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2 Lagrange Multipliers

2.1 Premise

Practical applications of variational principles often involve the optimization of a function in the
presence of constraints: For instance, the examples below describe how we can find the largest
possible rectangle that we can inscribe into an ellipse, or the minima of a two-dimensional function
along a specific curve in the two-dimensional plane. Another example would be to optimize a
probability distribution p(xi) of discrete events xi while ensuring that

∑
i p(xi) = 1

To account for such constraints, we couple them to the function that is to be optimized using
Lagrange multipliers and solve the optimization problem with these multipliers as additional
variables. For instance, if we have a function f(x1, . . . , xn) and constraints gi(x1, . . . , xn) linking
the variables xi, we define

Λ(x1, . . . , xn, λ1, . . . , λm) = f(x1, . . . , xn) +
∑
i

λigi(x1, . . . , xn) , (1)

and determine the extrema of Λ as a function of the xi and λi (see below). You can view the
additional terms in the optimization problem as penalties that we impose for violating the constraint
conditions.

The Lagrange multiplier techniques can be readily applied in variational calculus as well. In that
case, the constraints gi(y, y

′, x), y = (y1, . . . , yn) are coupled to the Lagrangian f of our functional,

f̃(y, y′, x, λ) = f(y, y′, x) +
∑
i

λigi(y, x) , (2)

and we again solve the variational problem as if λ = (λ1, . . . , λm) were additional variables. Note
that we had to require that the constraints are holonomic, i.e., integrable, in this expression.
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2.2 The Second-Derivative Test

In the following examples, we are dealing with the optimization of functions of multiple variables,
and we would like to determine whether an extremum that we found is a maximum, minimum, or
a saddle point. For functions of one variable, this determination is readily made using the second
derivative, but in multiple dimensions, the problem becomes more complex, and the presence of
constraints adds additional complications.

Without constraints, we know that the extrema of a function f(x1, . . . , xn) can are identified
by a vanishing gradient,

~∇f =
(
∂f
∂x1

, . . . , ∂f∂xn

)T
= 0 . (3)

To determine the nature of the extrema, we can look at the Hessian, the matrix of second partial
derivatives, which is defined by

H[f ] =


∂2f
∂x21

· · · ∂2f
∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
· · · ∂2f

∂x2n

 . (4)

If the Hessian is positive definite, then the extremum is an isolated minimum, if it is negative
definite, an isolated maximum, otherwise we will have a saddle point (which may be degenerate,
i.e., we could have curves, planes etc. of saddle points, depending on the dimension of ~x). Otherwise,
the test is inconclusive.

A symmetric matrix like the Hessian is positive definite if for all vectors ~x the product ~xTH~x
is strictly positive. This is equivalent to stating that all eigenvalues µi of the matrix are positive.
The Hessian is positive semi-definite if ~xTH~x ≥ 0 or µi ≥ 0. Negative definite and negative
semi-definite matrices are defined analogously. A matrix that has positive and negative eigenvalues
is called indefinite.

In problems with constraints, we use what is called the bordered Hessian, which is the Hessian
of the Lagrangian Λ (Eq. (1)):

H[Λ] =



∂2Λ
∂λ21

· · · ∂2Λ
∂λ1λm

∂2Λ
∂λ1∂x1

· · · ∂2Λ
∂λ1∂xn

...
. . .

...
...

. . .
...

∂2Λ
∂λmλ1

· · · ∂2Λ
∂λ2m

∂2Λ
∂λm∂x1

· · · ∂2Λ
∂λm∂xn

∂2Λ
∂x1λ1

· · · ∂2Λ
∂x1∂λm

∂2Λ
∂x21

· · · ∂2Λ
∂x1∂xn

...
. . .

...
...

. . .
...

∂2Λ
∂xnλ1

· · · ∂2Λ
∂xn∂λm

∂2Λ
∂x1∂xn

· · · ∂2Λ
∂x2n



=



0 · · · 0 ∂g1
∂x1

· · · ∂g1
∂xn

...
. . .

...
...

. . .
...

0 · · · 0 ∂gm
∂x1

· · · ∂gm
∂xn

∂g1
∂x1

· · · ∂gm
∂x1

∂2Λ
∂x21

· · · ∂2Λ
∂x1∂xn

...
. . .

...
...

. . .
...

∂2Λ
∂xnλ1

· · · ∂2Λ
∂xn∂λm

∂2Λ
∂x1∂xn

· · · ∂2Λ
∂x2n


. (5)

Here, we have used that Λ is linear in the λi, and that ∂Λ
∂λi

= gi.
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We cannot apply the criterion for definiteness for the unconstrained Hessian: H[Λ] acts on
m + n-dimensional vectors of the form (λ1, . . . , λm, x1, . . . , xn)T , and any vectors that only has
components in the first m entries will be mapped to 0. (Equivalently, the bordered Hessian is
guaranteed to have at least m eigenvalues that are zero.) Instead, the second-derivative test relies
on sign conditions on the sequence of leading principal minors.

The principal matrices of an n × n matrix are obtained by deleting k rows and columns,
which we can do in

(
n
k

)
ways in general. The leading principal matrix Pk of dimension k is

obtained by deleting the last n−k rows and columns. Let us denote the determinant of this matrix
as Dk. For the bordered Hessian, we will then have

D1 = detP1 = det
(
∂2Λ
∂λ21

)
= 0 , (6)

D2 = detP2 = det

(
∂2Λ
∂λ21

∂2Λ
∂λ1λ2

∂2Λ
∂λ2λ1

∂2Λ
∂λ22

)
= 0 ,

...

Dm+1 = detPm+1 = det


0 · · · 0 ∂g1

∂x1
...

. . .
...

...

0 · · · 0 ∂gc
∂x1

∂g1
∂x1

· · · ∂gc
∂x1

∂2Λ
∂x21

 , (7)

...

Dm+n = detPm+n = detH[Λ] . (8)

The test consists of evaluating the sequence of leading principal minors Dk for k = min(2m+1,m+
n), . . . ,m + n, that is, the first 2m minors are neglected, and if 2m + 1 > m + n, then we only
consider the determinant of the bordered Hessian itself. This means we consider n−m minors for
a system with n−m degrees of freedom (n coordinates, m constraints). The sufficient conditions
for local maxima and minima can then be stated as follows:

• An extremum is a local maximum if the signs of the Dk, evalutated at the point of interest,
alternate and the first Dk in the sequence has the sign (−1)m+1.

• An extremum is a local minimum if all Dk have the sign (−1)m.

• Other outcomes of the test are inconclusive.

(In the unconstrained case m = 0, these conditions reduce to another criterion for the positive or
negative definiteness of the unconstrained Hessian.)

