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2 Notes

2.1 Configuration Space and Configuration Manifold

The purpose of the present discussion is to define some of the terminology we will use to describe the
“setting” of Lagrangian (and later, Hamiltonian) dynamics, chief among them the configuration
space and configuration manifold.

2.1.1 A Single Particle

Let us start with the simple case of a point particle that has three degrees of freedom, associated
with the motion in the directions associated with our chosen basis vectors for three-dimensional
space, e.g., {~ex, ~ey, ~ez}. Then the trajectory of the particle that is obtained by solving the equations
of motion can be expressed as

~r(t) = x(t)~ex + y(t)~ey + z(t)~ez , (1)

which is obviously an element of the space R3 at all times t— thus, we say the R3 is the configuration
space of the particle.

Let us now assume that the particle is not able to move freely in space due to some constraint
— for instance, it might be connected to a rod of fixed length l whose end is fixed at all times.
Thus, the particle is now constrained to move on a sphere with fixed radius l, which means the
relation

x2 + y2 + z2 = l2 = const. , (2)

must hold at all times for an allowed trajectory. This reduces the degrees of freedom of the particle
from three to two: essentially, we can describe the dynamics in terms of two angules that uniquely
identify the position of the particle on the sphere. We may be tempted to say that the configuration
space of the particle is R2 now, but this would be wrong: The curvature of the sphere prevents us
from simply treating its surface as a vector space, and we must resort to the more fundamental
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2.2 Tangent Spaces and Vector Fields

Let us recap what we have done so far. We have reviewed vector spaces and talked about Rn as a vector space, that is, as a
collection of vectors of the from

v =

⎡

⎢⎣
x1
...

xn

⎤

⎥⎦

where x1, . . . , xn ∈ R. Then we talked about Rn as a manifold, that is, as a collection of points (x1, . . . , xn) where
x1, . . . , xn ∈ R. We have also reviewed linear functionals on the vector space Rn and functions on the manifold Rn and
introduced coordinate functions. We will now see how the manifold Rn is related to vector spaces Rn. Our motivation for
this is our desire to do calculus. Well, for the moment to take directional derivatives anyway.

However, to help us picture what is going on a little better we are going to start by considering three manifolds, S1, S2,
and T . The manifold S1 is simply a circle, the manifold S2 is the sphere, and the manifold T is the torus, which looks like
a donut. For the moment we are going to be quite imprecise. We want you to walk away with a general feeling for what a
manifold is and not overwhelm you with technical details. For the moment we will simply say a manifold is a space that is
locally Euclidian. What we mean by that is if we look at a very small portion of the manifold that portion looks like Rn for
some natural number n.

We will illustrate this idea for the three manifolds we have chosen to look at. The circle S1 is locally like R1, which
explains the superscript 1 on the S. In Fig. 2.8 we zoom in on a small portion of the one-sphere S1 a couple of times to see
that locally the manifold S1 looks like R1. Similarly, in Fig. 2.9 we zoom in on a small portion of the two-sphere S2 to see
that it looks like R2 locally and in Fig. 2.10 we zoom in on a small portion of the torus T see that it also looks locally like
R2.

The point with these examples is that even though these example manifolds locally look like R1 and R2, globally they do
not. That is, their global behavior is more complex; these spaces somehow twist around and reconnect with themselves in a
way that Euclidian space does not.

Now we will introduce the idea of a tangent space. Again, we want to give you an general feeling for what a tangent
space is and not overwhelm you with the technical details, which will be presented in 10.2. From calculus you should recall
what the tangent line to a curve at some point of the curve is. Each point of the curve has its own tangent line, as is shown in
Fig. 2.11. We can see that the one dimensional curve has tangent spaces that are lines, that is, that are also one dimensional.

