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1 Preparation

• Goldstein, Sections 3.7–3.11

2 The Kepler Problem

2.1 Determination of the Trajectories

Let us consider a central potential of the form

V (r) = −k
r

(1)

with a (not necessarily positive) constant k. The effective potential is given by

Veff(r) =
l2

2mr2
− k

r
(2)

and we can perform the general classification of orbits based on its properties. In fact, we used the
attractive case k > 0 as the primary example on worksheet #7, so we can refer to these results.
In the repulsive case k < 0, we will obviously not have any bound orbits, but only scattering
trajectories.

Circular Trajectory, Minimal Energy and Turning Points

For further use, we determine the circular trajectories and turning points, if they exist. From

V ′eff(r) = − l2

mr3
+
k

r2

!
= 0 , (3)

we find
k

R2
=

l2

mR3
⇒ R =

l2

mk
. (4)

Since radii must always be positive, we only find a physical solution in the attractive case k > 0; no
circular trajectories are possible if the potential is repulsive. The energy of the circular trajectory
is given by

Emin = Veff(R) =
l2

2mR2
− k

R
=
l2m2k2

2ml4
− mk2

l2
= −mk

2

2l2
, (5)
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and since Veff(r) → 0 for r → ∞, we see that we will have bound orbits for Emin ≤ E < 0. For
non-circular bound orbits, the turning points can be determined by solving

E = Veff(r) ⇒ Er2 + kr − l2

2m
= 0 . (6)

We find

r∓ =
−k ±

√
k2 + 2El2

m

2E
= − k

2E

(
1∓

√
1 +

2El2

mk2

)
=

k

2|E|

(
1∓

√
1− 2|E|l2

mk2

)
, (7)

where we have made the signs more explicit in the final step. Here, r− and r+ are the minimal
and maximal distances from the center of the potential, respectively. If we plug in E = Emin from
above, we see that the discriminant vanishes, and we obtain r+ = r− = R.

General Solution

As discussed previously, the general trajectory for an object of mass m in a central potential can
be obtained from

φ− φ0 = ± l√
2m

∫
dr

1

r2
√
E − Veff(r)

, (8)

where any integration constants from the right-hand side have been absorbed into φ0. Let us now
plug in Veff(r):

φ− φ0 = ± l√
2m

∫
dr

1

r2
√
E − l2

2mr2
+ k

r

, (9)

To solve this integral, we make the substitution

u =
1

r
, du = − 1

r2
dr , dr = − 1

u2
du , (10)

which brings the integral to the form

φ− φ0 = ∓
∫
du

1√
2mE
l2

+ 2mk
l2
u− u2

. (11)

We can use ∫
du

1√
a+ bu− u2

= − arccos
2u− b√
4a+ b2

+ c , if 4a+ b2 > 0 . (12)

Identifying the constants, the condition 4a+ b2 > 0 turns into

8mE

l2
+

4m2k2

l4
> 0 ⇒ E > −mk

2

2l2
= Emin , (13)

which is clearly satisfied. Carrying out the integration, we have

φ− φ0 = ± arccos
2u− 2mk

l2√
8mE
l2

+ 4m2k2

l4

= ± arccos
2u− 2mk

l2

2mk
l2

√
2El2

mk2
+ 1

= ± arccos
l2

mku− 1√
1 + 2El2

mk2

. (14)
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Kapitel3

98 3 Systeme von Punktmassen

ε = 0 0 < ε < 1 ε = 1 ε > 1

Abb. 3.7 Veranschaulichung der Kegelschnitte. Von links nach rechts: Kreis (" D 0), Ellipse (0 < " < 1), Parabel (" D 1) und Hyperbel (" > 1)
lassen sich durch geeignete Schnitte eines Doppelkegels mit einer Ebene konstruieren. Der Neigungswinkel der Ebene nimmt von links nach rechts
zu. Für einen Kreis ist die Ebene senkrecht zur Symmetrieachse des Kegels. Im Falle einer Parabel ist der Neigungswinkel der Ebene identisch
zum Öffnungswinkel des Kegels. Nur für größere Winkel können beide Kegel gleichzeitig geschnitten werden, was auf eine Hyperbel führt

Wegen der Konstanz von p entspricht dies offensichtlich ei-
ner Kreisbahn. In diesem Fall ist die Energie (siehe (3.76) und
(3.77))

E D !!˛
2

2L2
D ! ˛

2p
: (3.82)

Im weiteren Verlauf dieses Abschnitts beschränken wir uns auf
Potenziale mit ˛ > 0.

Da sich das effektive Potenzial für r ! 1 wie U.r/ ! 0 ver-
hält, können Bahnen nur gebunden sein, wenn E < 0 gilt. Dies
entspricht der Bedingung " < 1, wie aus (3.76) zu erkennen ist.
Dies sieht man ebenfalls an der Form der Bahnkurve in (3.80):
Für " < 1 ist der Nenner stets positiv und r.'/ damit endlich.

Wir werden nun zeigen, dass der Fall " < 1 tatsächlich eine el-
lipsenförmige Bahn beschreibt. Eine Ellipse ist die Menge aller
Punkte in einer Ebene, die rC r0 D 2a D const erfüllen, wobei
r und r0 die Abstände zu den beiden sogenannten Brennpunkten
sind (Abb. 3.8). Die Größe a ist die große Halbachse der Ellip-
se. Die kleine Halbachse ist b D

p
a2 ! f 2, wobei f der Abstand

eines Brennpunktes zum Mittelpunkt ist. Die Brennweite f wird
auch häufig als lineare Exzentrizität e bezeichnet.

Man definiert die numerische Exzentrizität einer Ellipse als

" WD f
a
D

p
a2 ! b2

a
D

s

1 ! b2

a2

H) b
a
D

p
1 ! "2:

(3.83)

Die Exzentrizität ist ein Maß für die Abweichung von der Kreis-
form und auf das Intervall Œ0; 1/ beschränkt. Im Grenzfall " D 0
findet man wieder einen Kreis. Ein Kreis ist daher eine spezielle

p

x2

x1

f

2f

2a

2b

rr′

B1B2 M

ϕ

Abb. 3.8 Zur Definition einer Ellipse. Jeder Punkt auf einer Ellipse hat
von den beiden Brennpunkten B1 und B2 den gleichen Gesamtabstand
(jrj C jr0j). Der Abstand eines Brennpunktes vom Mittelpunkt M ist f ,
die große und kleine Halbachse sind a und b. In diesem Fall ist das
Koordinatensystem so gewählt, dass die Brennpunkte auf der x1-Achse
liegen und B1 den Ursprung bildet

Ellipse. Definiert man f Oe1 als den Vektor, der vom Mittelpunkt
der Ellipse zum Brennpunkt B1 zeigt, so gilt

r ! r0 D !2f Oe1 H) r02 D r2 C 4f 2 C 4fr cos': (3.84)

ε = 0 0 < ε < 1 ε = 1 ε > 1

Figure 1: Trajectories of the Kepler problem corresponding to conic sections. We chose φ0 = 0 in
Eq. (18).