2.3 Example: Rectangle Inscribed in an Ellipse

Consider the problem of inscribing the largest possible rectangle into an ellipse with semi-major
axes a and b, which is defined by the equation

x2

a2
+
y2

b2
= 1 . (9)

The area of the rectangle with corners (−x,−y), (−x, y), (x,−y), (x, y) is given by the function

A(x, y) = (2x)(2y) = 4xy , x, y ≥ 0 . (10)

3



We introduce a Lagrange multiplier and couple the constraint (9) to this function,

Ã(x, y, λ) = A(x, y) + λ

(
x2

a2
+
y2

b2
− 1

)
, (11)

and proceed to maximize Ã. The partial derivatives are

∂Ã

∂x
= 4y + 2λ

x

a2
, (12)

∂Ã

∂y
= 4x+ 2λ

y

b2
, (13)

∂Ã

∂λ
=
x2

a2
+
y2

b2
− 1 . (14)

Let us first consider the boundaries of our domain, which are given by (x = 0, y) and (x, y = 0),
respectively. These cases correspond to the limits in which the rectangle turns into a line and the
area vanishes A(0, y) = A(x, 0) = 0. Since A(x, y) ≥ 0 by definition, the boundaries are global
minima. Note that the constraint can still be satisfied: On the first boundary, we have

02

a2
+
y2

b2
− 1 = 0 ⇒ y = b , (15)

and analogously,

x2

a2
+

02

b2
− 1 = 0 ⇒ x = a . (16)

Now consider the interior of the domain, where x > 0, y > 0. We start with Eq. (13) and obtain

4x+ 2λ
y

b2
= 0 ⇒ x = −λ y

2b2
. (17)

This implies λ < 0, since y must be positive. Plugging this solution into Eq. (12), we obtain

4y − λ2 y

a2b2
= 0 ⇒ y

(
4− λ2

a2b2

)
= 0 . (18)

The solutions to this equation are y = 0, which we considered separately above, and λ = −2ab
(λ = 2ab is ruled out).

Let’s proceed with λ = −2ab, which yields

x = −λ y

2b2
= y

a

b2
. (19)

Using this relation in Eq. (14), we have

y2a2

b2a2
+
y2

b2
− 1 = 0 ⇒ y =

b√
2
. (20)

Thus, the extremum in the domain’s interior is

E3 : x3 =
a√
2
, y3 =

b√
2
, λ3 = −2ab . (21)
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The area of the resulting rectangle is

A (x3, y3) = 2ab , (22)

and the constrained stationary point is obviously a maximum.
Although the nature of the extremum is clear, let us still perform the second-derivative test for

practice. The bordered Hessian reads

H(x, y, λ) =


∂2Ã
∂λ2

∂2Ã
∂λ∂x

∂2Ã
∂λ∂y

∂2Ã
∂x∂λ

∂2Ã
∂x2

∂2Ã
∂x∂y

∂2Ã
∂y∂λ

∂2Ã
∂x∂y

∂2Ã
∂y2

 =

 0 2x
a2

2y
b2

2x
a2

2λ
a2

4
2y
b2

4 2λ
b2

 . (23)

We have n = 2 variables and m = 1 constraint, so we need to look at the leading principal minors
of the bordered Hessian for k = min(2m + 1,m + n), . . . ,m + n. Here, this means k = 3, and the
principal minor is the determinant of H itself. At the extremum E3, we have

detH
(
a√
2
,
b√
2
,−2ab

)
= det


0

√
2
a

√
2
b√

2
a −4b

a 4
√

2
b 4 −4a

b

 =
32

ab
> 0 , (24)

matching the requirement for a constrained local maximum that the sign should be (−1)m+1 = +1.

2.4 Example: Extrema of the Mexican Hat Potential

Extrema Without Constraints

Let us consider the function

V (x, y) = −40(x2 + y2) + (x2 + y2)2 , (25)

an example of a so-called mexican hat potential that is frequently used to discuss symmetry breaking
phenomena in physics (see Fig. 1).
Let us first compute the extrema of V (x, y). The
partial derivatives with respect to the variables
are

∂V

∂x
= −80x+ 4(x2 + y2)x , (26)

∂V

∂y
= −80y + 4(x2 + y2)y . (27)

The extrema are obtained by solving

0 = −80x+ 4(x2 + y2)x , (28)

0 = −80y + 4(x2 + y2)y . (29)

The solutions of Eq. (28) are

x1 = 0 (30)
Figure 1: Mexican hat potential.
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and all points on a circle in the xy-plane with radius r =
√

20.

4(x2 + y2)− 80 = 0 ⇒ x2 + y2 = 20 . (31)

From Eq. (29), we again obtain the definition of the circle, as well as

y1 = 0 . (32)

By inspecting the figure, we see that (x1, y1) = (0, 0) is a local maximum, while points on
the circle are degenerate global minima in radial direction, and saddle points in any direction
tangential to the circle. If we do not have a figure at hand, or a more complicated function, we can
compute the Hessian and check its definiteness:

H(x, y) =

 ∂2V
∂x2

∂2V
∂x∂y

∂2V
∂x∂y

∂2V
∂y2

 =

(
−80 + 4(x2 + y2) + 8x2 8xy

8xy −80 + 4(x2 + y2) + 8y2

)
. (33)

For (x1, y1) = (0, 0), H(0, 0) is diagonal and we can read off the doubly degenerate eigenvalue
h1/2 = −80. Since all the eigenvalues are negative, the H(0, 0) is negative definite, the point is a
local maximum.

For any point on the ring, the Hessian becomes

H(x, y)|C =

(
−80 + 4 · 20 + 8x2 8xy

8xy −80 + 4 · 20 + 8y2

)
=

(
8x2 8xy

8xy 8y2

)
. (34)

The eigenvalues are h3 = 0 and h4 = 8(x2 + y2) = 160, so the matrix is indefinite. Parameterizing
the circle by (r, φ) = (

√
20, φ), we find the expected result that ~e3 = ~eφ = (− sinφ, cosφ)T are

eigenvectors associated with h3, and ~e4 = ~er = (cosφ, sinφ)T are eigenvectors associated with h4.

Extrema Under Constraints

Let us now determine the extrema of the mexican hat potential under the constraint

y = x ⇒ f(x, y) ≡ y − x = 0 . (35)

We couple the constraint to the function V (x, y) with a Langrange multiplier λ:

Ṽ (x, y, λ) = V (x, y) + λf(x, y) . (36)

The partial derivatives of Ṽ and the resulting conditions for extrema are

∂Ṽ

∂x
= −80x+ 4(x2 + y2)x− λ = 0 , (37)

∂Ṽ

∂y
= −80y + 4(x2 + y2)y + λ = 0 , (38)

∂Ṽ

∂λ
= y − x = 0 . (39)

Plugging the solution of (39) obviously into either of the other equations, e.g., Eq. (37), we can
determine λ:

−80x+ 8x3 − λ = 0 ⇒ λ = 8x3 − 80x . (40)
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The remaining equation now becomes

−80x+ 8x3 + 8x3 − 80x = 16x(x2 − 10) = 0 , (41)

with the solutions
x1 = 0 , x2/3 = ±

√
10 , (42)

so our extrema are formally given by

(x1, y1, λ1) = (0, 0, 0), (x2, y2, λ2) = (
√

10,
√

10, 0), (x3, y3, λ3) = (−
√

10,−
√

10, 0) . (43)

(Note: in general, the Lagrange multiplier(s) need not vanish at the stationary points;
see Sec. 2.3.)