Similarly, a two dimensional surface has a tangent plane at each point of the surface, as is pictured in Fig. 2.12. The
tangent space to a manifold at the point p is basically the set of all lines that are tangent to smooth curves that go through

S1
almost R1 basically R1

Fig. 2.8 Here a small portion of a one-sphere, or circle, S1 is zoomed in on to show that locally the manifold S1 looks like R1

S2 almost R2 basically R2

Fig. 2.9 Here a small portion of the two-sphere S2 is zoomed in on to show that locally the manifold S2 looks like R2

Figure 1: Zooming in on a two-dimensional spherical surface.

concept of a manifold, which for our purposes we take to be a continuous, smooth set of points
(more below). Thus, we we say that the sphere defines a two-dimensional configuration manifold
in the configuration space R3 of our particle.

In general, if we have a particle whose n degrees of freedom are labeled by generalized coor-
dinates q1, . . . , qn and that is subject to c constraints of the form1

fi(q1, . . . , qn) = 0 , i = 1, . . . , c (3)

we will take the configuration space to be Rn, and the configuration manifold to be an (n −
c)−dimensional surface embedded in this space that is defined as2

M =

{
(q1, . . . , qn) ∈ Rn :

c∧
i=1

fi(q1, . . . , qn) = 0

}
. (4)

2.1.2 Manifolds in a Nutshell

In the previous subsection, we have already given an operating definition of a manifold that will
be useful for this course: We can think of it as a continuous set of points q = (q1, . . . , qn) ∈ Rn
that defines a smooth surface of dimension d ≤ n, but does not have the structure of a vector
space in general. Because the set is supposed to be continuous and smooth, we will be able to take
derivatives at each point of the manifold, which allows us to construct local tangent vectors that
span a d-dimensional tangent space — this is essentially what we have been doing to construct
the basis vectors in cylindrical and spherical coordinates! Geometrically, the underyling idea is that
any smooth d−dimensional surface will start to look like Rd if you zoom in on an infinitesimally
small region around the point q (see Fig. 1 for the example of a two-dimensional sphere).

Since we can define a tangent space at each point (see Fig. 2), a manifold is accompanied by
an infinite set of tangent spaces that we refer to as a tangent bundle. In general, one has to
be careful when one wants to compare quantities that are defined in one tangent space to those
defined in the tangent space at another point of the manifold. This should be evident from Fig. 2,
which shows the different orientations of the tangent spaces for the circle, sphere, and torus. In

1Note that we can easily write Eq. (2) in the required form by moving l2 to the left-hand side.
2Read: the set of points in R3 that simultaneously satisfies the constraints f1 = 0 through fNc = 0.

∧
is analogous

to the sum
∑

n or product
∏

n, but for the logical “and” operation ∧.
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Fig. 2.13 The tangent plane to a two-dimensional surface at the point p is the set of all tangent lines at p to curves in that surface that go through p
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Fig. 2.14 The manifold S1 along with a number of tangent lines depicted (top left). The manifold S2 along with a number of tangent planes
depicted (top right). The manifold T along with a number of tangent planes depicted (bottom). For both manifolds S2 and T several vectors in
each tangent plane are also depicted

To get a better idea of what the set of tangent spaces to a manifold look like, we have drawn a few tangent spaces to
the three simple manifolds we had looked at earlier in Fig. 2.14, the circle S1, the sphere S2, and the torus T . For the two
dimensional tangent spaces we have also drawn some elements of the tangent spaces, that is, vectors emanating from the
point p. The tangent spaces of the circle are denoted by TpS1, the tangent spaces of the sphere are denoted by TpS2, and the
tangent spaces of the torus are denoted by Tp(T ). We use the parenthesis here simply because TpT looks a little odd.

Even though we are quite familiar with the manifolds R2 and R3, imagining the tangent spaces to these manifolds is a
little strange, though is it something you have been implicitly doing since vector calculus. The tangent space of the manifold
R2 at a point p is the set of all vectors based at the point p. In vector calculus we dealt with vectors with different base points
a lot, but we always simply thought of these vectors as being in the manifold R2 or R3. Now we think of these vectors as
belonging to a separate copy of the vector space R2 or R3 attached at the point and called the tangent space.
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Figure 2: Tangent spaces of a circle, sphere, and torus.

