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Derivation of Maxwell’s equations from the gauge invariance of classical mechanics

Donald H. Kobe

Department of Physics, North Texas State University, Denton, Texas 76203
(Received 12 September 1979; accepted 1 November 1979)

The Lagrangian for a single classical charged particle is made form invariant
under the addition of a total time derivative by adding an interaction Lagrangian
which involves compensating fields. The compensating fields are the vector and
scalar pafentials of the electromagnetlc field which couple to the current and
charge déMsities, respectively. To insure form invariance of the Lagrangian, the
vector and scalar potentials must undergo the usual gauge transformations of
electromagnetism. The electric and magnetic fields, which are gauge invariant,
are obtained by examining the equation of motion for the charged particle.
Faraday’s law and the condition that there are no magnetic monopoles are
obtained from the expressions for the electric and magnetic fields in terms of the
potentials. The simplest possible gauge-invariant Lagrangian which is quadratic
in the electric and magnetic fields is constructed. From the principle of least

action Gauss’ law and the Ampére-Maxwell law are obtained.

I. INTRODUCTION

Gauge invariance in classical electrodynamics is not
emphasized in most textbooks. Perhaps this is because
Maxwell’s equations and the Lorentz force involve the
fields, not the potentials, and so are obviously gauge in-
variant. These equations and Newton’s second law or its
relativistic generalization are all that is necessary to treat
classical electrodynamic problems. It is only when classical
electrodynamics is formulated in terms of the Lagrangian!
that the electromagnetic potentials play an essential role.
However, the equivalence pf Lagrangians that differ only
by a gauge transformation on the potentials? is often either
not mentioned? or relegated to the problems.*>

This situation contrasts sharply with the current research
emphasis in quantum field theory on gauge transforma-
tions.® Gauge theories are now thought to be the key to
understandmg all the basic interactions of physl‘cs and there
is optimism that the long sought goal of a unified field
theory may be attained through a gauge theory.” The vast
number of possible Lagrangians describing the fundamental
interactions can be sharply reduced by using only those
interactions that arise by making the Lagrangian form in-
variant under local gauge transformations.?

The derivation of Maxwell’s equations by the method of
gauge theory was first made by Weyl.? By considering the
Lagrangian for a Dirac electron to be form invariant under
local gauge transformations on the spinor wave functions
he was led to introduce the four-vector potential as a com-
pensating field with certain transformation properties. The
electromagnetic field strength tensor was defined in terms
of the potentials in the usual way in order to eliminate the
arbitrary gauge function. He constructed the simplest gauge
invariant scalar Lagrangian for the electromagnetic field,
from which the two dynamical Maxwell equations, Gauss’
law and the Ampére-Maxwell law, follow from the prin-
ciple of least action. The two kinematical Maxwell equa-
tions, Faraday’s law and the condition of no magnetic mo-
nopoles, can be obtained directly from the definition of the
electromagnetic field strength tensor in terms of the vector
potential. This method was again used by Schwinger.!°
Yang and Mills!! applied the same approach to local
rotations in isospin space to obtain the field that now bears
their name.
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In a previous paper'? a simplified derivation of Maxwell’s
equations from the local gauge invariance of quantum
mechanics was given. Instead of using the Lagrangian of
quantum field theory, the role of gauge invariance for the
Schrodinger equation was discussed. The form invariance
of the Schrodinger equation under local gauge transfor-
mations led to the introduction of the vector and scalar
potentials as compensating fields.!3 The two dynamical
Maxwell equations were derived from energy conservation
considerations. The two kinematical Maxwell equations
followed from the definitions of the electric and magnetic
fields in terms of the potentials.

The derivation of Maxwell’s equations as a gauge theory
is not limited to the use of quantum field theories, but can
even be done by considering the form invariance of the
Lagrangian for a classical charged particle. In this paper
Maxwell’s equations are derived by considering classical
mechanics from the gauge theory point of view. To make
the Lagrangian for a classical charged particle form in-
variant under the addition of a total time derivative a vector
and scalar potential can be introduced which couple to the
charge current and density, respectively. Form invariance
leads to the gauge transformation properties of the poten-
tials. When the principle of least action is applied to the
charged particle in the new field Newton’s second law is
obtained with the Lorentz force. The usual expressions for
the electric and magnetic fields in terms of the potentials
are obtained from the Lorentz force. As usual, the kinem-
atical Maxwell equations are obtained directly from the
form of the electric and magnetic fields in terms of the po-
tentials. The dynamical Maxwell equations are obtained
from the principle of least action by constructing the sim-
plest gauge-invariant scalar Lagrangian for the field.