The bordered Hessian of Ṽ now reads

H(x, y, λ) =

 0 −1 1
−1 −80 + 8x2 + 4(x2 + y2) 8xy
1 8xy −80 + 8x2 + 4(x2 + y2) ,

 (44)

and it must be evaluated at the different stationary points. We have n = 2 variables and m = 1
constraints, so the second-derivative test requires us to look at the principal minors of H for
k = min(2m+ 1,m+n), . . . ,m+n. In the present case, the range gives us k = 3 and the principal
minor is again H itself, just like in the previous example.

At (x, y, λ) = (0, 0, 0), we have

detH(0, 0, 0) = det

 0 −1 1
−1 −80 0
1 0 −80

 = 160 > 0 , (45)

so the sign matches (−1)m+1 = +1 and we have a constrained maximum . At (
√

10,
√

10, 0) and
(−
√

10,−
√

10, 0) we obtain the same bordered Hessian, and its determinant is

detH(±
√

10,±
√

10, 0) = det

 0 −1 1
−1 80 80
1 80 80

 = −320 < 0 , (46)

implying that these points are constrained minima. This makes sense, of course: We precisely get
the two global minima and the local maxima of V (x, y) that are compatible with the constraint
y − x = 0.

3 Constraints Revisited: Lagrange Equations of the First and Sec-
ond Kind

3.1 Lagrangians with Explicit Constraints

One of the motivations for introducing the Lagrangian formalism was to achieve a description of
the dynamics of a mechanical system that automatically incorporates constraints on the motion,
so that we can directly work with the true degrees of freedom. This is certainly advantageous if
we want so determine the solutions for a specific system as efficiently as possible, maybe even with
pen and paper. However, there are good reasons why might want to have the option to treat some
(or all) of the constraints explicitly:
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• We might want to know the constraint forces in order to design a mechanical apparatus that
can withstand the stresses that occur during its motion.

• We might want to implement general-purpose software that is capable of dealing with arbi-
trary user-defined dynamical systems.

In these cases, we can use the Lagrange multiplier technique described above to couple explicit
constraints to the Lagrangian of our system.

The Lagrange formalism with explicit constraint is sometimes referred to as the Lagrange
formalism of the first kind, as opposed to the Lagrange formalism of the second kind,
which uses all constraints to eliminate as many degrees of freedom as possible.

Holonomic Constraints

Any holonomic constraints can be directly coupled to the Lagrangian by defining

L̃(q, q̇, t, λ) = L(q, q̇, t) +

c∑
a=1

λafa(q, t) , (47)

with q = (q1, . . . , qn) and λ = (λ1, . . . , λc). Since the constraint equations are independent of the
generalized velocity, the modified Lagrangian is compatible with d’Alembert’s principle and the
Principle of Least Action. Both approaches will yield the Lagrange equations

d

dt

∂L̃

∂q̇j
− ∂L̃

∂qj
= 0 ⇔ d

dt

∂L

∂q̇j
− ∂L

∂qj
=

c∑
a=1

λa
∂fa
∂qj

, (48)

and
d

dt

∂L̃

∂λ̇a︸︷︷︸
=0

− ∂L̃

∂λa
= 0 ⇔ ∂L̃

∂λa
= fa(~q, t) = 0 . (49)

Effectively, we are treating the Lagrange multipliers as additional generalized coordinates in the
holonomic case. Note that

λa
∂fa
∂qj

= λa

A∑
i=1

∂~ri
∂qj

∂fa
∂~ri

, (50)

where ∂f
∂~ri

is another way of writing ~∇ifa that brings out more clearly that we are dealing with
an application of the chain rule. Here we recognize the constraint forces in the form we discussed
previously, ~FC,a = λa~∇ifa, and how they get projected onto the configuration manifold to yield
the generalized constraint force. We also see that the λ factors we previously introduced are the
Lagrange multipliers we use to couple the constraints to the Lagrangian of our system.

Nonholonomic Constraints

Unfortunately, nonholonomic constraints cannot be simply coupled to the Lagrangian directly. The
treatment of such constraints is a long-standing problem that has led to several false starts and
continuing misconceptions1 — a discussion of the issues can be found, for instance, in a series

1Note that the discussion of nonholonomic constraints in the context of the principle of least action in [1] is
erroneous as well - the specific example turns out to be correct if one foregoes the attempt to include the variational
principle, but instead directly builds the constraint into the Lagrange equations of the first kind, Eqs. (I3.1-1), relying
on d’Alembert’s principle.

8



of papers by M. Flannery [2, 3, 4]. Interest in the development of an efficient treatment for
nonholonomic constraints has been revived in part by modern robotics research, where it could
significantly aid in the construction of a robot’s control software.

In the context of D’Alembert’s principle, nonholonomic constraints produce generalized con-
straint forces that need to be added explicitly to the right-hand side of the Lagrange equations,

d

dt

∂L

∂q̇j
− ∂L

∂qj
=

s∑
b=1

µb
∂gb
∂q̇j

. (51)

To distinguish them from explicit holonomic constraints, we denote the Lagrange multipliers of
such forces by µ instead of λ. If we tried to add

∑
b µbgb(q, q̇) to the Lagrangian, we would obtain

µb

[
d

dt

(
∂gb
∂q̇j

)
− ∂gb
∂qj

]
, (52)

which does not match the correct form in Eq. (51). This inability to couple the nonholonomic
constraints to L(q, q̇, t) also prevent us from defining an action functional that is consistent with
the equations of motion (51).

Box 3.1: Lagrange Equations with Explicit Constraints

The Lagrangre equations of the first kind for r holonomic and s nonholonomic, velocity-
dependent constraints (no inequalities!) are

d

dt

∂L

∂q̇j
− ∂L

∂qj
=

r∑
a=1

λa
∂fa
∂qj

+
s∑
b=1

µb
∂gb
∂q̇j

. (I3.1-1)

3.2 Examples

3.2.1 Spinning a Mass on a String

Consider a mass that is being spun around on a string of length l with a constant angular velocity
ω, parallel to the ground. In polar coordinates, the trajectory of the mass is

~r = r~er , (53)

and therefore
~̇r = ṙ~er + rφ̇~eφ = ṙ~er + rφ̇~eφ . (54)

The kinetic energy is

T =
1

2
m
(
ṙ2 + r2φ̇2

)
. (55)

Since the motion occurs in a plane that is parallel to the ground, the potential is constant, and we
can choose the origin of our coordinate system such that V = 0. The constraints of the motion are

r − l = 0 , φ− ωt = 0 , (56)

so we can define the modified Lagrangian

L̃ =
1

2
m
(
ṙ2 + r2φ̇2

)
+ λr (r − l) + λφ (φ− ωt) . (57)
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The Lagrange equations of the first kind are now given by

d

dt

∂L̃

∂ṙ
− ∂L̃

∂r
= mr̈ −mrφ̇2 − λr = 0 , (58)

d

dt

∂L̃

∂φ̇
− ∂L̃

∂φ
=

d

dt

(
mr2φ̇

)
− λφ = 0 , (59)

− ∂L̃
∂λr

= r − l = 0 , (60)

− ∂L̃

∂λφ
= φ− ωt = 0 . (61)

From the first two equations, we obtain the Lagrange multipliers

λr = mr̈ −mrφ̇2 (62)

and

λφ =
d

dt
mr2φ̇ . (63)

The right-hand side of this equation shows that λφ is the time derivative of an angular momentum,
i.e., a torque. We can now plug in the constraint equations for φ and r, and obtain

λφ =
d

dt
ml2ω = 0 , (64)

i.e., the torque vanishes. This is consistent: ω = const. implies conservation of the angular momen-
tum around the z axis, so there cannot be an external torque acting on the system.

