC = 0).

The coordinates (L, M, N) of an arbitrary point in the plane fP can be

written as a linear combination of the two vectors previously mentioned with

arbitrary multipliers p, <r:

(14.2) L = X2p 4- 2Xp,      M = Xp 4- <r,      N = p.

Here X is given as a known function of x, y, z, y', z' by (14.1); indeed,

B 2C
(14.3) X =-=-,

2A B

while p, <r are unknown functions of x, y, z, y', z'.

Substituting (14.2) in the original differential system ©, or (7.5), we ob-

tain, after reduction, the following differential system for p, a:

^ = - (F, X 4- GJ)p - F,<r,
dx

da
(14.4) — = - i(F,. +

dx

Pv' — Xpz> 4" Xz'p -f- oy,

av< = Xoy + (I)p 4" 2X2'cr,

where
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(14.5) (I) = AX, — XB'.

We must also adjoin the inequation

(14.6) <tf*0,

in order to prevent the point (L, M, N) from lying upon the critical cone.

Our problem in Case IIb is to discuss the solvability for p, <r of the differ-

ential system consisting of the four equations (14.4) and the inequation (14.6).

To this end, we begin by forming the alternant of (14.4i), (14.43), and also

the alternant of (14.42), (14.44). We find:

(14 7) Pv = Xpz + (II)itV + (III)P +    + (IV)<T'' + (V)<T'

cy = X<r2 + (II)<r, + (VT)<7 + (VII)p,

where the Roman numerals in parentheses denote known functions whose

values are:

(II) = |7vX2 - W, - G,)X - \Gy>,

(III) = X2 4- (II),-,

(IV) = TvX -        - G,),

(V) = (IV),,

(vi) = 2x2 + 2x,(rv) - x(rv> + (i\>
(14.8)

= 2X2 -f F,(XX, + X,0 - (TV - G2')X2'

— Fz'z'X2 4- f (3Fy, — G2'2')X — h(Fy'v' ~ Gw-2'),

d{\)
(VII) = (I)(2F,X - %Fy. + JG,) - —

ax

= XX2 - X, + (II)X2- - X(tt), -f (II),' + (I) (IV).

The equations (14.7) must be adjoined to the original system (14.4). With

the same cotes (10.21) that were used in Case Ha, the enlarged system is seen

to be in orthonomic form. We proceed to consider this system as to its passiv-

ity.

The passivity conditions arising from the equations solved for dp/dx,

pyi, py are found, after some calculation, to be verified identically. The same is

true of the passivity condition arising by comparison of the equations solved

for dff/dx, cry. However, when we apply to the equations solved for oy, <r„ the

relation do-y>/dy = d<ry/dy'—or, what is equivalent, when we form the alter-

nant of the linear differential operators on cr occurring in the two equations—

we obtain the passivity condition

(14.9)      2(1>2 4- {2(I)(IV) - (VII)}*, + (VIII)p + (IX)* = 0,

where
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(viii) = x(vii), - (vii), + (i), - x(i), + x,(vn)

(14.10) - (H)(1), + (1)(III) - (I)(VI),

(IX) = X(VI), - (VI), - 2X,,(II) + 2X„ - 2XX2, + (I)(V).

15. Case Ilbl. We may now divide the discussion of the differential sys-

tem (14.4, 6) into two parts as follows:

Case Ilbl.      (I) m XX, - X, = 0,
(15.1)

Case IIb2.      (I) = XX, - X, 9* 0.

If (I) =0, the equations (14.42), (14.44) involve a alone. Their alternant is

(14.72), where, by the last formula of (14.8), (VII) =0. After adjoining (14.72),

we form the alternant (14.9). Here, because of (I)=0, (VII) =0, the coeffi-

cients of <r2, oy are zero, while also (VIII) =0 by (14.10). Hence (14.9) reduces

to

(15.2) (IX')cr = 0,

where (IX') denotes (IX) without its last term, this vanishing because of

(I)=0.
Accordingly, we are led to subdivide Case Ilbl into

Case Ilbl'.     (I) = 0,    (IX') = 0;
(15.3)

Case Ilbl".    (I) = 0,    (IX') 9* 0.