The presentation used here, as well as in all gauge theory
approaches, to derive Maxwell’s equations turns around the
traditional order in which electromagnetism is presented.!-4
Instead of considering the vector and scalar potentials as
auxiliary fields which are only useful for calculation, they
are introduced as compensating fields to preserve the form
of the Lagrangian of a classical particle under the addition

. of a total time derivative. In this paper the gauge principle

states that the Lagrangian should have the same form when
a total time derivative is added to it, and is thus the same
as the principle of form invariance under gauge transfor-
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mation. The method of constructing gauge theories is per-
haps strange to students encountering it for the first time.
However, when they see the method applied to the familiar
subject of electromagnetism, they may have less difficulty
in understanding the more abstract Yang-Mills field iater.
The presentation here, which uses the electric and magnetic
fields instead of the electromagnetic field strength tensor,
could be used in a senior or graduate course in electro-
magnetism or classical mechanics. [t shows the deep insight
that can be gained into the former from the latter.

In Sec. 11, the form of the Lagrangian for a single clas-
sical particle is shown to be changed under the addition of
a total time derivative. In Sec. I, compensating fields,
which are the electromagnetic vector and scalar potentials,
are introduced, which couple to the charge current and
density, respectively. The new Lagrangian is now form in-
variant under the addition of a total time derivative. New-
ton’s second law with the Lorentz force is obtained in Sec.
IV from the principle of least action with the new Lagran-
gian. In Sec. V Maxwell’s equations are derived. The two
kinematical equations, Faraday’s law and the condition of
no magnetic monopoles, are obtained from the definition
of the electric and magnetic fields in terms of the potentials.
The two dynamical equations, Gauss’ law and the Am-
pére-Maxwell law, are obtained by constructing the sim-
plest gauge-invariant quadratic Lagrangian, and using the
principle of least action. The conclusion is given in Sec. V1.
An appendix gives the covariant formulation.

II. TRANSFORMATION OF THE
LAGRANGIAN

To illustrate the approach used here, we shall consider
a hypothetical physicist who knows classical mechanics but
does not know anything about electromagnetism. We shall
follow his thinking, which when guided by intuition and an
esthetic sense leads him to discover Maxwell’s equations on
the basis of the symmetry of the Lagrangian. Conceivably
such a discovery of Maxwell’s equations could have been
made at any time after Lagrange'4 (1736-1813) by
someone sufficiently ingenious. The fact that Maxwell’s
equations were actually developed as a synthesis of exper-
imental laws is, however, not surprising. The approach used
here is a strictly modern one, which emphasizes the sym-
metry of the Lagrangian.!® Classical physics has tradi-
tionally emphasized the equations of motion, and considered
the symmetry of the Lagrangian under various operations
as an interesting, but basically irrelevant, by-product of the
equations of motion. On the other hand, modern physics has
emphasized symmetry principles as a guide to discover new
dynamical equations. However, to treat electromagnetism
from the modern point of view should help the student un-
derstand the approach of gauge theories in a familiar
realm.

Our hypothetical physicist considers a single classical
particle with mass m and displacement r = r(¢) at time ¢,
which has an external potential energy U(r) not of elec-
tromagnetic origin. The Lagrangian for this particle is

Lo = (1/2)ymi? ~ U(r), (2.1)

where I is the velocity of the particle. The action Sy asso-
ciated with this Lagrangian is

2
So= J: dr Ly,

349 Am. J. Phys., Vol. 48, No. 5, May 1980

(2.2)

_ where the integral is over the time interval ¢; to ¢,. By

varying the action S with respect to the displacement r(¢),
keeping the end points fixed,