Classical and Quantum Field Theory, for example, one needs to study how fields evolve as they
interact with particles that move through the space time manifold, which leads to the introduction
of connections on the tangent bundle, that are commonly referred to as covariant derivatives
in these domains — we will encounter one of the simplest examples when we study the motion of
a particle in an electromagnetic field in a few weeks.

Examples

• The set of points q = (x, y, z) ∈ R3 is a manifold but not a vector space, a priori. The reason
is that q describes a position in R3, but not a direction! We can turn the manifold into a
vector space if we introduce a unique mapping that identifies points with (column) vectors,

Φ : q → ~r = (x, y, z)T = x~ex + y~ey + z~ez (5)

The vector now has a direction because we tacitly assume that its tail is the origin of a chosen
coordinate system, and the tip the point q.

The local tangent vectors of our manifold are {~ex, ~ey, ~ez} everywhere, which means that the
tangent spaces are R3 vector spaces themselves, and they can be identified with each other
as well as the manifold itself if we “promote it” to a vector space by the map Φ.

• A circle and a sphere with arbitrary fixed radius, conventionally chosen to be r = 1 since one
can easily account for scaling factors, are manifolds denoted S1 and S2, respectively. Note
that they both satisfy equations of the form

n∑
i=1

x2i = r2 (6)

for n = 2 (circle) and n = 3 (sphere), respectively. Thus, one can view the circle as a “sphere”
in a two-dimensional space, and from there generalize the notion of a sphere to spheres Sn in
higher-dimensional spaces.

• We can build more complicated manifolds by taking products of the “primitive” manifolds
Rn and Sn. Products of R simply give rise to manifolds of higher dimension, e.g., R2 = R×R.
A cylinder in three dimensions with fixed radius is a manifold of type R × S1, and a torus
can be expressed as a product of two circles, S1 × S1. (cf. Fig. 2). Tori in higher dimension
can be defined through the n-fold products S1 × . . .× S1
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Concluding Remarks

• Manifolds that contain their boundaries are called compact. This is a generalization of the
notion of a closed interval ([a, b]) in the real numbers, which can be understood as a sub-
manifold of the real numbers R. In contrast, an open interval — commonly denoted as ]a, b[
or (a, b) — is not compact, and neither is R, because it does not contain ±∞.

• The spheres Sn are compact: For S1, this stems from the fact that the angles 0 and 2π are
identified with each other. The same holds for the azimuthal angle φ on the sphere S2, while
the polar angle θ is defined on the finite interval [0, π]. Since S1 is compact, tori in arbitrary
dimensions are compact manifolds as well.

• One can define proper notions of integration on manifolds, through the use of differential
forms — we might discuss this a bit more elsewhere. We implicitly make use of the concepts
associated with the integration on manifolds when we define surface and volume elements in
curvilinear coordinates (think dV = r sin θdrdθdφ).

• In the present discussion, we defined manifolds as set of points over some chosen coordinates,
e.g., in Rn. Essentially, we treated a point q as an n-dimensional function of the coordinates,

q : Rn → Rn, q(q1, . . . , qn) = (q1, . . . , qn) . (7)

The notion of a manifold does not rely on q simply being a point. We already saw that this
is true when we noted that the vector space Rn ~r(q1, . . . , qn) is a manifold as well.

In fact, we can construct manifolds from sets of general mathematical objects as long as they
depend smoothly on some variables: matrices, elements of mathematical groups, etc. In the
discussion of the rigid body dynamics later in the semester, we will see that the orientations
of the rigid body are described by the elements of the rotation group SO(3), which can be
parameterized by a set of three angles (e.g., the Euler angles you may have heard of).