In Case Ilbl', the equations (14.42), (14.44), (14.72) form a complete linear

differential system of first order in a alone—the passivity condition (14.9),

or (15.2), disappearing identically. If any solution a of this system is substi-

tuted in the remaining equations of (14.4, 7), these form a complete system

for p. Hence a solution of the total system in p, tr exists, of the generality

oo 2/(2) This result is expressed in Theorem IV of §3.

In Case Ilbl", the equation (15.2) implies <r = 0, in contradiction with the

prescribed inequation 0-7*0. Hence, in this case the given family of curves is

nonextremal.

Example of Case Ilbl'.

(15.4) y" = z,      z" = 0.

Here by (7.6), (7.9),

A = - 2,     73 = 0, C = 0;
(15.5)

Ai = 0,        Bx = 0,       Ci = 0.

Hence (9.1) is verified, and we are in Case II.

The quadratic (9.6) is here X2 = 0, with the double root X = 0. Since this

obeys (I) =0, we have all the conditions of Case Ilbl.
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The differential system (14.4) is here

dp da
— = 0,        — = 0,

(15.6) dx dx

Py>   =   ct,, Oy'   = 0.

To this we adjoin the passivity conditions corresponding to (14.7):

(15.7) py  =  0Z, Oy = 0.

The unique passivity condition of this system, corresponding to (14.9), is

found to disappear identically, since (IX') =0; thus (15.6, 7) form a com-

pletely integrable system.

It is profitable here, as in many other cases, to use the finite equations of

the extremals as well as their differential equations (15.4). Integrating the

latter, we find

y = %aix3 -f- \a2y? -\- a3x + ö4, z = a\X -f- a2;

(15.8)
y = §aix2 4~ o,2x 4- a3, 2 = a\.

These equations may be solved for the four arbitrary constants a*, a2, a3, a4:

ai = z',

a2 = z — z'x,

a3 = y — xz + §z'x2,

a4 = y — y'x + \zx2 — |z'x3.

The system (15.6, 7) may be transformed from x, y, z, y', z' as independ-

ent variables to x, a%, a2, a3, a4; it becomes

dp do
= 0,      — = 0,

dx dx

■ p3 — xpi = oi — xa2 4- |x2o-3 — \xzoi,

Pa = a2 — xo3 4" |*2<r4,

o3 — xtr4 = 0,

0-4 = 0.

Here the symbol for partial differentiation, d/dx, is used instead of d/dx,

since now, in differentiation as to x, this variable alone changes in value while

the other independent variables a\, a2, a3, a4 are held fixed. The subscripts

1, 2, 3, 4 denote differentiation as to the latter variables respectively.

By the first two equations of (15.10), p = p(ai, a2, a3, a4), a = a(a\, a2, a3, o4).

The remaining four equations can be simplified as follows, with the disappear-

ance of x:
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(15.11) PS-*U Pi~°2'
as = 0,        <r4 = 0.

By the last two,

(15.12) <r - /(«i, at),

f being an arbitrary function; and then by the first two:

(15.13) p = a3fi(au a2) + «4/2(01, 02) + g(au a2),

where /1 = df/da\, f2 = df/da2, and g is a second arbitrary function.

By (14.2), since X = 0, we have L = 0, M = a, N=p; hence by (15.12, 13)

and the substitutions (15.9), we have L, M, N as functions of x, y, z, y', z'.

The integrand <p can then be found by the method of §5.

Example of Case Ilbl". Let G=0; then C = 0. Let F be such that

(15.14) B = 0,      A 9*0, Fy.y,y,9*0.

These conditions are consistent, since the partial differential equation B=0

obeyed by F, that is,

Fy.y> = {2Fy + \f\. - Fxy' - /F,, - z'Fzy. - GFy,z,\ -r- F,

is of the Cauchy normal form, and therefore has a solution corresponding to

arbitrarily given analytic functions/, g if we prescribe that

f(x, y, z, z') = F{x, y, z, 0, z'),      g(x, y, z, z') = Fv>(x, y, z, 0, z').

It is evidently possible to choose these two arbitrary functions so that the

inequations in (15.14) are satisfied.