6Sp=0 (2.3)
he obtains Newton’s second law

where the right-hand side of Eq (2.4) is the force acting on
the particle. Equation (2.3) is the pr1nc1ple of least (or
stationary) action,!4
Our physicist discovers that adding a total time derivative
to the Lagrangian does not change the equation of motion.!6
The time derivative of an arbitrary differentiable function
(g/c)A(r,t), where g and ¢ are parameters introduced for
convenience now which are determined later, can be added
to Eq. (2.1) to obtain the new Lagrangian L,
qdA
Ly=Lo+2 oy
The action Sy is calculated by replacmg Lyin Eq. (2.2) by
Eq. (2.5), which gives

(2.5)

So = So+ (g/c)[A(rat2) — Ary11)]. (2.6)

where r, = r(f,) and similarly for r;. Since the variation of
the terms in the square brackets gives zero because the end
points are fixed, the use of Eq. (2.6) in Hamilton’s principle
in Eq. (2.3) also gives Newton’s second law in Eq. (2.4). He
therefore discovers that the Lagrangian in Eq. (2.5) is
equivalent to the original Lagrangian in Eq. (2.1).

Our physicist speculates that in addition to its mass m,
the particle may have another quantity g, which he calls
“charge”, associated with it.!” The charge of a body is re-
sponsible for its being attracted or repelled by other charged
bodies. For the point particle the density of charge is

p(x,1) = qo[x — r(2)], (2.7)

where x is an arbitrary point is space. The charge density
vanishes everywhere except at r(¢), where it is infinity.
However, its integral over all space is ¢. The quantity 6(x
— 1) has the property that it is zero except for x = r, but
when integrated over all space it is one. The charge current
ig a vector quantity,

J(x,t) = gid[x — r(1)], (2.8)

which also vanishes unless x = r. The delta function 6(x ~
r) was invented by Dirac,!® but in principle it could have
been invented earlier by our ingenious physicist.

The Lagrangian in Eq. (2.5) can be rewritten in terms
of the charge density and current. Since the displacement
r is a function of time, the total time derivative in Eq. (2.5)
is

dA(r1) - OA(r1?) +i OA(r,1)
dt ot or

When Eq. (2.9) is substituted into Eq. (2.5) and Egs. (2.7)
and (2.8) are used, our physicist can write the new Lag-
rangian in the form

Ly =L0+%fd3x(J(x,t)-VA(x,t)

10A(x,1)
o [

2.9)

+ cp(x t) (2.10)
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where V = 0/0x is the gradient with respect to the field
point X, and the integral is over all space.

A relation between the current J and the density p can
be obtained by performing an integration by parts in Eq.
(2.10),

LO_LO——de (v J+2f)A

+——— fd3pr (2.11)

where it is assumed that the current at infinity is zero. In
order for Eq. (2.17) to reduce to Eq. (2.5) when Eq. (2.7)
is substituted into it, the first integral on the right-hand side
of Eq. (2.11) must vanish. Sirice A is an arbitrary function
of space and time, the only way that the integral can vanish
identically is if

op
ot

which is the equation of continuity for the charge. If Eqgs.
(2.7) and (2.8) are substituted into the equatlon of conti-
nuity, it is satisfied exactly. If Eq. (2.12) is integrated over
all space, we find that the charge ¢ is a constant in time.

The Lagrangian Lj in Eq. (2.10) is completely equivalent
to the original Lagrangian L is Eq. (2.1). However, our
physicist has a sense that something is incomplete. He feels
that all equivalent equations in physics should have the same
form. He speculates that the integral in Eq. (2.10) is in-
dicative of a force field'? in nature which can couple to
electric charge.

+V.J= (2.12)

IIl. FORM INVARIANCE OF THE
LAGRANGIAN

Our physicist feels that equivalent equations in physics
should have the same form. This feeling is basically esthetic,
but he postulates it as a principle. Equation (2.10) is cer-
tainly not the same form as Eq. (2.1) uriless A is a constant.
In general, A is an arbitrary function of space and time. In
order to impose this principle of form invariance of the
Lagrangian under a total time derivative, he is led to a
modification of Eq. (2.10).

