H. Hergert

Facility for Rare Isotope Beams and Department of Physics \& Astronomy

PHY422/820: Classical Mechanics

FS 2021
Worksheet \#6 (Oct 4 - Oct 8)

1 Plan for the Week

- Midterm \#1 on Oct 7/8
- Finish discussion of dissipation (cf. worksheet \#5).
- A brief discussion of nonstandard Lagrangians.
- Recap and Q\&A.

2 Nonstandard Lagrangians

In our applications of variational calculus, we have constructed a Lagrangian and derived equations of motion that yield the extrema of the associated functional, action or otherwise. The so-called inverse problem of variational calculus aims to reverse-engineer a Lagrangian that will reproduce a given set of known equations of motion (see, e.g., Ref. [1]). You can find several examples in the textbook exercises.

Example: Dissipative Systems

Using inverse-problem techniques, various authors have constructed nonstandard Lagrangians for dissipative systems. Here we want to consider projectile motion under a linear drag force (cf. worksheet \#5), using a combination of a standard Lagrangian and a dissipation force,

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+m g y, \quad D=\frac{1}{2} \beta\left(\dot{x}^{2}+\dot{y}^{2}\right), \tag{1}
\end{equation*}
$$

and the nonstandard Lagrangian

$$
\begin{equation*}
L^{\prime}=e^{\beta t / m}\left[\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+m g y\right] . \tag{2}
\end{equation*}
$$

For the combination of L and D, we obtain

$$
\begin{array}{lll}
\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}=-\frac{\partial D}{\partial \dot{x}} & \Rightarrow \quad m \ddot{x}=-\beta \dot{x} \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{y}}-\frac{\partial L}{\partial y}=-\frac{\partial D}{\partial \dot{y}} \quad & \Rightarrow \quad m \ddot{y}-m g=-\beta \dot{y} \tag{4}
\end{array}
$$

Starting from the nonstandard Lagrangian, we have

$$
\begin{align*}
\frac{d}{d t} \frac{\partial L^{\prime}}{\partial \dot{x}}-\frac{\partial L^{\prime}}{\partial x} & =\frac{d}{d t}\left(e^{\beta t / m} m \dot{x}\right)=e^{\beta t / m} \frac{\beta}{m} m \dot{x}+e^{\beta t / m} m \ddot{x} \\
& =e^{\beta t / m}(m \ddot{x}+\beta \dot{x})=0, \tag{5}\\
\frac{d}{d t} \frac{\partial L^{\prime}}{\partial \dot{y}}-\frac{\partial L^{\prime}}{\partial y} & =\frac{d}{d t}\left(e^{\beta t / m} m \dot{y}\right)-e^{\beta t / m} m g \\
& =e^{\beta t / m}(m \ddot{y}+\beta \dot{y}-m g)=0, \tag{6}
\end{align*}
$$

so we obtain the same equations of motion.
Note that Eq. (5) implies that the canonical momentum

$$
\begin{equation*}
p_{0 x} \equiv e^{\beta t / m} m \dot{x} \tag{7}
\end{equation*}
$$

is a constant. Clearly, this is not the mechanical momentum, so let us try and interpret it. Rearranging the equation, we obtain the mass' velocity in x direction,

$$
\begin{equation*}
\dot{x}=\frac{p_{0 x}}{m} e^{-\beta t / m} \equiv v_{0 x} e^{-\beta t / m}, \tag{8}
\end{equation*}
$$

which is decaying exponentially in time due to the action of the drag force, as expected. Thus, we see that $p_{0 x}$ is nothing but the initial momentum of the mass in x direction. While it is constant, it merely characterizes the initial conditions of the system, and does not contain useful information about the state of the system at times $t>0$. This is inherently different from the conserved quantities like the total energy or conserved (angular) momenta, which are characterizing the system at all times.

References

[1] J. Douglas, Trans. Amer. Math. Soc. 50, 71 (1941).

3 Group Exercises

Problem G14 - The Cycloidal Pendulum

An ideal cycloidal pendulum consists of a mass that oscillates under gravity along a frictionless cycloidal track that is parameterized by the following expressions:

$$
\begin{equation*}
x=R(\theta-\sin \theta), \quad y=R(1-\cos \theta), \tag{9}
\end{equation*}
$$

where the vertical y-axis points downward.

1. Show that the Lagrangian for this system is given by

$$
\begin{equation*}
L=2 m R^{2} \dot{\theta}^{2} \sin ^{2}\left(\frac{\theta}{2}\right)+m g R(1-\cos \theta) . \tag{10}
\end{equation*}
$$

Hint:

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

2. Make a point transformation to the new generalized coordinate $u=\cos \left(\frac{\theta}{2}\right)$ and derive the Lagrangian in u.
3. Derive the Lagrange equations and show that the period of oscillation is

$$
\begin{equation*}
\mathcal{T}=4 \pi \sqrt{\frac{R}{g}} \tag{11}
\end{equation*}
$$

independent of the amplitude. C. Huygens recognized this property of the cycloid in 1659 in his attempt to come up with an improved design for a pendulum clock.

A Jupyter notebook (w06_cycloidal_pendulum.ipynb) that visualizes the oscillations of a cycloidal pendulum as a function of the amplitude has been posted to the repository and the course website.

Problem G15 - Solving the Dynamics Using Constants of the Motion

[cf. Lemos, problem 2.23] The Lagrangian for a one-dimensional mechanical system is

$$
\begin{equation*}
L=\frac{1}{2} \dot{x}^{2}-\frac{g}{x^{2}}, \tag{12}
\end{equation*}
$$

where g is a constant.

1. Show that the action is invariant under the finite transformations

$$
\begin{equation*}
x^{\prime}\left(t^{\prime}\right)=e^{\alpha} x(t), \quad t^{\prime}=e^{2 \alpha} t \tag{13}
\end{equation*}
$$

where α is a constant. Use Noether's theorem to conclude that

$$
\begin{equation*}
I=x \dot{x}-2 E t \tag{14}
\end{equation*}
$$

is a constant of the motion, where E is the total energy.
2. Show that the action is quasi-invariant (i.e., invariant up to the addition of a total time derivative \dot{F} to the Lagrangian) under the infinitesimal transformation

$$
\begin{equation*}
x^{\prime}\left(t^{\prime}\right)=x(t)-\epsilon t x(t), \quad t^{\prime}=t+\epsilon t^{2} . \tag{15}
\end{equation*}
$$

Use the equation of motion to prove that

$$
\begin{equation*}
F=\frac{1}{2} x^{2}-2 t x \dot{x} \tag{16}
\end{equation*}
$$

and conclude that

$$
\begin{equation*}
K=E t^{2}-t x \dot{x}+\frac{1}{2} x^{2} \tag{17}
\end{equation*}
$$

is a constant of the motion.
3. Combine your previous results to find the solution $x(t)$ by purely algebraic means (i.e., without solving differential or integral equations).