Taking the cosine on both sides and using that its symmetry means that the overall sign of the
right-hand side does not matter, we obtain

cos (φ− φ0) =
l2

mku− 1√
1 + 2El2

mk2

. (15)

Introducing

λ ≡ l2

mk
, ε ≡

√
1 +

2El2

mk2
, (16)

and reverting back to our original variable r, we have

cos (φ− φ0) =
λ
r − 1

ε
, (17)

and therefore (cf. homework problem H11):

r(φ) =
λ

1 + ε cos (φ− φ0)
. (18)

The trajectories (18) are so-called conic sections, because they can be obtained by considering
the intersections of a cone with a plane, as shown in Fig. 1:

• For ε = 0, the intersecting plane is parallel to the top or bottom of the cone, hence the
intersection curve of the plane with the cone’s mantle is a circle.

• For 0 < ε < 1, the intersection occurs at an angle and yields an ellipse.

• For ε = 1, the angle at which the plane intersects with the cone is equal to the opening angle
of the cone, and the intersecution curve is a parabola.

• Last but not least, ε > 1 yields an hyperbola, with the two distinct branches corresponding
to the solution for an attractive or repulsive potential (see below.)
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Figure 2: Trajectories for the force field f(r) = − k
r2

for different values of ε.

In Fig. 2, we show the different classes of trajectories in a coordinate system whose center is in
the focus of the curve. We have chosen φ0 = 0 so that φ = 0 is the axis through the origin and
the so-called pericenter or periapsis, which is the point of the objects closest approach to the
center of the potential. Other choices merely correspond to a rotation of the coordinate system
around the axis defined by the conserved angular momentum (usually chosen to be the z axis of
the coordinate system).

Let us consider the geometry of the elliptical orbit, shown in Fig. 3, in a bit more detail. We
can relate its characteristic lengths to the turning points of the motion (Eq. (7) as well as the
parameters λ and ε we introduced above (see Eq. (16)):

• The axis through the points of smallest and greatest distance from the center is aligned with
the large major axis of the ellipse. We clearly have

2a = r+ + r− , (19)

where a is the semi-major axis of the ellipse. Plugging in our expressions for the turning
points, we have

a =
1

2
(r+ + r−) = − k

2E
=

k

2|E|
(20)

since E < 0 for bound orbits.

• The points of smallest and largest distance are the aforementioned periapsis and the apoap-
sis of the orbit, respectively1, for which we will also use the notation

rp = r− , ra = r+ . (21)

1From Greek apsis, pl. apsides, meaning “orbit”, and the prefixes peri- and ap(o)- meaning “near” and “far”.
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Figure 3: Definition of lengths in an ellipse.

For Earth orbits, one specifically uses the terms perigee and apogee, and similar terminology
is used for the other planets of the solar system, albeit less frequently. For orbits around the
Sun, we refer to the perihelion and aphelion, and for other solar systems to periastron
and apastron.

• ε is the eccentricity2 of the ellipse. Geometrically,

ε =

√
1− b2

a2
. (22)

It parameterizes the deviation of the ellipse from a circle, which is obtained in the limit
a = b = R, meaning ε = 0. For proper ellipses b < a and we have 0 < ε < 1.

The length εa is the linear eccentricity. We see that

ε2a2 = a2 − b2 , (23)

and using Eqs. (16) and (22), we see that the semi-minor axis is

b2 = a2(1− ε2) =
k2

4E2

(
− 2El

mk2

)
=

l2

2|E|m
= aλ . (24)

• λ is the so-called semi-latus rectum of the ellipse, which intersects with the major axis in
the focus and forms a right-angled triangle with the periapsis. It can be expressed in terms
of the semi-major and semi-minor axes as

λ =
b2

a
= a(1− ε2) = − k

2E

(
−2El2

mk2

)
=

l2

mk2
. (25)

which is consistent with Eqs. (24) and (16).

Looking over the discussion, we see that the shape of the ellipse is completely determined by
the parameters of the particle and the potential, i.e., m and k, as well as the conserved quantities
E and l.

2From Greek ekkentros, meaning out of center, adopted in Latin as “eccentricus”.
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2.2 Kepler’s Laws

Using the general solution for bound trajectories, we can readily obtain Kepler’s laws, which we
state in a more general fashion:

1. The orbit of an object is a circle or an ellipse with the center of the gravitational potential at
one of the foci.

This is immediately clear form Eq. (18) for 0 ≤ ε < 1. For a gravitational two-body problem,
we simply replace m by the reduced mass µ in all relevant quantities, and consider the center-
of-mass of the two-body system as the origin of the gravitational potential.

2. A line segment joining the orbiting object to the center of the gravitational potential sweeps
out equal areas during equal intervals of time.

Mathematically, we can express this law as

dA

dt
=

l

2m
= const. , (26)

which immediately reveals it to be a direct result of angular momentum conservation (see
group exercise G16).

3. The square of the orbiting object’s orbital period — defined as the time between successive
passings of the periapsis — is proportional to the cube of the length of the semi-major axis of
its orbit.