In order to construct a new Lagrangian that is form in-
variant under the addition of a total time derivative; our
physicist must add a term to the Lagrangian in Eq. (2.1)
which is similar in form to the integral in Eq. (2.10). Since
VA is a vector, he speculates that there must be a vector
field A(x,t) which couples to the charge current J(x,t) of
the particle. Since dA /9t is a scalar, he speculates that
there must also be a scalar field Ao(x,?) which couples to
the charge density p(x,t) of the particle. The field A he calls
the ““vector potential” and the field 4 he calls the “scalar
potential.” He thus adds a new interaction Lagrangian L;
to the particle Lagrangian Lg in Eq. (2.1) to obtain a new
Lagrangian

Lo,,-=Lo+%fd3x(J-A —cpdo), (1)

where the last term is the interaction ;. The new Lagran-
gian in Eq. (3.1) describes a single charged particle inter-
acting with a new field, called the “electromagnetic field”
by our physicist, which couples to the particle’s charge.

To obtain an equivalent Lagrangian, our physicist adds
a total time derivative to Eq. (3.1),
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qdA
+
cdt’
The total time derivative in Eq. (3.2) is equal to the integral
in Eq. (2.10). When Eq. (3.1) is substituted into Eq. (3.2)
and the total time derivative is written as the integral in Eq.
(2.10), our physicist obtains

, 1 ,
Lo;= Lo+ p J‘d3x(J - A" —cpAy),

which has the same form as Eq. (3.1). Equation (3.3) is
obtained if the new fields A’ and A4 are defined as

Ly, = Lo, (3.2)

(3.3)

A=A+ VA (3.4)
and
1 0A
A = A - .
0 0T (3.5)

The vector and scalar potentials in Eq. (3.1) absorb the
additional terms in Eq. (2.10) and become transformed. He
calls Eqgs. (3.4) and (3.5) “gauge transformations.” (Per-
haps the term *“gradient transformations,” which the
Russians use,?? would have been more appropriate.) The
fields A and Ag are in this sense “compensatmg fields™13
which are introduced to maintain the form invariance of the
Lagrangian under the addition of a total time derivative.
The addition of a total time derivative to the Lagrangian
could be called a “gauge transformation on the Lagrangian”
since it induces gauge transformations on the potentials.
The equations of motion for the charged particle in this new
field can now be obtained from the principle of least ac-
tion.

IV. EQUATION OF MOTION FOR THE
CHARGED PARTICLE

The equations of motion for the charged particle can
now be obtained by our physicist using the principle of least
action. The equation of motion of the particle in the new
field should give a means for detecting the new field, since
it should modify the motion of the particle if it is present.
There should be an additional force on a charged particle
if it is in the new electromagnetic field. However, our
physicist is puzzled by the apparent lack of uniqueness of
the compensating fields in Egs. (3.4) and (3.5). They may
not be the physical fields.

The principle of least action can be used to obtain the
equation of motion for the particle. The new action for the

charged particle is
2
0i = j: diLy,;,

where the integral is from #; to ¢, and the Lagrangian Lo,
in Eq. (3.1) is used. Our physicist varies Eq. (4.1) with re-
spect to r(r) keeping the end point fixed. When he sets the
variation equal to zero he obtains the equation of motion

4.1

L _ __0A
mi = VU+q( VA b(ct))

+ (ﬂ) P X(VXA), (42)
¢
which is Newton’s second law with additional forces coming

from the electromagnetic field.
The question arises in our physicist’s mind as to.whether
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the equation of motion in Eq (4.2) is unique. After all the
Lagranglan L,;in Eq. (3.3) is equwalent to Lo;. When he
varies S, obtained by replacing Lo; in Eq. (4.1) with Ly,
he obtains an equation of motion with the same form as Eq:
(4.2),

y OA’
P= - +qg|—-VA, -
mi vuU q( VAq b(ct))

+ (ﬂ) EX(VXA). (4.3)

The only difference between the Lagranglan Ly; in Eq.
(3.1) and the Lagrangian Ly in Eq (3.3) is that A and Aq
have been replaced by A’ and A4 in Eqgs. (3.4) and (3.5),
respectively. Our physicist is a little puzzled at first because
it looks as if Eq. (4.3) is different than Eq. (4.2), even
though they have the same form. Then he looks at Egs. (3.4)
and (3.5), and realizes that Eqs. (4.2) and (4.3) are exactly
the same equation.