2.1.3 A-Particle Systems

Let us now apply the notions introduced in the previous sections to the description of the dynamics
of an A-particle system.

The configuration space for A particles with n degrees of freedom each is obtained by simply
taking the product of the configuration spaces for the individual particles, and then we impose
constraints of the form

fi(q1, . . . , qAn) = 0 , i = 1, . . . , c , (8)

analogous to what we did for a single particle. It is important to note that the number of
constraints is in general not A times the number of the constraints on an individual
particle of the system:

• Constraints on the motion of individual particles cannot account for the coupling of degrees
of freedom of several particles, e.g., if particles are connected pairwise through fixed rods.
Such constraint must explicitly depend on the variables of several particles.

• Constraints that couple the motion of particles might also make constraints on individual
particles redundant, i.e., they might be automatically satisfied and no longer constrain the
dynamics meaningfully (see Section 2.2).
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δq1

δq2

~Fc

Figure 3: Configuration manifold for a single particle and constraint forces.

2.2 Constraints and Constraint Forces

In many mechanics applications, we are dealing with constrained motion: We would naively assign
Cartesian coordinates to all masses of interest because that is easy to picture, and subsequently
solve the equations of motion resulting from Newton’s Second Law, modeling any restrictions to
the motion with the help of constraint forces like the normal force, tension, etc. The problem with
this approach is that the constraint forces can usually only be determined after the fact, when we
have solved for all trajectories.

What we would really like to do is exploit the constraints immediately, so that we can deal with
the “true” degrees of freedom directly. Let us discuss this using the motion of a point mass under
gravity that is sliding without friction on a smooth curved surface (see Fig. 3). The configuration
space of the particle is R3, and a natural choice of coordinates would be (x, y, z). However, the
motion is constrained to a curved manifold that is defined by a constraint

f(x, y, z) = 0 . (9)

Such a constraint that is called holonomic. It can be used to eliminate one of the coordinates, so
we can parameterize the dynamics in terms of the generalized coordinates q1 and q2:

~r(x, y, z) → ~r(q1, q2) . (10)

Virtual Displacements

We can now introduce (unnormalized) tangent vectors to the manifold by computing the derivatives
of ~r with respect to the generalized coordinates at a given point of q0 = (q10, q20) of the manifold
(see Fig. 3):

δ~qi =
∂~r

∂qi
δqi , i = 1, 2 . (11)

Traditionally, these tangent vectors or the scalar quantities δqi are referred to as virtual displace-
ments in the literature. They are often described as “instantaneous infinitesimal changes of the
coordinates that are allowed under constraints”. In this context,
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• instantaneous means that any time argument appearing in ~r is held fixed, and

• allowed under the constraints means that the change of coordinates occurs in the configuration
manifold (or tangential to it, for vectors).

The geometric interpretation given here will hopefully be more intuitively accessible.
An arbitrary virtual displacement of the particle is given by

δ~r = δ~q1 + δ~q2 =
∑
i

∂~r

∂qi
δqi , (12)

which is distinct from the “real” displacement given by the total differential

d~r =
∑
i

∂~r

∂qi
dqi +

∂~r

∂t
dt , (13)

which is subject to both the constraints and the non-constraint forces acting on the particle, i.e.,
gravity in our example.

Constraint Forces

In Figure 3, we have also indicated the constraint force ~FC . The sole function of ~FC is to keep
the particle constrained to the surface at all points and times. Since the particle is free to move
tangentially to the surface, ~FC has no impact on the tangential motion, but it must prevent any
motion that is orthogonal to the surface, i.e., any acceleration that would cause the particle to sink
through the surface or lift off from it. These considerations imply that we can make the following
ansatz for the constraint force:

~FC = λ~∇f , (14)

since ~∇f will be orthogonal to any surface for which

f(x, y, z) = const. (15)

(This is analogous to conservative forces being orthogonal to the equipotential surfaces of the
underlying potential.) It is important to point out that we will usually not be able to
determine the overall sign of the factor λ a priori, but must do so on physical grounds
while we are solving the problem.