Rearranging Eq. (26), we have

dt =
2m

l
dA . (27)

Over a full period T , the line segment from the origin to the object’s position sweeps out
an ellipse of area A = πab. Using the relations between the principal axes and the physical
quantities we found in the previous section, we obtain

T =
2m

l
πab =

2m

l
πa
√
aλ =

2m

l
π

√
a3l2

mk
= 2π

√
a3m

k
, (28)

or when squared

T 2 =
4π2m

k
a3 . (29)

2.3 The Laplace-Runge-Lenz Vector

2.3.1 General Considerations

As we have seen in exercise G18, the Laplace-Runge-Lenz vector

~A =
~p×~l
mk

− ~er (30)

is also a constant of the motion for the Kepler problem. Together with E and ~l, it can be used to
determine the trajectories (18) without integrating the equation of motion, simply by evaluating
the scalar products ~l · ~A and ~r · ~A (cf. worksheet #7). From this calculation, we obtain

r(φ) =
l2/mk

1 + | ~A| cosφ
, (31)
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~er 1
mk
~p×~l

~A

Figure 4: The Laplace-Runge-Lenz vector ~A. The color coding of the various vectors is the same
in each point of the ellipse and hyperbola, respectively.

which shows that the magnitude of ~A is identical to the eccentricity ε in Eq. (18). Comparing
Eqs. (18) and (31), we see that the angle φ between ~r and ~A is identical to the angle between the
axis through the focal points and the periapsis. As we can see in Fig. 4, ~A is always parallel to
this axis, and it points in the general direction of the periapsis. This is true for all types of Kepler
trajectory with the exception of the circle, for which ε = | ~A| = 0.

For any object in a three-dimensional conservative potential, we can find six constants of the
motion, which are related to the components of the intitial position and velocity vectors. Since the
total energy E and three components each of ~l and ~A would yield seven constants of the motion,
these quantities must be related in some way. Indeed, we have

~A2 = ε2 = 1 +
2El2

mk2
, (32)

and the aforementioned orthogonality of ~l and ~A,

~l · ~A = 0 , (33)

which provide two conditions that reduce the number of constants of the motion to five. The
additional sixth constant must involve the time, since the quantities discussed here are purely
geometrical; a natural candidate is the orbital period T (Eq. (28)).

2.3.2 Derivation from Noether’s Theorem

It is possible to derive the Laplace-Runge-Lenz vector using Noether’s theorem [1], although the
necessary symmetry transformation is not intuitive unless one delves into more advanced topics
of Hamiltonian mechanics that are beyond the scope of this course. Let us choose Cartesian
coordinates, and consider the following transformation:

xi → x′i = xi +
1

2
ε (2pixs − xips − δis(~r · ~p)) , (34)
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where s = 1, 2, 3 is arbitrary, but fixed throughout the calculation. Expressing x′i in terms of the
velocities and taking its time derivative, we have

x′i = xi +
1

2
mε
(

2ẋixs − xiẋs − δis(~r · ~̇r)
)
, (35)

ẋ′i = ẋi +
1

2
mε
(

2ẍixs + 2ẋiẋs − ẋiẋs − xiẍs − δis(~̇r · ~̇r + ~r · ~̈r)
)
. (36)

Next, we derive the equations of motion of the Kepler problem. In Cartesian coordinates, we can
write the Lagrangian as

L =
1

2
m~̇r2 +

k

r
, r = |~r| =

√∑
j

x2
j . (37)

The partial derivatives are

∂L

∂xi
= − k

2r3
· 2
∑
j

δijxj = − k

r3
xi ,

∂L

∂ẋi
= mẋi ,

(38)

hence

ẍi = − k

mr3
xi . (39)

Using the equations of motion, we can eliminate ẍi in Eq. (36):

ẋ′i = ẋi +
1

2
mε

(
− 2k

mr3
xixs + ẋiẋs +

k

mr3
xixs − δis~̇r2 + δis

κ

mr3
~r2

)
= ẋi +

1

2
mε

(
− k

mr3
xixs + ẋiẋs − δis~̇r2 + δis

k

mr

)
. (40)

Let us now show that the transformation xi → xi + δxi leaves L invariant up to a total time
derivative, which means that the equations of motion are preserved. For the kinetic energy, we
have

∑
i

ẋ′iẋ
′
i =

∑
i

ẋiẋi + 2 · 1

2
mε

(
− k

mr3

∑
i

ẋixixs +
∑
i

ẋiẋiẋs − ẋs
∑
i

ẋiẋi + ẋs
k

mr

)
+O

(
ε2
)

= ~̇r2 +mε

(
− k

mr3
(~̇r · ~r)xs + ẋs

k

mr

)
+O

(
ε2
)
. (41)

The potential energy requires an additional expansion:

1

r′
=

1√∑
i x
′
ix
′
i

=
1√∑
i xixi

(
1 +mε

2
∑

i xiẋixs −
∑

i xixiẋs − xs
∑

i xiẋi∑
i xixi

)−1/2

=
1

r

(
1− 1

2
mε

(~r · ~̇r)xs − ~r2ẋs
r2

+O
(
ε2
))

. (42)

Putting everything together and dropping higher-order terms in ε, we have

L′ =
1

2
m
∑
i

ẋ′iẋ
′
i +

k

r′
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=
1

2
m
∑
i

ẋiẋi +
1

2
m2ε

(
− k

mr3

∑
i

ẋixixs + ẋs
k

mr

)
+
k

r
− 1

2
mε

(
k

r3
xj ẋjxs −

k

r
ẋs

)
+O(ε2)

= L+ ε

(
−mk
r3

(~r · ~̇r)xs +
mk

r
ẋs

)
. (43)

Defining

F (~r) ≡ mkxs
r
, (44)

we see that

dF

dt
= mk

(
d

dt

1

r

)
xs +mk

ẋs
r

= mk

(
− 1

r2

∑
i

∂r

∂xi
ẋixs +

ẋs
r

)

= mk

(
− 1

r2

~r · ~̇r
r
xs +

ẋs
r

)
, (45)

which allows us to write

L′ = L+ ε
dF

dt
= L+ ε

d

dt

(
mk

xs
r

)
. (46)

Identifying

ηi ≡
1

2
m
(

2ẋixs − xiẋs − δis(~r · ~̇r)
)
, τ = 0 , (47)

we can apply Noether’s theorem:

Js = −
∑
i

∂L

∂ẋi
· ηi + F

= −1

2
m2
(

2~̇r2xs − (~̇r · ~r)ẋs − ẋs(~r · ~̇r)
)

+mk
xs
r

= −
(
~p2xs − (~p · ~r)ps

)
+mk

xs
r

= const. (48)

Now we can use [
~a× (~b× ~c))

]
s

= bs(~a · ~c)− cs(~a ·~b) (49)

with ~a = ~c = ~p und ~b = ~x:

xs~p
2 − (~r · ~p)ps = [~p× (~r × ~p))]s =

[
~p×~l

]
s
. (50)

Thus,

As ≡ −Js =
[
~p×~l

]
s
−mkxs

r
= const. (51)

and since s was arbitrary, all three components of the Laplace-Runge-Lenz vector are conserved
separately:

~A =
~p×~l
mk

− ~r

r
= const. (52)

The deeper origin of this conservation law is the invariance of the Kepler trajectories under
certain types of rotations in a four-dimensional space [Add some good refs.]. The group of such
transformation is the so-called special orthogonal group in four dimensions, or SO(4) for short.
In quantum mechanics, this additional SO(4) symmetry is the reason why the energies of the
hydrogen atom are independent of the electron’s orbital angular momentum quantum number,

En = −13.6 eV

n2
. (53)
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Figure 5: Scattering off an attractive central potential.