The fields A and Aq introduced in Eq. (3.1) cannot be the
measureable physical fields, since by Egs. (3.4) and (3.5)
they are not unique. Our physicist defines a new field B,

B=VXA, (4.4)

which he calls the “magnetic field.” It does not make any
difference in Eq. (4.4) whether A or A’ in Eq. (3.4) is used,
since the curl of the gradient of A is zero. Likewise, he de-
fines another field E,
10A
= VAo cor’
which he calls the “electric field.” It does not make any
difference in Eq. (4.5) whether A and A or A’ and A4 in
Egs. (3.4) and (3.5), respectively, are used, since the space
and time derivatives of A commute. The magnetic field B
and the electric field E are the physical fields since they are
invariant under the gauge transformations in Eqs. (3.4) and
(3.5).
The equation of motion of the particle in Eq. (4.2) or Eq.
(4.3) can now be written in a manifestly gauge invariant
way,

(4.5)

mi=—VU + gE + (%) i X B. (4.6)
Equation (4.6) is Newton’s second law with the Lorentz
force, although the force due to the magnetic fields was first
given by Heaviside.?! It can be used as an operational def-
inition to determine whether an electric or magnetic field
is present by measuring the acceleration of a test body of
mass m and charge q.

V. DERIVATION OF MAXWELL'S
EQUATIONS

Having obtained the electric and magnetic fields, our
physicist wonders what equations they satisfy. In order to
produce them and to calculate their values he must know
their equations. He finds that they satisfy four equations,
of which two are kinematical and two are dynamical. The
two kinematical equations are obtained from the equations
for the fields in terms of the potentials. The two dynamical
equations he obtains from the principle of least action, using
a Lagrangian for the electromagnetic field.

Our physicist obtains the two kinematical equations
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satisfied by E and B directly from their definitions in terms
of the vector and scalar potentials. Taking the curl of Eq.
(4.5) for E and using Eq. (4.4), he obtains

1 0B

XE=—--—— :
VXE=--"", (5.1)

which is Faraday’s law. Taking the divergence of Eq. (4.4)

for B, he obtains
V.-B=0, (5.2)

which is the statement that there are no magnetic mono-

poles.

However, he realizes that Eqgs. (5.1) and (5.2) are not
sufficient to determine completely E and B. He conjectures
that the principle of least action can also be used for the
fields E and B if a proper Lagrangian L., for the electro-
magnetic field can be found.! The Lagrangian is a scalar
quantity, and the simplest way to construct a quadratic
scalar quantity from the vectors E and B is to take their dot
products. He therefore constructs a Lagrangian

Lem =:fd3x(a152 + 8B+ yE-B), (53)
where «, (3, and vy are arbitrary constants to be chosen
later.?2 He considers adding terms like A2 and 43 to the
integrand in Eq. (5.3), but realizes that the form invariance
of the total Lagrangian under the addition of a total time
derivative would be destroyed by these terms.23
The total Lagrangian L is the sum of .the Lagrangian in
Eq. (3.1) of the particle interacting with the field and the
Lagrangian of the electromagnetic field in Eq. (5.3),
L=Lem+ Lo+ L, (5.4)
Using the potentials A and Ag as generalized coordinates,
our physicist can obtain the dynamical equations for the
field from the principle of least action. The action S cal-
culated from the Lagrangian L in Eq. (5.4) is

2
S = J: dtL,

where the time interval goes from ¢, to ¢5. Equations (4.4)
and (4.5) are substituted into L.y, for Band E, respectively,
before the variation is performed with respect to A and
Ap.

When our physicist varies Eq. (5.5) with respect to 4o
he obtains

(5.5)

2aV:-E=p—-+V.B. (5.6)

From Eq. (5.2) the last term on the right-hand side of Eq.
(5.6) vanishes. Since the units of charge g are arbitrary, he
chooses the constant « to be

a=1/8=. (5.7)
Therefore Eq. (5.6) becomes
V-E = 47p, (5.8)

which is Gauss’ law in Gaussian units.