In our present example, the physical interpretation of the constraint force is clear: It is the
normal force that the curved surface must exert on the particle to counteract the normal component
of gravity.

Types of Constraints

The preceding discussion, including the definition (11), holds not only for holonomic constraints of
the form

f(x, y, z) = 0 , (16)

but also for cases where the constraint surface becomes explicitly time dependent:

f(x, y, z, t) = 0 . (17)

This simply meands that the configuration manifold and its tangent spaces evolve in time, as
determined by Eq. (17), and we perform the construction of the preceding sections at a fixed
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t = t0. Both types of constraints are holonomic, and they can be used to eliminate variables. In
the case (16), we refer to the dynamics as scleronomous (from Greek skleros, “stiff, tough”) and
the constraint is called holonomic-scleronomic or scleronomic for short. In the case (17), the
dynamics is called rheonomous (from Greek rheo, “to flow, run”), and the constraint is called
(holonomic-)rheonomic.

In principle, we can also have constraints that not only depend on the generalized coordinates qi,
but also on their corresponding generalized velocities q̇i — usually, this happens when we can only
relate the rate of change of coordinates to each other. An important example we will encounter is
rolling without slipping. In such cases, we speak of a nonholonomic constraint, because we won’t
be able to use the constraints to eliminate variables. Under certain conditions, we may be able to
integrate the nonholonomic constraint, which then just turns out to be a holonomic constraint in
disguise.

Finally, we can have constraints that involve inequalities, e.g., when the dynamics of particles
is not restricted to a surface, but a restricted volume. An example would be a mass sliding off a
hemisphere of radius R under the influence of gravity: The constraint in spherical coordinates will
be given by

x2 + y2 + z2 ≥ R2 , (18)

i.e., the mass cannot penetrate the hemisphere, but is allowed to have periods of contact. The
various types of constraints are summarized in Box 2.1.

Box 2.1: Summary: Types of Constraints

Type Form Examples

holonomic

scleronomic f(q1, ..., qn) = 0 rigid body, pendulum . . .
rheonomic f(q1, ..., qn, t) = 0 bead on rotating wire, pendulum

with moving suspension

nonholonomic

f(q1, . . . , qn, q̇1, . . . , q̇n) = 0 disk rolling without slipping
f(q1, . . . , qn, q̇1, . . . , q̇n, t) = 0 processes with friction

other

f(q1, . . . , qn) ≥ 0 mass sliding off a hemisphere

7



2.3 D’Alembert’s Principle

In the present section, we will derive D’Alembert’s principle using the geometric view of con-
straints we introduced in the previous section.

For our discusion, we use the example of a bead
that can slide without friction on a spiral wire
with cross section radius a (see Fig. 4). The co-
ordinates of the bead are

x = a cosφ , (19)

y = a sinφ , (20)

z = bφ , (21)

where we choose φ as our generalized coordinate.
We can parameterize multiple loops of the spiral
by allowing φ ∈]−∞,∞[ — otherwise, we would
have to eliminate the angle in favor of the coor-
dinate z, which leads to messier equations for x
and y.)
The definition of z is one of the constraints on the
bead; the other is given by

x2 + y2 = a2 . (22)

x

y

z

∂~r
∂q

Figure 4: Bead gliding on a spiral wire without
friction.

Together, the two constraints define the configuration manifold, i.e., the spiral wire.
Now consider Newton’s Second Law,

m~̈r = ~FA + ~FC , (23)

where ~FA is the total “applied” force acting on the bead, and ~FC is the total constraint force. Here,
the applied force is gravity, so

~FA = −mg~ez , (24)

and the explicit form of ~FC can only be determined after we have solved the equations of motion
for the bead. We know from Sec. 2.2 that the constraint forces are proportional to the gradient of
the constraints defining the configuration manifold. and orthogonal to the manifold itself in each
point. This means that the scalar products of ~FC with the vectors from the manifold’s tangent
space at the same point must vanish.