References
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3 Scattering

3.1 General Considerations

After our extensive discussion of bounded trajectories in central potentials, we now consider scat-
tering processes. Figures 5 and 6 show typical scenarios for a particle of mass m scattering off
attractive and repulsive potentials V (r), respectively. As in the bound-state case, the following
discussion carries over to the scattering of two particles by a pairwise interaction V (|~r1−~r2|) in the
effective one-body frame if we simply replace m → µ in our expressions and interpret the angular
momentum and energy as those of the relative motion (see worksheet #7 and Sec. 3.7).

We choose the potential center to be the origin of our coordinate system. The particle’s initial
velocity vector ~v∞ defines a preferred direction, breaking the rotational symmetry of the potential
to a mere symmetry for rotations around the axis through the origin that is parallel to ~v∞.

Assuming that the potentials vanish for r → ∞, the momentum and energy of the incoming
particle are

~p = m~v∞ , E =
1

2
mv2
∞ . (54)

Its position vector ~r in the chosen coordinate system can be decomposed into components that are
parallel and orthogonal to the axis we defined above:

~r = r‖~e‖ + b~e⊥ , r =
√
r2
‖ + b2 . (55)

This implies that the angular momentum is given by

~l = ~r × ~p = m
(
r‖~e‖ + b~e⊥

)
× v∞~e‖ = mv∞b

(
~e‖ × ~e⊥

)
(56)

which is a vector pointing out of the shown scattering plane. Since we are dealing with a central
potential ~l is conserved. Furthermore, we note that it only depends on the initial velocity and the
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Figure 6: Scattering off a repulsive central potential.

so-called impact parameter b, the distance between the particle trajectory and the axis through
the scattering center. For future use, we note that

l = mv∞b =
√

2mEb . (57)

Let us now assume that the scattering process is elastic, so that the (mechanical) energy is
going to be conserved at all times. Then the scattered object will move from infinity to a distance
of closest approach, i.e., the pericenter rp, and back to infinity. This point can be found by solving

E = Veff(rp) =
l2

2mr2
p

+ V (rp) =
Eb2

r2
p

+ V (rp) (58)

i.e.,

1− b2

r2
p

− V (rp)

E
= 0 . (59)

Energy conservation also implies that the scattering trajectories will be symmetric with respect to
rp, and that the asymptotes to the incoming and outgoing trajectories form the same angle ∆φ
with an axis through the pericenter and the origin. This is illustrated in Figs. 6 and 5.

The angle ∆φ can be determined from the integral equation for general trajectories in a central
potential, Eq. (8). Rewriting the equation in terms of the impact parameter, we have

∆φ =
l√
2m

∫ ∞
rp

dr
1

r2
√
E − l2

2mR2 − V (r)
=
√
Eb

∫ ∞
rp

dr
1

r2
√
E − Eb2

r2
− V (r)

=

∫ ∞
rp

dr
b

r2

1√
1− b2

r2
− V (r)

E

. (60)

Referring to the figures again, we can define the scattering angle θ, which measures the scattered
object’s deflection from its original trajectory, as

θ = π − 2∆φ . (61)

Using ∆φ from above, we have

11
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θ

Figure 7: Differential cross section for a repulsive potential.

θ(b) = π − 2

∫ ∞
rp

dr
b

r2

1√
1− b2

r2
− V (r)

E

. (62)

At this point, a word of caution is in order: In defining θ in Eq.(61), we treated all angles as
positive, but when we compute integrals like (60) the direction of the trajectories and the angles
may matter. For instance, we compute the integral from rp to infinity for the outgoing branch of
the trajectory. This would mean that ∆φ increases clockwise instead of counterclockwise, which
implies that it is negative under typical conventions. We may have to judiciously apply absolute
values when we work with Eqs. (60)–(62).

3.2 The Differential Cross Section

While the scattering of a single incident particle off a given potential can be described by computing
its trajectory and the associated scattering angle using Eq. (62), such scenarios tend to be the
exception rather than the rule. In the more common cases, we might only know the impact
parameter b with some uncertainty db, or we might be studying the scattering of a beam of a large
number of incident particles, as in a nuclear or particle physics experiment.

Consider the setup shown in Fig. 7. An incident particle with an impact parameter between b
and b+ db will emerge from the ring of area

dσ = 2πbdb , (63)

and it will be scattered by the potential into a segment of the solid angle

dΩ = 2π sin θdθ . (64)

Inspecting Fig. 7 more closely, we note that the scattering trajectories for incoming particles from
the inner and outer boundaries of the intersect. The reason is that physical scattering potentials
get weaker with growing distance, which implies that particles with small impact parameter b
experience a greater deflection than particles that approach with large b. Thus, we have
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db ∼ −dθ ⇒ db

dθ
< 0 , (65)

which must be taken into account when we compare the areas dσ and dΩ. Taking the ratio of the
two quantities, we obtain the differential cross section

dσ

dΩ
= − b

sin θ

db

dθ
=

b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ , (66)

where we have inserted the explicit negative sign or the absolute values to ensure that the differential
cross section is always positive (since it is a ratio of infinitesimal areas). It is hardly surprising that
the total cross section can be found by integrating Eq. (66) over the full solid angle,

σ =

∮
∂S
dΩ

∂σ

∂Ω
=

∫ 2π

0
dφ

∫ π

0
dθ sin θ

dσ

dΩ
. (67)

3.3 Gravitational Scattering

Let us now apply the scattering formalism developed in the previous sections to the gravitational
scattering of a mass m, i.e., the scattering off the attractive potential

V (r) = −k
r
, k > 0 (68)