From the Lagrange equation (62) we obtain

λr = mr̈︸︷︷︸
=0

−mlφ̇2 = −mlω2 = const. (65)

We see that λr has the dimensions of a force, and it points in negative r direction, i.e., toward the
hub of the circle — this means that λr is the centripetal force for the circular motion, which is
provided by the string tension in the present case.
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3.2.2 Cylinder Rolling Down an Inclinded Plane

Let us consider a cylinder of mass M and radius R
that is rolling down an inclined plane (see figure).
Its kinetic energy can be written as the sum of
the center-of-mass translation and the cylinder’s
rotation around the symmetry axis through the
center of mass (we will discuss this later in the
course):

T =
1

2
Mṡ2 +

1

2
Iφ̇2 , (66)

where s is the distance the cylinder has rolled
down the plane, φ is the rotation angle, and
I = 1

2MR2.
We now assume that the cylinder is rolling with-
out slipping, which means that

ds = Rdφ . (67)

O
x

y

α

φs

Figure 2: Cylinder rolling without slipping on
an inclined plane.

This is a nonholonomic constraint that connects the generalized velocities,

g(ṡ, φ̇) = ṡ−Rφ̇ = 0 (68)

(the function is labeled g to distinguish it from the gravitational acceleration g). The potential
energy of the cylinder is given by

V = V0 −Mgs sinα , (69)

where α is the inclination angle. (Note that we have not explicitly considered the radius of the
cylinder in the potential energy, which would just cause another constant offset that has no impact
on the dynamics.) Thus, the Lagrangian is given by

L =
1

2
Mṡ2 +

1

4
MR2φ̇2 − V0 +Mgs sinα . (70)

Since the constraint is nonholonomic, we cannot couple it to the Lagrangian but add it to the
Lagrange equation (see Eq. (I3.1-1)):

d

dt

∂L

∂ṡ
− ∂L

∂s
= µ

∂g

∂ṡ
⇒ Ms̈−Mg sinα = µ , (71)

d

dt

∂L

∂φ̇
− ∂L

∂φ
= µ

∂g

∂φ̇
⇒ 1

2
MR2φ̈ = −µR . (72)

From the second equation and the time derivative of the constraint (68), we obtain

µ = −1

2
MRφ̈ = −1

2
Ms̈ . (73)

We plug this into the first equation of motion, which now becomes

Ms̈−Mg sinα = −1

2
Ms̈ , (74)

and rearranging, we have
3

2
s̈− g sinα = 0 ⇒ s̈ =

2

3
g sinα . (75)
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(Note that the acceleration is in growing s direction, i.e., downward along the plane, so the signs
are correct.) Thus, the general solution to the equation of motion is given by

s(t) = s0 + v0t+
1

2
(
2

3
g sinα)t2 = s0 + v0t+

1

3
(g sinα)t2 , (76)

and assuming the cylinder starts rolling from rest at the top of the plane, we have

s(t) =
1

3
(g sinα)t2 . (77)

We conclude the discussion of this example by noting that the nonholonomic constraint discussed
here is actually integrable, i.e., a holonomic constraint in disguise. Since we only have two variables
s and φ, we can integrate the constraint equation Eq. (68),

ds = Rdφ ⇒ s = Rφ+ s0 , (78)

and use it to eliminate the s or φ in favor of the other coordinate. In the next example, we will also
consider rolling without slipping, but we will not be able to integrate the nonholonomic constraint.

3.2.3 Disk Rolling on a Plane

We consider a disk that is rolling without slipping
in a horizontal plane while remaining in an up-
right position, so that the rotational axis remains
parallel to the plane (see figure). As generalized
coordinates, we can choose

• the x and y coordinates of the disk’s cen-
ter of mass, which also correspond to the
support point in the plane,

• the angle θ between the rotational axis and
the y axis, and

• the angle φ characterizing the disk’s rota-
tion around its axis.

10 1 Lagrange Mechanics

Fig. 1.9 Coordinates for the
description of a rolling wheel
on a rough undersurface

The combination of the constraints yields

Px ! R P' cos# D 0 I Py ! R P' sin# D 0

or

dx ! R cos# d' D 0 I dy! R sin# d' D 0 : (1.14)

These conditions are not integrable since the knowledge of the full time-dependence
of # D #.t/ would be necessary which, however, is available not before the full
solution of the problem. Hence the constraint ‘rolling’ does not lead to a reduction
of the number of coordinates. In a certain sense it delimitates microscopically
the degrees of freedom of the wheel, while macroscopically the number remains
unchanged. Empirically we know that the wheel can reach every point of the plane
by proper transposition manoeuvres.

1.2 The d’Alembert’s Principle

1.2.1 Lagrange Equations

According to the considerations of the last section the most urgent objective must be
to eliminate the in general not explicitly known constraint forces out of the equations
of motion. Exactly that is the new aspect of the Lagrange mechanics compared to
the Newtonian version. We start with the introduction of another important concept:

θ
φ

Figure 3: Disk rolling without slipping on a
plane.

The condition for rolling without slipping relates the change of the center of mass’s position to
the change in the angle φ due to the rotation, just like in the previous example:

ds = Rdφ , (79)

or in terms of velocities
ṡ = |~v| = Rφ̇ . (80)

We also constrain ~v to be perpendicular to the rotational axis, which implies

ẋ = ṡ cos θ , (81)

ẏ = ṡ sin θ . (82)

The directional constraints can be combined with the rolling condition to yield

g1(~q, ~̇q) ≡ ẋ−Rφ̇ cos θ = 0 , (83)
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g2(~q, ~̇q) ≡ ẏ −Rφ̇ sin θ = 0 . (84)

The Lagrangian for the disk’s unconstrained motion is the sum of the translational and rota-
tional terms (see discussion of rigid bodies later in the course),

L =
1

2
M(ẋ2 + ẏ2) +

1

2
Iφφ̇

2 +
1

2
Iθθ̇

2 , (85)

where Iφ is the moment of inertia for the rotation around the disk’s horizontal axis, and Iθ the
moment of inertia for rotation around the vertical axis through the disk’s center of mass and support
point in the plane.