By (7.9) and our stated conditions, we have

Bt = 0,      Gi = 0;

therefore, since also B=0, C = 0, At* 0, we are in Case II. The fundamental

quadratic, A £2 +-B£ + C = 0, has the double root X = 0, for which XX2< — X, = 0;

we thus have the conditions of Case Ilbl.

Further, with reference to (14.8), we have

(I) = 0,      (II) = 0,      (VI) = - \Fy.y,,      (VII) = 0;

therefore (14.44), (14.72) become

(15.15) Oy-   =   0, O-y   =    — \Fy'y'a.

Taking d/dy' of the second equation and using the first, we get as the ana-

logue of (14.9):

(15.16) F,wo- = 0;
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consequently, by the stipulation F,,»'5^ 0 of (15.14), we deduce <r = 0, in con-

tradiction with the prescribed inequation cr ?* 0.

16. Case IIb2. In this case, where (I) 5*0, the passivity condition (14.9)

of the system (14.4, 7) is not verified identically, nor does it offer any direct

contradiction with the prescribed inequation a 5* 0; therefore we adjoin (14.9)

and proceed to form further passivity conditions.

With the abbreviation

(16.1) (X) = 2(1)(IV) - (VII),

we rewrite (14.9) as

(16.2) [2(1) -> + (X)        a = - (VIII)p - (IX)<r.
L      oz dz J

Similarly, we write (14.44) in the operational form

r d d I
(16.3) — - X — a = (I)p + 2X,<r.

Ldy        dz J

Forming then the alternant of (16.2), (16.3), and using the other equations

of our system, we obtain a new first order equation of the form

(16.4) (XI)(r, 4- (XID«V = (I) [2(I)p. 4- (X)p,] 4- (XIII)p 4- (XIV)<r,

where the coefficients represented by Roman numerals can be expressed by

explicit formulas in terms of the preceding Roman numerals and their partial

derivatives, namely:

(XI) = - 2 [(I),. -X(I),],

(XII) = - 2(DX, - (X)X, - (X), 4- X(X), - (VIII),

(16.5) (XIII) = 2(I)(I), 4- (X)(I), + (VIII),. - X(VIII), - X,(VIII)

+ (I) (IX),

(XIV) = 2[2(I)X2, + (X)X,,j + (IX), - X(IX),.

Similarly, we may write (14.72) in the operational form

— - x — - (ii) — \c = (VT)<r + (vii)p,
dy dz dz J

and build the alternant of this with (16.2); we get, after reduction with the

use of the other equations of the system:

(16.7) (XV)^ + (XVI)oy = (VII) [2(I)p. 4- (X)p, ] + (XVII)p 4- (XVIII)<r,

where
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(XV) --[2(I)jL+(x)_yx

. -2[i-x^-(II)^](I)-<vm)-

r        d 31
(XVI) = -  2(1) — + (X) — (II)

L       dz Bz J

- [i- - xA- - (ii) 4t1 (x) - (iv)(vni),
L By       dz dz J

(16.8) r       d d 1
(XVII) =   2(1) — + (X) — (VII)

L        dz dz J

+r9 x5 (H)d i (x)
L dy        dz dz'J

+ (III) (VIII) - (VI) (VIII) + (VII) (IX),

(XVIII) - [2(1) ~ + (X)     1 (VI)
L       dz dz'J

+r — - x 4- - (ii) -77I(ix)+(v)(vni)-
L oy        dz dz J

The passivity condition formed by taking the alternant of (14.9) with

(14.42) is found to be disappear identically in virtue of the other equations

of the system. Hence (16.4), (16.7) represent all the integrability conditions

of the differential system (14.4, 7, 9); and clearly this system is not passive,

since (16.4) certainly does not disappear identically, the coefficient of pz in

this equation being (I)2, which is ^ 0 by the hypothesis of Case IIb2.

Forming next the linear combination: (VII) times (16.4) minus (I) times

(16.7), we eliminate the derivatives of p and get

(16.9) (XDQcr, 4- (XX)*y = (XXI)p 4- (xxny,

where

(16.10) (XIX) = (VII)(XI) - (I)(XV),

with similar expressions for (XX), (XXI), (XXII).