When he varies the action in Eq. (5.5) with respect to A
he obtains
2a0E (

———+-J+28VXB =—
c ot cJ BV x B ¥

10B

VXE+-‘—a—. (5.9)
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The right-hand side of Eq. (5.9) vanishes because of Eq.
(5.1). Substituting Eq. (5.7) into Eq. (5.9), he obtains
—87n8V><B—ﬂr—J+19E
cdt’
which involves the unknown constant 3.
The constant 8 must now be determined. In the special
case that J = 0, the curl of Eq. (5.10) gives

(5.10)

—~ 878V X (V X B) =%—§—,v XE  (511)
When he uses the identity for the curl of a curl of a vector
in Eq. (5.11) along with Egs. (5.1) and (5.2), he obtains

o°B

V2B + (87fe2) I 5 = 0. (5.12)

If 8 <0, Eq. (5.12) is the equation for a magnetic wave
traveling with a speed of (8| 8|)!/2¢, where ¢ in Eq. (2.5)
is taken as positive. On the other hand, if 8 > 0 a wave so-
lution to Eq. (5.12) does not exist, and it is not clear how to
interpret the constant 8w (3¢2. Moreover, our physicist is
indeed excited about the possibility of magnetic waves. Are
there electric waves also? Taking the curl of Eq. (5.1) and
using Eq. (5.10), he obtains in the special case of p = 0 and
J=0

E

VE + (87fch) 1 5= 0. (5.13)

If 8 < 0 there are also electric waves, which propagate with
the same speed (87|(B|)!/2c. Because of Eq. (5.1) the
electric and magnetic waves are related and form what he
calls an “electromagnetic wave.”

Since ¢ in Eq. (2.5) is an arbitrary positive constant with
the dimensions of velocity, he chooses ¢ to be the velocity
of propagation of the electromagnetic wave. The constant
8 then becomes

B=—1/8. (5.14)
Therefore Eq. (5.10) becomes
VXB= —J+laa—f‘ (5.15)

which is the Ampére-Maxwell law in Gaussian units. By
taking the divergence of Eq. (5.15) and using Gauss’s law
in Eq. (5.8), he obtains the equation of continuity in Eq.
(2.12).

Our physicist has now obtained all four of Maxwell’s
equations in Eq. (5.1), (5.2), (5.8), and (5.15). The pa-
rameters o and (3 in the Lagrangian L., in Eq. (5.3) have
been obtained in Eqgs. (5.7) and (5.14), respectively. How-
ever, the parameter 7y in Eq. (5.3) has not been determined.
Since it does not occur in the dynamical equations, it can
be taken without loss of generality to be zero, v = 0.

In retrospect our physicist can understand why the choice
v = 0 can be made. From Eq. (4.6) he sees that E is a vector
and that B is a pseudovector, since the classical equation of
motion should be invariant with respect to parity. Thus the
first two terms on the right-hand side of Eq. (5.3) are sca-
lars, while the last term in a pseudoscalar. If the Lagrangian
is a pure scalar, then vy = 0.

Our physicist naturally asks whether the dynamical
equations obtained for the field would have been different
had he used the total Lagrangian L’,

352 Am. J. Phys., Vol. 48, No. 5, May 1980

L'=Lem+ Lo+ L, (5.16)

instead of L in Eq. (5.4) to calculate the action S’ from Eq.
(5.5). The Lagrangian L’ in Eq. (5.16) has the same form
as the Lagrangian L in Eq. (5.4). The new action S” would
be varied with respect to the generalized coordinates A’ and
Ap. Since the equations obtained by varying S with respect
to A and A involve only E and B, the same results would
be obtained by varying S’ with respect to A’ and A,.
Therefore the same dynamical equations in Egs. (5.8) and
(5.15) would be obtained.Z* The formulation is therefore
completely gauge invariant because of the form invariance
of the Lagrangian.