Using the Lagrangian (85) and the constraints (83), (84), we obtain the following Lagrange
equations of the first kind:

d

dt

∂L

∂ẋ
− ∂L

∂x
=

2∑
b=1

µb
∂gb
∂ẋ

⇒ Mẍ = µ1 , (86)

d

dt

∂L

∂ẏ
− ∂L

∂y
=

2∑
b=1

µb
∂gb
∂ẏ

⇒ Mÿ = µ2 , (87)

d

dt

∂L

∂φ̇
− ∂L

∂φ
=

2∑
b=1

µb
∂gb

∂φ̇
⇒ Iφφ̈ = −µ1R cos θ − µ2R sin θ , (88)

d

dt

∂L

∂θ̇
− ∂L

∂θ
=

2∑
b=1

µb
∂gb

∂θ̇
⇒ Iθθ̈ = 0 . (89)

Together with Eqs. (83) and (84) we now have six equations for six unknowns. From the equation
of motion for θ, we obtain

θ(t) = ωt+ θ0 = ωt , (90)

where we have assumed the initial condition θ0 = 0 for simplicity.
Next, we differentiate the constraint equations again with respect to time, obtaining

ẍ = Rφ̈ cosωt−Rωφ̇ sinωt , (91)

ÿ = Rφ̈ sinωt+Rωφ̇ cosωt . (92)

These expressions can be used in the equations of motion for x and y to determine the Lagrange
multipliers,

µ1 = MR
(
φ̈ cosωt− ωφ̇ sinωt

)
, (93)

µ2 = MR
(
φ̈ sinωt+ ωφ̇ cosωt

)
, (94)

and plugging these expressions into the equation of motion for φ, we finally obtain

Iφφ̈ = −MR2 cosωt
(
φ̈ cosωt− ωφ̇ sinωt

)
−MR2 sinωt

(
φ̈ sinωt+ ωφ̇ cosωt

)
= −MR2φ̈ (95)

i.e.,
(Iφ +MR2)φ̈ = 0 ⇒ φ̇0 = const. , (96)
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regardless of the moment of inertia of the disk. We still have to integrate the equations of motion
for x, y, which read

ẍ = −Rωφ̇0 sinωt , (97)

ÿ = Rωφ̇0 cosωt . (98)

This means

ẋ = Rφ̇0 cosωt+ ẋ0 , (99)

ẏ = Rφ̇0 sinωt+ ẏ0 , (100)

and integrating once more, we have

x(t) =
R

ω
φ̇0 sinωt+ ẋ0t+ x0 , (101)

y(t) = −R
ω
φ̇0 cosωt+ ẏ0t+ y0 , (102)

We can even determine the constraint forces which ensure that the disk rolls without slipping and
remains upright.

µ1 = −MRωφ̇ sinωt , (103)

µ2 = MRωφ̇ cosωt , (104)

Finally, let us consider that the disk rolls in a straight line, so that ω, the rotation around the
disk’s vertical axis, vanishes. Then

x(t) = ẋ0t+ x0 , (105)

y(t) = ẏ0t+ y0 , (106)

i.e., uniform linear motion of the center-of-mass with fixed velocity, and

µ1 = µ2 = 0 . (107)
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4 Symmetries and Invariances

4.1 Cyclic Coordinates

As we have seen in several applications of the Lagrange formalism, the structure of the Lagrange
equations implies the existence of conserved quantities whenver our system’s Lagrangian depends
on a generalized velocity q̇i but not on the associated qi:

d

dt

∂L

∂q̇
− ∂L

∂qi︸︷︷︸
=0

= 0 ⇒ pi ≡
∂L

∂q̇i
= const. . (108)

We refer to such qi’s as cyclic coordinates. The generalized momentum pi associated with
each cyclic coordinate is conserved, i.e., constant in time. For mechanical systems, such quantities
are also referred to as constants of the motion.

In general, we allow for Lagrangians L(q, q̇, t), but what happens if L does not depend explicitly
on time? Can we find a constant of the motion although there is no explicit Lagrange equation
associated with t? To answer this question, consider

d

dt
L(q, q̇, t) =

n∑
i=1

(
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i

)
+
∂L

∂t

=
n∑
i=1

(
d

dt

(
∂L

∂q̇i

)
q̇i +

∂L

∂q̇i

d

dt
q̇i

)
+
∂L

∂t

=
d

dt

(
n∑
i=1

∂L

∂q̇i
q̇i

)
+
∂L

∂t
, (109)

where we have used the Lagrange equations in the second line. Collecting the total time derivatives
on the left-hand side, we have

d

dt

(
n∑
i=1

(
∂L

∂q̇i
q̇i

)
− L

)
= −∂L

∂t
. (110)

If the Lagrangian does not explicitly depend on time, i.e., ∂L
∂t = 0, we obtain another constant of

motion 2 :

h(q, q̇) =
n∑
i=1

(
∂L

∂q̇i
q̇i

)
− L = const. , (111)

This is sometimes referred to as the Jacobi integral of the system, which will eventually turn into
the Hamiltonian when we make a change from the generalized coordinates and velocities to the
proper variables, as discussed later.

4.2 Noether’s Theorem

The existence of cyclic coordinates is fundamentally related to invariances of the Lagrangian —
and therefore the action — under transformations of the generalized coordinates, and mathemati-
cian Emmy Noether demonstrated how this connection can be leveraged to construct conserved
quantities in the case of continuous symmetries3.

2Note that this is equivalent to the Beltrami identity, which we used in our discussion of the brachistochrone
problem.

3A translated version of the relevant publication is available as Ref. [1, 2], or as an updated preprint in
https://arxiv.org/abs/physics/0503066arXiv:physics/0503066.
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Let us consider a general infinitesimal transformation of the coordinates and time that changes
the Lagrangian of a holonomic system at most by a total time derivative (cf. worksheet #3 and
homework problem H4),

t→ t′ = t+ ετ(q(t), t) , (112)

qi → q′i(t
′) = qi(t) + εηi(q(t), t) , (113)

L(q, q̇, t)→ L(q′(t′), q̇′(t′), t′) = L(q′(t′), q̇′(t′), t′) + ε
d

dt
F (q(t), t) , (114)

where the time derivative of q′ is with respect to t′. Then the action of the system is invariant
under the transformation (112)–(114) , and

J =
∑
i

∂L

∂q̇i
(q̇iτ − ηi)− Lτ + F (115)

is a conserved quantity4. The appearance of conserved quantities associated with the invariances
of the Lagrangian and the action — i.e., the symmetries of the system — is the central statement
of Noether’s theorem, which is of fundamental importance in many domains of physics.

The proof of Noether’s theorem is straightforward. First, we note that

dt′

dt
= 1 + ετ̇ ,

dt

dt′
= (1 + ετ̇)−1 = 1− ετ̇ , (116)

where we have dropped higher order terms in the infinitesimal quantity ε in the second expression.
Then

dq′

dt′
=
dt

dt′
dq′

dt
= (1− ετ̇) (q̇ + εη̇) , (117)

where the time derivatives indicated by dots refer to t. Expanding and dropping terms beyond the
linear order, we have

dq′

dt′
= q̇ + ε(η̇ − q̇τ̇) . (118)

Now we are ready to consider the action. If S is indeed invariant under the transformation
(112)–(114), we must have

∆S =

∫ t′2

t′1

dt′L(q′(t′), q̇′(t′), t′)−
∫ t2

t1

dt

[
L(q(t), q̇(t), t) + ε

dF (q(t), t)

dt

]
!