As discussed above, we obtain a tangent vector to the manifold by taking the derivative of the
coordinates with respect to φ,

∂~r

∂φ
= (−a sinφ, a cosφ, b)T = a~eφ + b~ez , (25)

where we have introduced the usual unit vectors of a cylindrical coordinate system, and we have

~FC ·
∂~r

∂φ
= 0 (26)

(see Exercise 2.1).
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Exercise 2.1: Constraint Forces for a Bead on a Spiral Wire

Show that the constraints defining the spiral wire can be expressed in cylindrical coordinates
as

f1(ρ, φ, z) = ρ− a = 0 , (27)

f2(ρ, φ, z) = z − bφ = 0 . (28)

Construct the constraint forces (up to the unknown factor λ), and show that they are or-
thogonal to the configuration manifold.

We can exploit the orthogonality condition (26) by projecting Eq. (23) onto the tangent vector:

m~̈r · ∂~r
∂φ

= ~FA ·
∂~r

∂φ
+ ~FC ·

∂~r

∂φ︸ ︷︷ ︸
=0

. (29)

In this way, we do not have to worry about the constraint forces. In fact, we can now drop the
distinction between applied and constraint forces in this equation and simply write

m~̈r · ∂~r
∂φ

= ~F · ∂~r
∂φ

, (30)

because the constraint forces are projected out from ~F automatically!
Let us now consider the left-hand side of Eq. (30). The trajectory of the bead can be written

as ~r(t) = ~r(φ(t)), i.e., the time dependence is entirely contained in the time dependence of the
generalized coordinate φ, but all steps would work analogously if ~r were explicitly time dependent.
Using the chain rule, we have

~̇r =
∂~r

∂φ
φ̇ , (31)

~̈r =
∂2~r

∂φ2
φ̇2 +

∂~r

∂φ
φ̈ . (32)

The vector in the first term can be written as

∂2~r

∂φ2
= (−a cosφ,−a sinφ, 0)T = −~eρ , (33)

so we see that
∂2~r

∂φ2
· ∂~r
∂φ

= −~eρ · (a~eφ + b~ez) = 0 (34)

because of the orthogonality of the unit vectors. Consequently, we obtain

m~̈r · ∂~r
∂φ

= φ̈

∣∣∣∣ ∂~r∂φ
∣∣∣∣2 = φ̈(a2 + b2) . (35)

The right-hand side is obtained easily:

~F · ∂~r
∂φ

= −mg~ez ·
∂~r

∂φ
= −mgb . (36)
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Thus, the equation of motion for the bead becomes

m(a2 + b2)φ̈ = −mgb

⇒ φ̈ = − b

a2 + b2
g , (37)

which has the general solution

φ(t) = φ0 + ω0 t−
1

2

bg

a2 + b2
t2 . (38)

When we multiply φ(t) with b (cf. Eq. (21), we essentially obtain a “free” fall in z with a reduced
acceleration.

D’Alembert’s Principle

We can rewrite our projected form of Newton’s Second Law, Eq. (30), as(
~F −m~̈r

)
· ∂~r
∂q

= 0 , (39)

where we switched to an arbitrary generalized coordinate q. Now we can recall the definition of
the virtual displacements along the constraint manifolds from Sec. 2.2, which states

δ~r =
∂~r

∂q
δq . (40)

Thus, we can simply multiply the geometric condition (39) by δq on both sides, and obtain(
~F −m~̈r

)
· δ~r = 0 . (41)

This is d’Alembert’s principle for a single particle in the form that is usually found in
textbooks. It is statement of the fundamental laws of classical motion, and while it is equivalent
to Newton’s Laws for essentially all intents and purposes, it cannot be derived from them. It is also
fundamentally related to the Principle of Least Action that we will discuss later, but in fact more
general since it applies to systems with non-holonomic constraints.