VI. CONCLUSION

Our physicist who did not know anything about elec-
tromagnetism at the beginning of this paper has now derived
Maxwell’s equations and the Lorentz force guided by his
esthetic sense of the form invariance of the Lagrangian
under the addition of a total time derivative. In principle
our physicist could have lived any time after Lagrange.!4
From a realistic point of view this approach could only be
expected in the late twenties, when the symmetry properties
of the Lagrangian began to be emphasized with the advent
of quantum field theory.25 1t was 1929 before the approach
of gauge invariance was used to derive Maxwell’s equations
from a Lagrangian for a relativistic electron.?

The approach used in this paper illustrates the approach
used in any gauge theory.26 The emphasis is on the sym-
metry of the Lagrangian under a basic transformation. A
compensating field is introduced to insure the form invar-
iance of the Lagrangian under the transformation. The
compensating field is a potential from which the physical
field is obtained by differentiation in such a way that the
arbitrary gauge function is eliminated. The equations of
motion for the field are obtained by constructing the sim-
plest nontrivial Lagrangian, and using the principle of least
action.

The Lagrangian for a classical nonrelativistic charged
particle is used here only to illustrate the method of ap-
proach. Maxwell’s equations are invariant under Lorentz
transformations, while classical nonrelativistic mechanics
is invariant under Galilean transformations. When our
physicist realizes this incompatibility, he may be led to
formulate relativistic mechanics, as Einstein did.2” Nev-
ertheless, the approach used here shows the deep connection
between mechanics and electromagnetism, while illus-
trating the approach of modern gauge theories.

APPENDIX: COVARIANT FORMULATION

The approach of this paper can be formulated more
concisely by using the four-vector potential 28 If L is the
Lagrangian density for the particle, then the equation of
motion for the particle follows by setting the variation of

the action
SQ = fa’“x Io

equal to zero. A four divergence can be added to L without
changing the equation of motion. The new Lagrangian £,
1529

is

(A1)

Ly= Lo+ d,(s#A) (A2)
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where 9, = 3/dx#(u = 0,1,2,3), J# is a current four-vector
associated with the particle, and A is an arbitrary function
of x#. The summation convention is used in Eq. (A2) and
subsequent equations. Equation (A2) can be rewritten as

Lo= Lo+ Ad,J* + Jr A, (A3)

so that the form of Ly is different from L.

A new four vector 4, called the “four potential,” which
couples to J* can be introduced as a “compensating field”
to absorb the last term in Eq. (A3). If we add the new in-
teraction term .£; = —J#A4, to Eq. (A1), we obtain

Lo;=Lo—JoA,, (A4)

Then when the four divergence in Eq. (A2) is added to Eq.
(A4), we obtain

Loi=Lo—JrA, (A5)
If Eq. (A3) is substituted into Eq. (A5), we obtain
Lo;i=Lo—J*A, + Ad, I~ (A6)
The new four potential A, is defined as
A,=A, —d,A. (A7)
The principle of form invariance is satisfied if
3,4 =0, (A8)
i.e., the charge is conserved. Then Eq. (A6) becomes
Loi=Lo— JrA, (A9)

which has exactly the same form as Eq. (A4). Thus the
principle of form invariance leads not only to the interaction
term, but to charge conservation in Eq. (A8) as well.
The electromagnetic field strength tensor F,, can be
defined as
Fuo=0,4,— 0,4, (A10)

Equation (A10) can also be used with the potential in Eq.
(A7) since the arbitrary gauge term cancels. From the form
of Eq. (A10) we obtain

duF gy + OgF o + dyFag =0, (A11)

where (a,8,7) = (0,1,2,3) with no number repeated. When
(a,8,7) = (1,2,3) in Eq. (A11), the condition of no mag-
netic monopoles is obtained. When a = 0 in Eq. (A11)
Faraday’s law is obtained.
The simplest scalar Lagranglan Wthh can be constructed
for the electromagnetic fleld is
Lem =

—— F,,Fw, (A12)

16

where the indices on F,, are raised using the metric tensor
= diag(l,—1,—1,—1). The constant in Eq. (A12) is
chosen to determine the units of charge to be Gaussian
units. When Eq. (A12) is added to Eq. (A4), and the prin-
ciple of least action is applied to the field we obtain
Q Fw = (4w /c)J?, (A13)

which is Gauss’ law for v = 0 and the Ampére~Maxwell law
for v = (1,2,3).
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