We now compare (16.9) with (16.2). First, suppose that these are inde-

pendent as linear algebraic equations in <r2, oy, p, a, that is, that not all the

two-rowed determinants in the following matrix vanish:

(16.11)
2(1) (X)    - (VIII)       - (IX)

(XIX)      (XX)      (XXI) (XXII)
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Then we consider two possibilities, namely, the determinant of the first

two columns:

(16.12) 2(1)(XX) - (X)(XIX),

either does or does not vanish.

If it vanishes, we infer, by linear combination of (16.9) and (16.2), a rela-

tion of the form

(16.13) p + -ft - 0,

where the dots represent known coefficients not both zero (for (16.9) and

(16.2) are, by hypothesis, linearly independent).

If the coefficient of p in (16.13) is zero, the coefficient of a cannot be zero;

it follows that cr = 0, contrary to the prescribed inequation ar* 0. There is

then no solution of our differential system.

On the other hand, if the coefficient of p in (16.13) is r* 0, we can solve

this equation for p in the form p= cr, and substituting in our original system

(14.4, 7), we have the classical case of a linear differential system of first

order in cr alone—easily settled here by reference to the exactness or non-

exactness of a certain readily constructed differential, -dx-\--dy +-dz-\--dy'

+ -dz'.

Suppose now that the determinant (16.12) does not vanish. Then (16.2),

(16.9) are solvable in the form

(16.14) az = ■ p 4- ■ a,      <tz< = ■ p 4- ■ <r.

Substituting this in the other equations of our system, (14.4), (14.7), (14.9),

(16.4), we find a differential system in p, <r of the form:

dp der
— =   p + -<r, — = -a,
dx dx

(16.15)
Pv — 'Pz' 4- p 4- -a, cy = p -f -0-,

Pz = ■ pz' + ■ P + • er, üz = ■ p 4" • o-,

Pv' = • Pz- 4- • p 4- • <r; o-y' = -p + -a,

OV = • p 4" • <r-

All the passivity conditions which occur in the discussion of this system, as

arrived at by formation of alternants of first order differential expressions,

are evidently of the form

■pz' + -p +   a- = 0.

Since there are at most three linearly independent equations of this type, we

must arrive, after just a few additional steps, at a definite decision as to the

solvability of our differential system and the generality of its solution.
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With this, we have disposed of the case of rank 2 of the matrix (16.11).

Suppose, finally, that this matrix is of rank 1 (it cannot be of rank 0, since

(I)*0).
Then (16.7) is linearly dependent on (16.2) and (16.4), so that we have to

adjoin only (16.4) as the sole passivity condition of the previously existent

system. We now have in (14.4, 7, 9) and (16.4) a differential system which

can be expressed in the following operational form:

dp
— =  ■ p 4" <T|
dx

r a an

r a       a a i

L dy dz dz'j

r     a n

(16.16)

4- p + 0-,

+ -P+ -o~,

da
— = a,
IX

(16.17)
Lay dz'j.dy'

L dy dz      * dz'.

- • p + -a,

r a       a an
I — - X— - (II)— J<r= -p+ -<t,

r     a an
L2(I)^+<x)d'-'+

The important point to observe is that the operators on p and on a are the same.

The fourth equation of (16.16) is the new one of this system, and the new

passivity conditions are found by forming the alternant of this equation with

the other ones of (16.16). The alternant with the first equation of (16.16)

turns out to disappear identically in virtue of the other equations of the sys-

tem.

The remaining alternants are of the first order in the partial derivatives of a

as well as p, precisely because of the identity of corresponding operators in

(16.16), (16.17). For instance, after forming the alternant of the second and

fourth equations in (16.16), we have a term of the form

(3l) Note that the coefficient of oy in this equation is unity. The dots in the other equations

represent, as usual, calculable known coefficients.
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ra aid
(16.18) -X- -ff,

Lay dz'Adz'

apparently of the second order; but this is equal to

( d       a    a-)      a r a ai
<-X-, ->cr4-X- cr,
lay      as'   az'J     az'Lay' az'J

where the braces denote the alternant of the two operators separated by the

comma—and this alternant is of the first order. The second term is, by the

second equation of (16.17), equal to

a
— (■P+ -<r),
3z

a differential expression of first order. Hence the term (16.18) is equal to a

first order expression in the partial derivatives of p, cr, and a similar reduction

applies to other apparently second order terms arising in the formation of our

passivity conditions.