= 0 . (119)

Expanding the coordinates in the first term, we have

∆S =

∫ t2

t1

dt(1 + ετ̇)L(q + εη, q̇ + ε(η̇ − q̇τ̇), t+ ετ)−
∫ t2

t1

dt

[
L(q(t), q̇(t), t) + ε

dF (q(t), t)

dt

]
=

∫ t2

t1

dt(1 + ετ̇)

[
L(q, q̇, t) +

∑
i

(
∂L

∂qi
εηi +

∂L

∂q̇i
ε(η̇i − q̇iτ̇)

)
+
∂L

∂t
ετ

]

−
∫ t2

t1

dt

[
L(q, q̇, t) + ε

dF

dt

]
4In classical and quantum field theory, the conserved quantity is usually referred to as the Noether current Jµ

(µ = 0, . . . , 3) and the volume integral
∫
d3r J0(~r) defines the Noether charge. This is why we use the symbol J

for the conserved quantity.
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= ε

∫ t2

t1

dt

[∑
i

(
∂L

∂qi
ηi +

∂L

∂q̇i
(η̇i − q̇iτ̇)

)
+
∂L

∂t
τ + Lτ̇ − dF

dt

]

= ε

∫ t2

t1

dt

[∑
i

((
d

dt

∂L

∂q̇i

)
ηi +

∂L

∂q̇i
η̇i

)
−

(∑
i

∂L

∂q̇i
q̇i − L

)
τ̇ +

∂L

∂t
τ − dF

dt

]
, (120)

where we have dropped terms of O(ε2), and used the Lagrange equations in the last step. Now we
note that the first sum is∑

i

((
d

dt

∂L

∂q̇i

)
ηi +

∂L

∂q̇i
η̇i

)
=

d

dt

∑
i

(
∂L

∂q̇i
ηi

)
, (121)

and that we can use the Jacobi integral (111) to rewrite the second and third terms:

−

(∑
i

∂L

∂q̇i
q̇i − L

)
τ̇ +

∂L

∂t
τ = −hτ̇ − dh

dt
τ = − d

dt
(hτ) . (122)

Thus,

∆S = ε

∫ t2

t1

dt
d

dt

[∑
i

(
∂L

∂q̇i
ηi

)
− hτ − F

]
!

= 0 , (123)

and since this must hold for arbitrary ε and paths, we have

d

dt

[∑
i

(
∂L

∂q̇i
ηi

)
− hτ − F

]
= 0 , (124)

i.e.,

J = −
∑
i

(
∂L

∂q̇i
ηi

)
+ hτ + F =

∑
i

∂L

∂q̇i
(q̇iτ − ηi)− Lτ + F = const., (125)

which completes the proof. The sign change is mere convention here — we will see why it is
aesthetically useful below. Let us now use Noether’s theorem to study various invariances.

4.3 Spatial Translations

Consider a Lagrangian that is invariant under a translation of the coordinate system i.e., a change
of coordinates

~ri(t) −→ ~r′i(t) = ~ri(t) + ε~e , (126)

where ε is time independent and ~e is a constant unit vector in R3. For simplicity, we consider an
N -particle system without constraints, but the conclusions are readily generalized to holonomic
systems.

The kinetic energy is obviously invariant under a translation because ~̇ ′ri(t) = ~̇ri, and the
potential energy is invariant if it only depends on the particles’ relative coordinates since

~r′i − ~r′j = ~ri + ε~e− ~rj − ε~e = ~ri − ~rj . (127)

Thus, a translationally invariant Lagrangian can be written as

L(~r, ~̇r) =
1

2

N∑
i=1

mi~̇r
2
i − V (~r1 − ~r2, . . . , ~ri − ~rj , . . .) , (128)
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In the notation introduced above, we have

~ηi = ~e , τ = 0 , F = 0 , (129)

and therefore Noether’s theorem (115) implies that

const. =
N∑
i=1

3∑
k=1

∂L

∂ ˙xik
ηik =

3∑
k=1

N∑
i=1

∂L

∂ẋik︸ ︷︷ ︸
≡Pk

ek = ~P · ~e , (130)

i.e., the component of the total momentum ~P in the direction of ~e is conserved (think of the
block sliding down a wedge discussed on worksheet #3, where we found conservation of the total
momentum in x direction).

If the translational invariance holds for an arbitrary unit vector ~e in R3, we have a spatially
homogenous system in which no single point is preferred. In that case, each component of ~P
must be conserved, and we obtain three constants of motion (see Box 4.2). Thus, we find a deep
connection between the fundamental structure of space and a conservation law — we will come
back to this.

4.4 Spatial Rotations

Next, we consider a Lagrangian that remains invariant under rotations by an angle ε around a
spatially fixed axis ~e. We can express such a rotation in vectorial fashion as

~ri(t) −→ ~r′i(t) = ~ri(t) cos ε+ ~e(~e · ~ri)(1− cos ε) + (~e× ~ri) sin ε . (131)

To see this, we choose a spherical coordinate system such that the z axis is aligned with the
rotational axis, ~e = ~e. The rotation by an angle ε around this axis can then be expressed in matrix
form as

~r(ε) =

cos ε − sin ε 0
sin ε cos ε 0

0 0 1

xy
z

 =

x cos ε− y sin ε
x sin ε+ y cos ε

z

 . (132)

With ~e = ~ez, Eq. (131) becomes

~r(ε) =

x cos ε
y cos ε
z cos ε

+

 0
0

z(1− cos ε)

+

−y sin ε
x sin ε

0

 =

x cos ε− y sin ε
x sin ε+ y cos ε

z

 . (133)

Noting that
ηi = ~e× ~ri(t) , τ = 0 , F = 0 , (134)

Noether’s theorem (115) yields

const. =
N∑
i=1

mi~̇ri · (~e× ~ri) = ~e ·
N∑
i=1

mi(~ri × ~̇ri)︸ ︷︷ ︸
≡~L

= ~e · ~L , (135)

where we have introduced the total angular momentum ~L and used

~a · (~b× ~c) = ~b · (~c× ~a) = ~c · (~a×~b) . (136)
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We see that the total angular momentum along the rotational axis ~e is conserved.
If the Lagrangian is invariant under rotations around an arbitrary axis ~e in R3, no direction is

preferred and we call a system spatially isotropic. An example would be a Lagrangian containing
a potential that only depends on the relative distances |~ri − ~rj | of the particles. In this case all

three components of the total angular momentum ~L are conserved, and we have three constants of
motion (see Box 4.2).