(see Figs. 5 and 8). We plug the potential into Eq. (62), which takes the form

θ(b) = π − 2∆φ = π − 2

∫ ∞
rp

dr
b

r2

1√
1− b2

r2
+ k

rE

. (69)

Since we already solved this integral in our discussion of the Kepler trajectories, we can immediately
use the general solution (18) to obtain

∆φ = arccos
λ− r
εr

∣∣∣∣∞
rp

= arccos
−1

ε
− arccos

λ− rp
εrp

. (70)

Rearranging Eq. (59), we obtain

r2
p +

krp
E
− b2 = 0 , ⇒ (71)

and the solution

rp = − k

2E
+

√
k2

4E2
+ b2 = − k

2E
+

√
k2

4E2
+

l2

2mE
= − k

2E
+

k

2E

√
1 +

2El2

mk2

=
k

2E
(ε− 1) . (72)

The negative branch of the solution, − k
2E (1 + ε), would be unphysical for E > 0. This result

is consistent with the existence of a single turning point for a hyperbola. Plugging rp into our
expression for rp, we have

∆φ = arccos
−1

ε
− arccos

l2

mk + k
2E (1− ε)

k
2E (ε2 − ε)

= arccos
−1

ε
− arccos

2El2

mk2
+ (1− ε)
ε2 − ε

13



= arccos
−1

ε
− arccos

ε2 − 1 + (1− ε)
ε2 − ε

= arccos
−1

ε
− arccos 1︸ ︷︷ ︸

=0

= arccos
−1

ε
. (73)

It makes sense that the contribution of rp to the integral vanishes because we measure φ counter-
clockwise from the pericenter.

Plugging our ∆φ into Eq. (69), we find

θ = π − 2 arccos
−1

ε
, (74)

and after rearranging and taking the cosine on both sides, we obtain

−1

ε
= cos

π − θ
2

= cos
π

2
cos

θ

2
+ sin

π

2
sin

θ

2
= sin

θ

2
. (75)

Squaring and inverting both sides, we have

ε2 = 1 +
2El2

mk2
= 1 +

2E · 2mEb2

mk2
= 1 +

4E2b2

k2
=

1

sin2 θ
2

, (76)

and rearranging, we find

b2 =
k2

4E2

1− sin2 θ
2

sin2 θ
2

=
k2

4E2

cos2 θ
2

sin2 θ
2

=
k2

4E2
cot2 θ

2
. (77)

Since 0 ≤ θ ≤ π, we see that cot θ/2 is always positive, and since k and E are both positive as well,
the function b(θ) is given by

b =
k

2E
cot

θ

2
. (78)

Taking the derivative with respect to θ, we have

db

dθ
=

k

2E

−1
2 sin θ

2 · sin
θ
2 − cos θ2 ·

1
2 cos θ2

sin2 θ
2

= − k

4E

1

sin2 θ
2

. (79)

Note that the derivative is indeed negative, as discussed above (see Eq. (65)). We can now combine
all our results and compute the differential cross section:

dσ

dΩ
=

b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ =

k2

8E2

cos θ2
sin θ

2

1

2 sin θ
2 cos θ2

1

sin2 θ
2

=
k2

16E2 sin4 θ
2

. (80)

For the gravitational potential, we have k = GmM , where G is the gravitational constant, M
is the mass generating the potential, and m is the mass of the scattered object. Then

dσ

dΩ
=

(GMm)2

16E2 sin4 θ
2

=
(GM)2

4v2
∞ sin4 θ

2

. (81)
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∆φ
(attractive)

∆φ
(repulsive)

O

Figure 8: Hyperbolic trajectories for scattering off attractive (blue) and repulsive (orange) 1/r
potentials.

3.4 Rutherford Scattering

Next, we discuss Coulomb or Rutherford scattering of a particle in the potential

V (r) = −k
r
, (82)

where k can be either positive or negative. For k > 0, the potential is attractive and we obtain the
same hyperbolic trajectories and cross sections as in the gravitational case. The case of a repulsive
potential with k < 0, shown in Figs. 6 and 8, deserves separate consideration, since the origin of
the coordinate system now lies in the exterior focus of the hyperbola (see Fig. 8).

The integral for ∆φ now reads

∆φ =

∫ ∞
rp

dr
b

r2

1√
1− b2

r2
− |k|rE

. (83)

Substituting

u =
b

r
, dr =

b

u2
du , (84)

we obtain

∆φ = −
∫ 0

b/rp

du
1√

1− |k|Ebu− u2

= arcsin
−2u− |k|Eb√
4 +

(
|k|
Eb

)2

∣∣∣∣∣∣∣∣
0

b/rp

= arcsin
− |k|Eb√

4 +
(
|k|
Eb

)2
− arcsin

−2 b
rp
− |k|Eb√

4 +
(
|k|
Eb

)2
= arcsin

−1√
1 + 4E2b2

|k|2
− arcsin

−2Eb|k|
b
rp
− 1√

1 + 4E2b2

|k|2
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= arcsin
−1

ε
− arcsin

−2Eb|k|
b
rp
− 1

ε
(85)

We use Eq. (59) to determine rp:

rp =
|k|
2E

+

√
|k|2
4E2

+ b2 =
|k|
2E

+
|k|
2E

√
1 +

4E2b2

|k|2
=
|k|
2E

(1 + ε) , (86)

where the negative branch will again yield an unphysical negative radius because the square root
term has a greater magnitude than the first term. Plugging this into the result for the integral and
using Eq. (76), we find

∆φ = arcsin
−1

ε
− arcsin

−4E2b2

|k|2
1

1+ε − 1

ε
= arcsin

−1

ε
− arcsin

−ε2 + 1− 1− ε
ε2 + ε

= arcsin
−1

ε
− arcsin(−1) = arcsin

−1

ε
−
(
−π

2

)
= arcsin

−1

ε
+
π

2
. (87)

The scattering angle now becomes

θ = π − 2∆φ = π − 2 arcsin
−1

ε
− 2

π

2
= −2 arcsin

−1

ε
, (88)

and we have

− sin
θ

2
= −1

ε
. (89)

Squaring both sides, we get

ε2 = 1 +
4E2b2

|k|2
=

1

sin2 θ
2

, (90)

which matches Eq. (77). Thus, the remaining steps proceed as in the gravitational case: The
relationship between θ and b is given by

b =
|k|
2E

cot
θ

2
, (91)

and the differential cross section once again becomes

dσ

dΩ
=

k2

16E2 sin4 θ
2

. (92)

If we now plug in the potential strength for like charges,

k =
qQ

4πε0
, (93)

we obtain

dσ

dΩ
=

(
Qq

4πε0

)2 1

16E2 sin4 θ
2

. (94)
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3.5 Divergent Total Cross Sections

In problem G20, we show that the total cross section of a finite-range potential is always finite.
However, we are often dealing with potentials that are not strictly finite-range as well, but only
decay according to some functional form at large distances, e.g., via an inverse power law or an
exponential.