In summary, we obtain two passivity conditions of the form

(16.19) -p.. 4- -oy 4-  P +   o- = 0,        p, 4-  <r, +  p + -o- = 0.

If these two are linearly independent, then either they can be solved for

Pz', cfz':

(16.20) p,> = -p 4- •<?,      oy = -p+ -a-,

or else a non-identically vanishing relation of the form -p4~ <r = 0 can be de-

duced from them by linear combination.

In the latter case, the discussion of our system is easily finished along

lines already discussed (cf. (16.13)). In the former case, if we substitute

(16.20) in (16.16), (16.17), we obtain a differential system in which every first

partial derivative of p, tr is expressed in the form ■ p-\- -<r. Then all the passiv-

ity conditions of this system are clearly of the form -p4--o- = 0, so that the

discussion of the system is easily concluded along the lines of standard the-

ory (32).

If both equations (16.19) disappear identically, the system (16.16, 17) is

completely integrable.

The only remaining case is where the matrix of the coefficients in (16.19) is

of rank 1, so that these equations amount to a single linearly independent one:

(16.21) -p, + >«f + -p+  a- = 0.

If the coefficient of Pz> is zero, then either we have -p4- cr = 0, a case already

(32) Cf., as in connection with (13.15), Eisenhart, loc. cit.
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disposed of, or else oy = -p-f- -tr. In the latter case, we obtain by substitution

in (16.16, 17) a system of the form (16.15), already discussed.

Accordingly, we may suppose (16.21) solved for py:

(16.22) p, = -ay + -p+ -a.

Let us form the alternant of this with the second equation of (16.16):

(16.23) (lo.lfc) _ I"      _ x A] (16.22).
dz Lay dzJ

Then we get a passivity condition of the form

(16.24) oy, = -oy -f- -P + -<r,

solvable for oy,, whose coefficient in (16.23) is evidently 1. There are two

additional passivity conditions, obtained by building the alternant of (16.22)

with the third and fourth equations of (16.16) (33); these are of the form

•0Vz' 4-  <r, + "P +  cr = 0.

Substituting in this the expression (16.24) for oy,, we get two equations of

the type

(16.25) ««r, +p + .* - 0,      -ay 4- p + •* = 0.

Unless both of these disappear identically, we can deduce either -p4- o" = 0,

oy = ■ p 4- ■ <r. In either case we find ourselves in situations already discussed(34),

and our investigation finishes along simple lines of standard theory.

If, however, both equations (16.25) disappear identically, we have to ad-

join (16.22), (16.24) as the passivity conditions of the system (16.16, 17).

Then, clearly, the extended system has only the three parametric derivatives

oy, p, a; consequently all further passivity conditions must be of the form

• ay 4- • p 4- • o- = 0.

Evidently, our investigation now comes to its conclusion by reduction to cases

already considered.

We may conclude by observing that throughout the discussion of Case

lib, even in the most unfavorable eventualities, the only derivative of an

order higher than the first which can occur is oy,.

17. Case III. This is the case of rank two of the matrix A, that is:

ABC
|| A   B €

A1  Bi  Ci   = 0,(17.1)

A2 B2
Ai  Bi Ci

9* 0.

(33) The condition obtained by alternating with d/dx (first equation of (16.16)) disappears

in virtue of the other equations in our system.

(34) As is readily seen in the latter case by combining (16.26), (16.22) with (16.16, 17).
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Let us denote the determinants in the latter matrix as follows:

(17.2) Ai s BCi - CBU  A2 = C^i - ACU  A, a AB1 - BAi;

then according to (17.1), at least one of Ai, A2, A3 is not zero.

It follows, by the linear equations AL+BA1+CN = 0, AxL+B^+dN

= 0, of (7.5), (7.7), that a proportionality factor p, function of x, y, z, y', z',

exists such that

(17.3) L = pAi,      M = pA2,      A7 = pA3.

p is now the sole unknown function of our problem.

By (17.3),

(17.4) LN — M2 = p2(AiA3 — A2);

hence, by the fundamental inequation LN—M2^0 of (7.5), we must have

(17.5) D m AXA3 - A2 5* 0

—otherwise, we can conclude immediately that the given curve family is non-

extremal.