2.4 Examples

In this section, we discuss the application of d’Alembert’s principle to additional examples.

Planar Pendulum

Figure 5 shows a planar pendulum, consisting of a mass m that swings on a string of length l under
the influence of gravity. The pendulum motion is most efficiently described using polar coordinates,
but with some alterations: For instance, it is much more appropriate to measure the polar angle
with respect to vertical instead of the horizontal axis, because the vertical axis defines the pendulum
at rest. Also, we can avoid carrying negative signs and awkward angular offsets in the coordinates
if we let the y axis point downward, but we must properly account for that choice when we define
the gravitational force and potential, then.

10



Box 2.2: Virtual Work

Traditionally, d’Alemberts principle has been stated in the following form:

The constraint forces perform no virtual work.

Virtual work is defined as the work done by the forces along virtual displacements that are
compatible with the constraints:

δW ≡ ~F · δ~r = ~FA · δ~r . (42)

It can be a useful concept in the determination and analysis of static equilibrium configura-
tions (with ~̈r = 0) of mechanical systems, which are defined by

δW = 0 . (43)

In his original work, d’Alembert generalized this idea by including the inertial force −m~̈r (or
−~̇p if the mass is allowed to change) in his balancing equation for the virtual work, giving
rise to Eq. (41). Mathematically, this moves the inertial term in Newton’s Law from one
side of the equation to the other, but philosophically, it removes the special role that the
inertial term plays in Newtonian mechanics and instead treats it on an equal footing as all
other forces.

Starting from Cartesian coordinates, we have

x = r sinφ , (44)

y = r cosφ , (45)

with the constraints

φ = arctan
x

y
∈

]
−π

2 ,
π
2

[
(46)

and
f(r, φ) = r − l = 0 . (47)

Thus, the motion is confined to the usual cir-
cular arc shown in Fig. 5, which serves as the
configuration manifold for the pendulum. The
angle φ serves as our generalized coordinate.

y

x

φ

~FG

~F⊥

~F‖

O

~FC

m

Figure 5: A planar pendulum.

The basis vectors for the coordinate system are

~er =

∣∣∣∣∂~r∂r
∣∣∣∣−1 ∂~r∂r = (sinφ, cosφ)T , (48)

~eφ =

∣∣∣∣ ∂~r∂φ
∣∣∣∣−1 ∂~r∂φ = (cosφ,− sinφ)T , (49)

(notice the difference from the usual definition). It is clear from the figure that ~eφ is tangential to
the configuration manifold, and we therefore have

δ~r =
∂~r

∂φ
δφ = (r δφ) ~eφ . (50)
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The constraint force ~FC — i.e., the tension in the pendulum string — is pointing in negative radial
direction

~FC ∼ −~er , (51)

as expected from the gradient of Eq. (47). This immediately yields

~FC · δ~r = 0 , (52)

i.e., the tension does not perform any work on the pendulum and can be dropped from consideration.
Let us now apply Eq. (39), using ~F = mg~ey as the force acting on the pendulum. To evaluate

the inertial term, we note that

~r = r~er , (53)

~̇r = ṙ~er + rφ̇~eφ , (54)

~̈r = (r̈ − rφ̇2)~er + (2ṙφ̇+ rφ̈)~eφ , (55)

and therefore
m~̈r · δ~r = m(2ṙφ̇+ rφ̈) · rδφ . (56)

For the gravitational force, we obtain

~FG · δ~r = mg~ey · (rδφ)~eφ = −mgr sinφ δφ . (57)

D’Alembert’s principle now reads

m
(

2rṙφ̇+ r2φ̈+ gr sinφ
)
δφ = 0 , (58)

and after using Eq. (47) and simplifying, we find(
φ̈+

g

l
sinφ

)
δφ = 0 . (59)