If we try to compute the total cross section by integrating the differential cross section of the
1/r potentials over the full solid angle, we find that the integral diverges due to the contribution
from the forward scattering angle θ = 0:

σ ∼ 2π

∫ π

0
dθ sin θ

1

sin4 θ
2

= −4π
1

sin2 θ
2

∣∣∣∣∣
π

0

= lim
θ→0

4π cot2 θ

2
=∞ . (95)

The reason for this divergence is that the 1/r potential does not decay rapidly enough at large dis-
tances: If we disregard relativity, the potential extends through all of space, and objects everywhere
in space would undergo scattering processes under the 1/r potential of the tiniest mass element or
charge. In the integral for the total cross section, all of these processes contribute.

In the Rutherford case, we are “saved” by noticing that the universe appears to be neutral as
a whole, which means that the potentials of positive and negative charges cancel out in the vast
majority of space. Therefore, the electromagnetic interactions are screened, and effectively decay
more rapidly than 1/r. Unfortunately, that same logic does not work for masses, since masses only
attract each other and no cancellation between potentials can occur. One could expect that a more
fundamental theory of gravity at large distances, i.e., General Relativity, might resolve this issue,
but to the best of my knowledge, this is presently not the case.

3.6 The Inverse Scattering Problem

As discussed above, many modern experiments measure cross sections in order to extract informa-
tion about the fundamental forces governing a system. Instead of trying to model the cross section
through simulations of the system based on the best available (effective) theory of these forces, we
may ask whether it is possible to extract them directly from a measured cross section, provided the
target and probes are sufficiently simple, so we do not have to worry about their intrinsic structure.
As the name suggests, this inverse scattering problem mainly consists of reversing the steps
we took to derive the differential cross section. The following discussion is based on [1, 2], strip-
ping away details that are related to the applications in semi-classical approximations to quantum
mechanics.

The starting point is Eq. (62), which we used to derive b(θ) and then dσ
dΩ via Eq. (66). Now, we

will do the opposite. Let us assume we have measured the cross section, and we have used Eq. (66)
to extract θ(b). We introduce the new function

y(r) = r

√
1− V (r)

E
(96)

and write the integral in Eq. (62) as

I = 2b

∫ ∞
rp

dr
1

r
√
y2 − b2

. (97)

Now we assume that the function (96) is invertible, so that r(y) exists, and we formally change
variables from r to y. Since scattering implies that an object is able to escape from the potential,

17



Exercise 3.1: An Integral for the Inverse Scattering Problem

Prove

π = 2b

∫ ∞
b

dy
1

y
√
y2 − b2

= 2b

∫ ∞
b

dy√
y2 − b2

d

dy
ln y . (E3.1-1)

we can assume that V (r) vanishes at large distances in realistic applications, hence the upper limit
of the integral remains unchanged. For the lower limit, Eq. (59) implies

1− V (rp)

E
=
b2

r2
p

, (98)

hence

y(rp) = rp

√
1− V (rp)

E
= rp

√
b2

r2
p

= b . (99)

Noting that

dr = r′(y)dy ,
r′(y)

r(y)
=

d

dy
ln r(y) , (100)

the integral first takes the form

I = 2b

∫ ∞
b

dy
r′(y)

r(y)
√
y2 − b2

= 2b

∫ ∞
b

dy√
y2 − b2

d

dy
ln r(y) . (101)

Using the identity (E3.1-1), we can combine both terms on the right-hand side of Eq. (62) into a
single integral,

θ(b) = π − I = 2b

∫ ∞
b

dy√
y2 − b2

d

dy
ln

y

r(y)
. (102)

Instead of calculating this integral directly, we define a new function T (y) that will eventually
allow us to find y(r) from a given θ(b):

T (y) ≡ 1

π

∫ ∞
y

db
θ(b)√
b2 − y2

. (103)

This integral diverges if θ(b) is a nonzero constant, but this would only occur if the scattering angle
θ were independent of b, which only happens if there is no scattering at all. Thus, θ(b) = const.
would imply θ(b) = 0, which in turn means that T (y) vanishes as well. When scattering does occur,

lim
b→∞

θ(b) = 0 (104)

and if θ(b) approaches zero as b−λ, λ > 0, the integral converges. This will be the case under
physically reasonable assumptions.

Let us now show the relation between T (y) and y(r). Plugging Eq. (102) into the definition of
T (y) (Eq. (103)), we obtain

T (y) =
1

π

∫ ∞
y

db
2b√
b2 − y2

[∫ ∞
b

dy′√
y′2 − b2

d

dy′
ln

y′

r(y′)

]
. (105)
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The double integral can be performed if we switch the order of integration, but that requires care
with the limits. In the integral over b, the limits imply that b > y, while the limits of the integral
over y′ imply that y′ > b, and therefore y < b < y′. The double integral can then be written as

T (y) =
1

π

∫ ∞
y

dy′
[
d

dy′
ln

y′

r(y′)

] ∫ y′

y
db

2b√
(b2 − y2) (y′2 − b2)

(106)

The integral over b yields∫ y′

y
db

2b√
(b2 − y2) (y′2 − b2)

= 2 arctan

√
b2 − y2√
y′2 − b2

∣∣∣∣∣
y′

y

= 2 (arctan∞− arctan 0) = 2
(π

2
− 0
)

= π , (107)

so we find

T (y) =

∫ ∞
y

dy′
[
d

dy′
ln

y′

r(y′)

]
= ln

y′

r(y′)

∣∣∣∣∞
y

= 0− ln
y

r(y)
= ln

r(y)

y
. (108)

To see that there is no contribution from the upper limit, we have used that for large distances

lim
r→∞

y(r)

r
= lim

r→∞

r

√
1− V (r)

E

r
= 1 . (109)