We are thus led to make the following subdivision of Case III:

(17.6) Case Ilia.      D 9* 0,

(17.7) Case Illb.      D = 0(35).

Example of Case 11 lb.

(17.8) y" = y2 + z2,      z" = 0.

We calculate by (7.6), (7.9):

A = - 4z, B = iy, C = 0;

(17.9) Ax = - 4z', Bi = 4y', d = 0;

A2 = 0,                B2 = 4(y2 + z2),      C2 = 0.

Here

Ai = 0, A2 = 0, A3 = 16(yz' - zy');

therefore D =0.

The curve family (17.8) is nonextremal.

Case Ilia. Let us substitute (17.3) for L, M, N in the differential system

(3S) Geometrically expressed, (17.3), where p is regarded as a parameter, represents a line

in iilfiV-space passing through the vertex of the critical cone. The distinction between Cases

Illb, and fffa, respectively, consists in whether this line is or is not an element of the critical

cone.
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(7.5) as well as in the equations (8.8), (8.9) of its extended system. Then we

obtain exactly five independent linear equations in the five first order deriva-

tives of p; and these equations can be solved for the derivatives in question,

giving

(17.10) px = Eip,   py = Eip,   p3 = E3p,   pV' «■ Eip,   pZ' = Ef,p.

Here the coefficients Ei are calculable known functions, being rational ex-

pressions in the partial derivatives of F, G each having D for denominator;

accordingly, the Ei exist as determinate quantities in virtue of the stipula-

tion Dr* 0.

By (17.4), (17.5), the fundamental inequation LN=M2r*Q is seen to be

expressed precisely by requiring a solution p of the system (17.10) other than

the trivial one, zero:

(17.11) P^O.

For the existence of such a p, the exactness of the differential

(17.12) Exdx + Etdy + E3dz + Etdy' + Etdz'

is evidently a necessary and sufficient condition. If, in case of exactness, the

integral of this differential is £(x, y, z, y', z'), then

(17.13) p = et.

f is determined up to an additive constant, and p, therefore, up to a constant

factor.

After p has been found, we substitute in (17.3) to obtain L, M, N, and

therefrom we find <p by the method of §5. L, M, N will be determined up to a

constant factor, since that is the case with p. By the relations (7.3) and by §5,

the integrand <p is therefore determined up to a constant factor, besides the

usual additive total derivative as to x—thus, according to the convention as-

sociated with (3.7), <p is essentially uniquely determined.

The results of this section are expressed in Theorems VI and VII of §3.

Example of Case 11 la.

(17.14) y" = z2,      z" = y2.

By calculation, using (7.6), (7.9):

A - - 4c,        5 = 0,      C = 4y;

(17.15) Af-&,      By = 0,      Cx = 4y';

At - - 4y2,      B2 = 0,      C2 = 4z2.

The conditions (17.1) and (17.5) are immediately verifiable.

Since Ai=0, A3 = 0, equations (17.3) give L=0, N = 0.

By substitution in the differential system (7.5), (8.8), (8.9), this becomes
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the following system for M (which, in this example, plays the part of p):

(17.16)       Mx = 0,      My = 0,      Mz = 0,      My- - 0,      Mi' = 0.

Therefore ikf = const., and since a constant factor is inessential, we may

say M— 1. Knowing now L, if, A, we can easily find cp by the method of §5;

the result is

(17.17) 3^ >

and this is essentially unique, that is, within the slight possibility of modi-

fication expressed by (3.7).

18. Case IV. This is the case where the determinant of the fundamental

matrix A does not vanish:

(18.1)

A B

A, By

A2 B2

C

Co

* 0,

that is, A is of rank three.

Since (18.1) contradicts the necessary condition (7.10) for an extremal

family, any curve family coming under Case IV is certainly nonextremal.

Example.

(18.2) y" = y* + z2,      z" = y.

By calculation, with reference to (7.6), (7.9):

A = - 4z, B = 4y, C = 2;

(18.3) Ax~- 4j, Bt = 4y', d = 0;

A, - - 4y,          B2 = 4(y2 4- z2),      C2 = 0.

The determinant of the matrix A is not equal to zero. The curve family

(18.2) is therefore non-extremal.

Columbia University,

New York, N. Y.
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