4.5 Galilean Boosts

According to the special principle of relativity, the laws of physics must be the same in any inertial
frame, i.e., any frame moving with a constant velocity with respect to the observer’s frame. In non-
relativistic mechanics, transformations between such coordinate frames are referred to as Galilean
boosts, and they have the form

~r′i(t) = ~ri(t) + ε~u0 t (137)

with a fixed velocity ~u0.
It is easy to see that a potential of the form V (~r1 − ~r2, . . . , ~ri − ~rj , . . .) will be invariant under

Galilean boosts while the kinetic energy will not be invariant under such transformations, because

T (ε = 0) =
N∑
i=1

1

2
mi~̇r

2
i −→ T (ε) =

N∑
i=1

1

2
mi(~̇ri + ε~u0)2 . (138)

However, we can show that the kinetic energy difference between the two frames is a total time
derivative:

L(~r′i, ~̇r
′
i, t)

=
1

2

N∑
i=1

mi(~̇ri + ε~u0)2 − V (~r1 + ε~u0t− ~r2 − ε~u0t, . . . , ~rN−1 + ε~u0t− ~rN − ε~u0t)

=
1

2

N∑
i=1

mi~̇r
2
i +

N∑
i=1

mi

(
ε~̇ri · ~u0 +

1

2
ε2~u2

0

)
− V (~r1 − ~r2, . . . , ~rN−1 − ~rN )

= L(~ri, ~̇ri, t) +
d

dt

(
N∑
i=1

mi

(
ε~u0 · ~ri +

1

2
ε2~u2

0t

))
︸ ︷︷ ︸

≡εF+O(ε2)

. (139)

Thus, we have

~ηi = ~u0 t , τ = 0 , F =
N∑
i=1

mi~u0 · ~ri , (140)

and Eq. (115) implies

N∑
i=1

mi~̇ri · ~u0t−
N∑
i=1

mi~ri · ~u0 = ~u0(~Pt−M ~R) = const. , (141)

where we have introduced the total momentum and the center-of-mass position vector

~R =
1

M

N∑
i=1

mi~ri . (142)
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For arbitray ~u0, we obtain three constants of motion:

~Pt−M ~R = const. (143)

(see Box 4.2). If we write the constant as −M ~R0, we can solve for ~R and find

~R(t) =
1

M
~Pt+ ~R0 , (144)

which is the trajectory of the center of mass undergoing uniform linear motion. If the direction of
~u0 is fixed, we only obtain one constant of motion, and the motion of the center of mass is only
uniform along the direction of ~u0.

4.6 Translations in Time

A system whose properties are invariant under temporal translations

t −→ t+ ε (145)

is called homogenous in time. This means that the results of any measurement are independent
of the specific time at which it is conducted. Applying Noether’s theorem with

ηi = 0 , τ = 1 , F = 0 , (146)

we see that

J = −
∑
i

(
∂L

∂q̇i
ηi

)
+ hτ + F = h = const. , (147)

i.e., the Jacobi integral (111) is conserved. To understand its physical meaning, we need to analyze
the terms ∂L

∂q̇i
q̇i in Eq. (111). For now, we restrict the discussion to systems without velocity-

dependent potentials or dissipation — we will consider such systems later.

Scleronomic Constraints

In a holonomic system with scleronomic constraints, we have ~ri = ~ri(q), which implies

~̇ri =
n∑
j=1

∂~ri
∂qj

q̇j (148)

and

T =
1

2

N∑
i=1

mi~̇ri · ~̇ri =
1

2

n∑
j,k=1

(
N∑
i=1

mi
∂~ri
∂qj
· ∂~ri
∂qk

)
q̇j q̇k ≡

1

2

n∑
j,k=1

Mjkq̇j q̇k . (149)

Here, we have introduced the so-called mass tensor M. The kinetic energy’s partial derivative
with respect to q̇j is given by

∂T

∂q̇j
=

1

2

∑
kl

Mkl
∂

∂q̇j
(q̇kq̇l) =

1

2

∑
kl

Mkl

(
∂q̇k
∂q̇j

q̇l + q̇k
∂q̇l
∂q̇j

)
=

1

2

∑
kl

Mkl (δjkq̇l + δjlq̇k) =
∑
k

Mjkq̇k , (150)
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Box 4.1: Euler’s Homogenous Function Theorem

A homogenous function F (x1, . . . , xn) of degree k has the property

F (λx1, . . . , λxn) = λkF (x1, . . . , xn) , (I4.1-1)

which means that
n∑
i=1

xi
∂F

∂xi
= kF , (I4.1-2)

Thus, for holonomic systems with scleronomic constraints, the kinetic energy is a homogenous
function of degree 2 in the generalized velocities.

where we have used the symmetry of the mass tensor (Mjk = Mkj) and the freedom to rename
summation variables. This means that∑

j

∂T

∂q̇j
q̇j =

∑
jk

Mjkq̇j q̇k = 2T , (151)

and since we only consider velocity-independent potentials, the Jacobi integral becomes

h(q, q̇) =

n∑
j=1

∂L

∂q̇j
q̇j − L =

n∑
j=1

∂T

∂q̇j
q̇j − L = 2T − (T − V ) = T + V . (152)

Thus, invariance with respect to translations in time implies the conservation of energy in
holonomic systems with scleronomic constraints, and the Jacobi integral is the total energy of such
a system (see Box 4.2).

Rheonomic Systems

Let us now consider holonomic systems with rheonomic constraints. In this case, we have ~ri =
~ri(q, t), and

~̇ri =
n∑
j=1

∂~ri
∂qj

q̇j +
∂~ri
∂t

. (153)

The kinetic energy now becomes

T =
1

2

N∑
i=1

mi

(
n∑
k=1

∂~ri
∂qk

q̇k +
∂~ri
∂t

)
·

(
n∑
l=1

∂~r

∂ql
q̇l +

∂~ri
∂t

)
. (154)

Computing the first term in the Jacobi integral, we find

n∑
j=1

∂L

∂q̇j
q̇j =

n∑
j=1

∂T

∂q̇j
q̇j =

N∑
i=1

n∑
j,k=1

mi

(
∂~ri
∂qj

∂q̇k
∂q̇j︸︷︷︸
=δjk

)
·

(
n∑
l=1

∂~ri
∂ql

q̇l +
∂~ri
∂t

)
︸ ︷︷ ︸

=~̇ri

q̇j

=

N∑
i=1

mi

 n∑
j=1

∂~ri
∂qj

q̇j

 · ~̇ri =

N∑
i=1

mi

 n∑
j=1

∂~ri
∂qj

q̇j +
∂~ri
∂t


︸ ︷︷ ︸

=~̇ri

·~̇ri −
N∑
i=1

mi
∂~ri
∂t
· ~̇ri
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= 2T −
N∑
i=1

mi
∂~ri
∂t
· ~̇ri , (155)

and in total

h(q, q̇) =

n∑
j=1

∂L

∂q̇j
q̇j − L = T + V −

N∑
i=1

mi~̇ri ·
∂~ri
∂t

. (156)

Thus, the Jacobi integral does not correspond to the total energy in this case unless the third term
vanishes. This term is the projection of the momentum on the tangent vector ∂~ri

∂t , which results
from the time dependence of the constraint in the rheonomic case (compare Eqs. (148) and (153)).
Thus, if the change of the constraint is orthogonal to the direction of motion, h would still be the
total energy.