Taking the exponential on both sides, we finally obtain

r(y) = y exp [T (y)] , (110)

and we can obtain the potential by plugging this solution into a rearranged version of Eq. (96):

V (r) = E
r2 − y2

r2
. (111)

Example: Rutherford Scattering

Let us assume that we have measured the differential cross section for Rutherford scattering and
extracted its functional form, Eq. (80). Using this in eq. (66), we just reverse the steps that produce
dσ
dΩ from a given b(θ)

b
db

dθ
= − sin θ

dσ

dΩ
= − sin θ

k2

16E2

1

sin4 θ
2

= − k2

16E2

2 sin θ
2 cos θ2

sin4 θ
2

= − k2

8E2

cos θ2
sin3 θ

2

= − k2

8E2

cot θ2
sin2 θ

2

= − k2

8E2
cot

θ

2

d

dθ

(
−2 cot

θ

2

)
=

k2

4E2
cot

θ

2

d

dθ
cot

θ

2
=

k

2E
cot

θ

2

d

dθ

(
k

2E
cot

θ

2

)
. (112)

Thus, we can directly read off

b =
k

2E
cot

θ

2
. (113)

Inverting the function, we have

θ(b) = 2 arccot
2Eb

k
, (114)
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and Eq. (103) becomes

T (y;E) =
2

π

∫ ∞
y

db
arccot 2Eb

k√
b2 − y2

, (115)

where we have added E as an argument to T to indicate that it depends smoothly on the energy.
This allows us to apply a useful trick to evaluate the integral: Taking the partial derivative with
respect to E, we have

∂

∂E
T (y;E) =

2

π

∫ ∞
y

db
arccot 2Eb

k√
b2 − y2

=
2

π

∫ ∞
y

db
−2bk

4b2E2 + k2

1√
b2 − y2

. (116)

We introduce the substitution

x =
√
b2 − y2 ,

dx

db
=

b√
b2 − y2

, (117)

which allows us to write

∂

∂E
T (y;E) = − 2

π

∫ ∞
0

dx
2k

4(x2 + y2)E2 + k2
= − 2

π

k

E
√
k2 + 4E2y2

arctan
2Ex

k2 + 4E2y2

∣∣∣∣∞
0

= − 2

π

k

E
√
k2 + 4E2y2

(π
2
− 0
)

= − k

E
√
k2 + 4E2y2

. (118)

We can integrate this expression in turn:

T (y;E) = −
∫ ∞
E

dE′
k

E′
√
k2 + 4E′2y2

= ln

k2

(
1 +

√
1 + 4E′2y2

k2

)
E′

∣∣∣∣∣∣∣∣
∞

E

(119)

The limits of the integration were chosen on physical grounds: In a realistic scattering process, we
must have E > 0 because the particle would not be moving towards the potential otherwise. For
E →∞, the particle should not be scattered at all since

lim
E→∞

arccot
2Eb

k
= 0 . (120)

Thus,

T (y;E) = − ln 2ky + ln

k2

(
1 +

√
1 + 4E2y2

k2

)
E

= ln

k2

(
1 +

√
1 + 4E′2y2

k2

)
2kyE

= ln

(
k

2yE
+

√
k2

4E2y2
+ 1

)
, (121)

which has the desired property that

lim
E→∞

T (y;E) = lim
E→∞

ln

(
k

2yE
+

√
k2

4E2y2
+ 1

)
= ln 1 = 0 . (122)
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Inserting T (y;E) into Eq. (110), we have

r(y) = y exp [T (y;E)] =
k

2E
+

√
k2

4E2
+ y2 (123)

and squaring, we find

r2 =
k2

4E
+ 2

k

2E

√
k2

4E2
+ y2 +

k2

4E2
+ y2 = 2

k

2E

(
k

2E
+

√
k2

4E2
+ y2

)
+ y2 =

k

E
r + y2 , (124)

which implies

y2 = r2 − k

E
r . (125)

Squaring Eq. (96) and plugging in this result, we see that

r2

(
1− V (r)

E

)
= r2 − k

E
r

⇔ −r2V (r)

E
= − k

E
r , (126)

and we finally obtain

V (r) =
k

r
. (127)

3.7 Two-Body Scattering

3.7.1 Transformation of the Differential Cross Section

As mentioned above, the scattering of two particles that have an interaction of the form V (|~r1−~r2|)
in the center-of-mass frame is formally equivalent to the scattering of a particle off the central
potential V (r). The expressions we derived for the scattering angles and cross sections apply if we
replace m→ µ in the kinematic quantities l and E (but not in the interaction strength k = GMm
entering the gravitational scattering cross section (80), for instance).

In contrast, scattering experiments are usually performed in the laboratory frame, where the
target is at rest and the center of mass and projectile and target is therefore moving, as show in
Fig. 9. Thus, we need to translate our scattering expressions to this frame by finding an analytic
relation between ψ and θ.

Using the scattering angle ψ, we can define the differential cross section in the laboratory frame
analogous to Eq. (66):

dσ

dΩψ
=

dσ

2π sinψdψ
, (128)

where we have used that the switch between the frames does not change the area from which the
incoming particles approach the target’s potential, nor does it break the azimuthal symmetry with
respect to the b = 0 axis. This also implies

dσ =
dσ

dΩψ
dΩψ =

dσ

dΩ
dΩ , (129)

which is a way of stating that the same total number of particles entering from the ring dσ must be
detected in the solid angles dΩ and dΩψ in the center-of-mass and laboratory systems, respectively.
Thus, we see that

21



~u1

~v1

~v′1

~v′2

~v2

ψ

θ

c.o.m.

~u′
1

~v′1

~u′
2

~v′2

θ

Figure 9: Scattering in the laboratory (left) and center-of-mass frame (right).

dσ

dΩψ
=
dσ

dΩ
· dΩ

dΩψ
=
dσ

dΩ
· sin θ dθ

sinψ dψ
, (130)

where dσ
dΩ should now be understood as a function of the angle ψ.

3.7.2 Elastic Scattering

Let us briefly recall the treatment of elastic collisions, as shown in Fig. 10 — in the present context,
we can view it as the scattering of hard spheres (cf. problem G19). We denote the initial and final
vectors in the laboratory frame by ~ui and ~vi, respectively, and we use primes to indicate the
corresponding vectors in the center-of-mass frame (also cf. Fig. 9).

