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1 Plan for the Week

• Midterm #1 on Oct 7/8

• Finish discussion of dissipation (cf. worksheet #5).

• A brief discussion of nonstandard Lagrangians.

• Recap and Q&A.

2 Nonstandard Lagrangians

In our applications of variational calculus, we have constructed a Lagrangian and derived equations
of motion that yield the extrema of the associated functional, action or otherwise. The so-called
inverse problem of variational calculus aims to reverse-engineer a Lagrangian that will repro-
duce a given set of known equations of motion (see, e.g., Ref. [1]). You can find several examples
in the textbook exercises.

Example: Dissipative Systems

Using inverse-problem techniques, various authors have constructed nonstandard Lagrangians for
dissipative systems. Here we want to consider projectile motion under a linear drag force (cf. work-
sheet #5), using a combination of a standard Lagrangian and a dissipation force,

L =
1

2
m
(
ẋ2 + ẏ2

)
+mgy , D =

1

2
β
(
ẋ2 + ẏ2

)
, (1)

and the nonstandard Lagrangian

L′ = eβt/m
[

1

2
m
(
ẋ2 + ẏ2

)
+mgy

]
. (2)

For the combination of L and D, we obtain

d

dt

∂L

∂ẋ
− ∂L

∂x
= −∂D

∂ẋ
⇒ mẍ = −βẋ , (3)

d

dt

∂L

∂ẏ
− ∂L

∂y
= −∂D

∂ẏ
⇒ mÿ −mg = −βẏ . (4)
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Starting from the nonstandard Lagrangian, we have

d

dt

∂L′

∂ẋ
− ∂L′

∂x
=

d

dt

(
eβt/mmẋ

)
= eβt/m

β

m
mẋ+ eβt/mmẍ

= eβt/m (mẍ+ βẋ) = 0 , (5)

d

dt

∂L′

∂ẏ
− ∂L′

∂y
=

d

dt

(
eβt/mmẏ

)
− eβt/mmg

= eβt/m (mÿ + βẏ −mg) = 0 , (6)

so we obtain the same equations of motion.
Note that Eq. (5) implies that the canonical momentum

p0x ≡ eβt/mmẋ (7)

is a constant. Clearly, this is not the mechanical momentum, so let us try and interpret it. Rear-
ranging the equation, we obtain the mass’ velocity in x direction,

ẋ =
p0x
m
e−βt/m ≡ v0xe−βt/m , (8)

which is decaying exponentially in time due to the action of the drag force, as expected. Thus, we
see that p0x is nothing but the initial momentum of the mass in x direction. While it is constant,
it merely characterizes the initial conditions of the system, and does not contain useful information
about the state of the system at times t > 0. This is inherently different from the conserved
quantities like the total energy or conserved (angular) momenta, which are characterizing the
system at all times.
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3 Group Exercises

Problem G14 – The Cycloidal Pendulum

An ideal cycloidal pendulum consists of a mass that oscillates under gravity along a frictionless
cycloidal track that is parameterized by the following expressions:

x = R(θ − sin θ) , y = R(1− cos θ) , (9)

where the vertical y-axis points downward.

1. Show that the Lagrangian for this system is given by

L = 2mR2θ̇2 sin2

(
θ

2

)
+mgR(1− cos θ) . (10)

Hint:
cos(α+ β) = cosα cosβ − sinα sinβ

2. Make a point transformation to the new generalized coordinate u = cos
(
θ
2

)
and derive the

Lagrangian in u.

3. Derive the Lagrange equations and show that the period of oscillation is

T = 4π

√
R

g
, (11)

independent of the amplitude. C. Huygens recognized this property of the cycloid in 1659 in
his attempt to come up with an improved design for a pendulum clock.

A Jupyter notebook (w06 cycloidal pendulum.ipynb) that visualizes the oscillations of a cycloidal
pendulum as a function of the amplitude has been posted to the repository and the course website.

Problem G15 – Solving the Dynamics Using Constants of the Motion

[cf. Lemos, problem 2.23] The Lagrangian for a one-dimensional mechanical system is

L =
1

2
ẋ2 − g

x2
, (12)

where g is a constant.

1. Show that the action is invariant under the finite transformations

x′(t′) = eαx(t) , t′ = e2αt , (13)

where α is a constant. Use Noether’s theorem to conclude that

I = xẋ− 2Et (14)

is a constant of the motion, where E is the total energy.
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2. Show that the action is quasi-invariant (i.e., invariant up to the addition of a total time
derivative Ḟ to the Lagrangian) under the infinitesimal transformation

x′(t′) = x(t)− εtx(t) , t′ = t+ εt2 . (15)

Use the equation of motion to prove that

F =
1

2
x2 − 2txẋ , (16)

and conclude that

K = Et2 − txẋ+
1

2
x2 (17)

is a constant of the motion.

3. Combine your previous results to find the solution x(t) by purely algebraic means (i.e., without
solving differential or integral equations).
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