Since this expression must hold for arbitrary δφ, the term in parentheses must vanish, and this
condition is the usual equation of motion for the pendulum:

φ̈+
g

l
sinφ = 0 . (60)

For small angles, we can expand
sinφ = φ+O(φ3) ≈ φ , (61)

which turns the equation of motion into that of a harmonic oscillator with frequency ω =
√
g/l:

φ̈+ ω2φ ≡ φ̈+
g

l
φ = 0 . (62)

For comparison, let us also consider solving the problem in the Newtonian approach. To apply
Newton’s Second Law, we would split gravity into components that are perpendicular and tangential
to the arc of the pendulum. They can be determined by projecting on ~er and ~eφ:

~F‖ ≡ (~FG · ~eφ) ~eφ = mg(~ey · ~eφ) ~eφ = −mg sinφ ~eφ , (63)

~F⊥ ≡ (~FG · ~er) ~er = mg(~ey · ~er) ~er = mg cosφ ~er . (64)
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Note that we essentially determined ~F‖ when applying d’Alembert’s principle. To prevent any

acceleration in radial direction, the tension must compensate ~F⊥, which implies

~FC = −mg cosφ ~er , (65)

in accordance with our earlier consideration. Using the expression for the acceleration in polar co-
ordinates above and comparing coefficients on both sides, Newton’s Second Law yields the following
system of equations for the radial and angular directions

m(r̈ − rφ̇2) = FC + F⊥ = 0 (66)

m(2ṙφ̇+ rφ̈) = F‖ = −mg sinφ , (67)

which leads to the same equation of motion after some minor rearranging. This particular problem
is easy enough so that we could have skipped the calculation of ~FC and ~F⊥ while determining the
pendulum equation, which means the effort is more or less the same as for applying d’Alembert’s
principle. In complex systems, however, d’Alembert’s principle offers a more efficient approach.
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3 Group Exercises

Problem G4 – Constraints and Constraint Forces

Figures 1 and 2 show physical systems that are subject
to constraints:

• a spherical pendulum, consisting of a mass m that
is suspended from the ceiling by a string of fixed
length l, and

• a bead of mass m that can slide without friction
along a wire that rotates with constant angular
velocity ω around an axis through the origin, with
a fixed angle α between the wire and the axis.

1. Formulate all constraints on the motion, both in
Cartesian and spherical coordinates, and state what
kind of constraint each of them is (e.g., holonomic-
scleronomic, holonomic-rheonomic, nonholonomic,
. . .).

2. Compute the constraint forces for the Cartesian and
spherical-coordinate versions of the constraints, and
give a physical interpretation.

θ
x

z

O

Figure 6: Spherical pendulum, suspended
from a ceiling (side view).

ω

α
q(t)

x

y

z

O

Figure 7: Bead on a rotating wire.
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Problem G5 – Motion on a Torus

A torus in three-dimensional space can be parameter-
ized as

x = (R+ r cos θ) cosφ , (68)

y = (R+ r cos θ) sinφ , (69)

z = r sin θ , (70)

where θ ∈ [0, 2π] , φ ∈ [0, 2π], r is the minor radius,
i.e., the radius of the tube, and R the major radius,
measured from the origin to the center of tube.

1. Show that for R = const., r = const., the coordi-
nates satisfy the equation(√

x2 + y2 −R
)2

+ z2 = r2 . (71)

z

x

y

Figure 8: A torus with R = 2, r = 1.

2. Construct the basis vectors {~eθ, ~eφ} that span the tangent space at each point of the torus’
surface. Express the vectors in terms of the Cartesian basis.

3. Construct the force that will constrain the motion of a point mass to the torus. (Recall that
it will only be defined up to a factor λ, whose sign, size and dimensions depend on the other
forces acting on the system.)

4. Show explicitly that the constraint force does not perform any work on a mass that moves on
the torus.
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