In the center-of-mass frame, the initial and final total momenta are zero, hence

m1~u
′
1 = −m2~u

′
2 , (131)

m1~v
′
1 = −m2~v

′
2 (132)

and the magnitudes of the velocites satisfy

m1u
′
1 = m2u

′
2 , (133)

m1u
′
1 = m2v

′
2 . (134)

The total kinetic energy is conserved, so

1

2
m1u

′2
1 +

1

2
m2u

′2
2 =

1

2
m1v

′2
1 +

1

2
m2v

′2
2 . (135)
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Figure 10: Elastic collisions in the laboratory (top) and center-of-mass frames (bottom).

In the collision shown in Fig. 10, particle 1 is deflected by the scattering angle θ to the upper right,
and particle 2 by the same angle to the lower left. In the laboratory frame, particle 2 is at rest
before the collision, and consequently, the center of mass is moving with the velocity

~V =
m1

M
~u1 . (136)

Since the total momentum is conserved, ~V is the same before and after the collision, and we can
subtract it from the velocities ~u′i, ~v

′
i to translate them to the laboratory frame:

v′1 = u′1 = u1 − V =
(

1− m1

M

)
u1 =

m2

M
u1 , (137)

v′2 = u′2 = V =
m1

M
u1 . (138)

Next, we relate the laboratory-frame scattering angle for particle 1, ψ, to the scattering angle
θ in the center-of-mass frame. In components, we have

v1x = v1 cosψ = v′1x + V = u1

(m2

M
cos θ +

m1

M

)
, (139)

v1y = v1 sinψ = v′1y = u1
m2

M
sin θ . (140)

The final speed of particle 1 in the lab frame is then given by

v1 =
u1

M

√
m2

1 +m2
2 + 2m1m2 cos θ , (141)
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Exercise 3.2: Recoil Angle in the Laboratory Frame

Show that the recoil angle ζ of the target is related to the scattering angle in the center-
of-mass frame by

cos ζ =

√
1− sin θ

2
= sin

θ

2
. (E3.2-1)

and dividing the x and y components, we have

tanψ =
m2 sin θ

m2 cos θ +m1
=

sin θ

cos θ + m1
m2

. (142)

Let us consider a few special cases:

• If the target is much heavier than the projectile, m2 � m1, the scattering angles and differ-
ential cross sections in the laboratory and center-of-mass frames are the same:

ψ = θ ,
dσ

dΩψ
=
dσ

dΩ
. (143)

This makes sense, because the center of mass of m1 and m2 will essentially coincide with the
center of mass of m2.

• If m1 = m2, we have

tanψ =
sin θ

cos θ + 1
=

2 sin θ
2 cos θ2

cos2 θ
2 − sin2 θ

2 + 1
=

sin θ
2 cos θ2

cos2 θ
2

= tan
θ

2
, (144)

i.e., ψ = θ
2 , and therefore

dσ

dΩψ
=
dσ

dΩ
· sin θ

sin θ
2

dθ
dθ
2

= 2
2 sin θ

2 cos θ2
sin θ

2

dσ

dΩ
= 4 cos

θ

2
· dσ
dΩ

= 4 cosψ · dσ
dΩ

. (145)

3.7.3 Inelastic Scattering

The geometry of inelastic scattering processes is essentially the same as in Fig. 9, but since the
kinetic energy is not conserved, the magnitudes of the initial and final velocities will differ. For
particle 1, we have

~v1 = ~v′1 + ~V . (146)

Decomposing the vector in Cartesian components, we have

v1 cosψ = v′1 cos θ + V , (147)

v1 sinψ = v′1 sin θ , (148)

and squaring, we have
v2

1 = v′21 + 2v′1V cos θ + V 2 . (149)

Taking the ratio of the components, we have

tanψ =
sin θ

cos θ + V
v′1

, (150)

24



analogous to Eq. (142). A similar analysis for particle 2 yields (cf. Fig. 9)

v2 cos ζ = −v′2 cos θ + V , (151)

−v2 sin ζ = −v′2 sin θ , (152)

and
v2

2 = v′22 − 2v′2V cos θ + V 2 . (153)

Taking the ratio once more, we see that the recoil angle (cf. Eq. (E3.2-1)) is given by

tan ζ =
sin θ

cos θ − V
v′2

. (154)

As in the discussion of the elastic scattering, we have

V =
m1

M
u1 =

m1

M
v∞ . (155)

In the center-of-mass frame, momentum conservation implies

m1~v
′
1 +m2~v

′
2 = 0 (156)

and introducing the relative velocity ~v′ = ~v′1 − ~v′2,

~v′1 =
m1

M
~v′ , ~v′2 = −m2

M
~v′ . (157)

The magnitudes of these vectors are given by

v′1 =
m1

M
v′ , v′2 =

m2

M
v′ , (158)

and putting everything together, we have

ρ1 ≡
V

v′1
=
m1

m2

v∞
v′

, ρ2 ≡
V

v′2
=
v∞
v′

. (159)

Since the target was initially at rest, v∞ corresponds to the initial relative velocity of target and
projectile. Thus, v∞/v

′ is the ratio of the initial and final relative velocities, which is a measure
of the loss of kinetic energy. In the limit of elastic scattering, v∞ = v′, ρ1 reduces to the familiar
mass ratio m1/m2. Summarizing, we have

tanψ =
sin θ

cos θ + ρ1
, tan ζ =

sin θ

cos θ − ρ2
. (160)
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4 Group Exercises

Problem G19 – Hard-Sphere Scattering

Consider the collision of two billard balls with radius R
2 in the rest frame of the target ball. We

assume that the balls are not deformed in the collision, and can therefore be treated as hard spheres.
Mathematically, this is equivalent to the scattering off a potential of the form

V (r) =

{
0 for r > R ,

∞ for r ≤ R .
(161)

Show that the differential and total cross sections are

dσ

dΩ
=
R2

4
, (162)

and
σ = πR2 , (163)

respectively.

Hint: ∫
du

1√
1− u2

= arcsinu+ c (164)

Problem G20 – Total Cross Sections for Finite-Range Potentials

Show that the total cross-section for an arbitrary finite-range potential

V (r) =

{
0 for r > R ,

v(r) for r ≤ R
(165)

is
σ = πR2 . (166)

Hint: Start from Eq. (67) and cosonder appropriate integration limits at all stages of your calcu-
lation.
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