Example: Bead on a Rotating Wire

As an example for a rheonomic system, we consider a bead on a rotating wire, as previously
discussed. For simplicity, we choose α = π/2, so that the coordinates are

x = q cosωt , y = q sinωt , z = 0 , (157)

and the Lagrangian becomes

L =
1

2
m
(
ẋ2 + ẏ2

)
=

1

2
m
(
q̇2(cos2 ωt+ sin2 ωt) + q2ω2(sin2 ωt+ cos2 ωt)

)
=

1

2
m
(
q̇2 + ω2q2

)
. (158)

Now
∂L

∂q̇
= mq̇ ,

∂L

∂q
= mqω2 , (159)

and the Lagrange equation yields the equation of motion

q̈ − ω2q = 0 . (160)

The Jacobi integral becomes

h(q, q̇) =
∂L

∂q̇
q̇ − L(q, q̇) =

1

2
m
(
q̇2 − q2ω2

)
, (161)

which is conserved because
dh

dt
= −∂L

∂t
= 0 (162)

(see Eq. (110)). However, it is not the total energy, which we can see by considering the relation
(156). Since V = 0, the total energy is identical to the kinetic energy,

T =
1

2
m
(
q̇2 + ω2q2

)
. (163)

The momentum is

m~̇r = m (q̇ cosωt− qω sinωt, q̇ sinωt+ qω cosωt, 0)T (164)
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Box 4.2: Constants of Motion

For a closed system of N (non-relativistic) particles that only interact through conservative
forces which depend on ~ri − ~rj , Noether’s theorem implies the existence of 10 constants
of motion:

Symmetry Transformation Conserved Quantity

temporal translation t′ = t+ τ h = const. Jacobi integral
h = E = const. total energy (scleronomic systems)

spatial translation ~r′ = ~r + ~a ~P = const. total momentum

rotation ~r′ = R~r ~L = const. total angular momentum

Galilean boost ~r′ = ~r + ~u t M ~R− ~Pt = const.

and the explicit time dependence of the coordinate due to the rheonomic constraint imposed by
the rotating wire yields

∂~r

∂t
= (−qω sinωt, qω cosωt, 0)T , (165)

so we obtain

m~̇r · ∂~r
∂t

= mq2ω2 . (166)

The time derivative of the total energy is given by

dE

dt
=
d(T + V )

dt
=

d

dt

(
1

2
m
(
q̇2 + ω2q2

))
= mq̇

(
q̈ + ω2q

)
, (167)

and plugging in Eq. (160), we obtain

dE

dt
=

d

dt
mω2q2 = 2mω2qq̇ . (168)

This is the change in the energy the motor needs to provide to keep the wire spinning at a constant
angular velocity as the pearl slides to different positions q along the wire.

4.7 Additional Remarks and Summary

• The constants of motion that are associated with the fundamental symmetries of (nonrela-
tivistic) spacetime are summarized in Box 4.2.

• In general, a system with N continuous degrees of freedom will admit at most N indepen-
dent constants of the motion. In the extreme case, all generalized coordinates are either
immediately found to be cyclic, or we can perform a symmetry transformation to new cyclic
coordinates (see problem G11).

• It is important to recognize that the symmetries are conceptually more fundamental than the
constants of motion. Noether’s theorem merely provides us with the machinery to construct
a conserved quantitiy associated with a particular continuous symmetry of the action or the
Lagrangian. It is easy to see that arbitrary linear combinations or even products of the
constants of motion would be conserved in time as well.
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• It is worth stressing that Noether’s theorem applies to continuous symmetries of the La-
grangian and the action. Its proof relies on the continuity and differentiability of the La-
grangian, which we Taylor expand for small changes in the generalized coordinates as well as
time.

• Examples of discrete symmetries for which Noether’s theorem does not apply are

1. the reflection symmetry ~r → −~r (cf. homework problem H8),

2. discrete translational symmetry in a crystal,

~r′ = ~r + n~a , ~̇r′ = ~̇r , V (~r + n~a) = V (~r) , ~a = const., n ∈ Z , (169)

where ~a describes the constant shifts between lattice sites,

3. or the invariance of the pendulum Lagrangian

L =
1

2
ml2θ̇2 −mgl cos θ (170)

under the discrete shift θ → θ + n · 2π , n ∈ Z. Unlike a continuous shift in θ, this
invariance is not associated with angular momentum conservation because

d

dt

∂L

∂θ̇
=
∂L

∂θ
6= 0 (171)

unless g = 0.
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5 Group Exercises

Problem G9 – Lagrange Equations of the First and Second Kind

We consider gravity acting on a particle of mass m that glides without friction on the interior of
the rotational paraboloid

az = x2 + y2 , a = const. (172)

1. Construct the Lagrangian L(ρ, φ, z) in cylindrical coordinates of a particle that is moving
without constraints under the influence of gravity. Determine the Lagrange equations, and
compare them to the equations resulting from Newton’s Second Law in cylindrical coordinates.

2. Implement the constraint that the particle moves on the paraboloid (in cylindrical coordinates)
by adding it to the Lagrangian with a Lagrange multiplier, and derive the Lagrange equations
for the modified Lagrangian L̃(r, φ, z, λ).

3. Determine λ and use it to decouple the equations of motion.

Let us now exploit that the constraint is holonomic, and immediately use the Lagrange formalism
of the second kind.

4. Use the constraint to identify suitable generalized coordinates qi, and construct the Lagrangian
L(q, q̇).

5. Derive the Lagrange equations for the generalized coordinates, and compare them to your
results from step 3.

6. Show that the particle will move with an angular velocity ω =
√

2g/a if we restrict its trajectory
to a circle at fixed height h.

Problem G10 – Noether’s Theorem for an Oscillator

[cf. Lemos, problem 2.30] Consider a harmonic oscillator with mass m and frequency ω.

1. Show that
J(x, ẋ, t) = ẋ cosωt+ ωx sinωt (173)

is a conserved quantity.

2. Prove that this quantity is associated with the invariance of the action under the continuous
transformation

t′ = t , (174)

x′(t′) = x(t)− ε

m
cosωt , (175)

F (t) = ωx sinωt . (176)
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Problem G11 – A System with Two Degrees of Freedom

[cf. Lemos, problem 2.17] The Lagrangian for a system with two degrees of freedom is

L =
1

2
m
(
ẋ2 + ẏ2

)
− (αx+ βy) , (177)

where α, β 6= 0 are constants.

1. Prove that the Lagrangian (and therefore the action) are invariant under the coordinate trans-
formation

x→ x′ = x+ εβ , y → y′ = y − εα . (178)

Using Noether’s theorem, show that the quantity

A = βẋ− αẏ (179)

is conserved.

2. Introduce new generalized coordinates

x̄ = αx+ βy , ȳ = βx− αy (180)

and show that one of the new coordinates is cyclic in the new Lagrangian L(x̄, ȳ, ˙̄x, ˙̄y). Prove
that the quantity A from the previous part of the problem is proportional to the momentum
that is conjugate to the cyclic coordinate.
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