# PHY422/820: Classical Mechanics 

FS 2021
Worksheet \#11 (Nov 8 - Nov 12)

November 10, 2021

## 1 Preparation

- Lemos, Chapter 4
- Goldstein, Chapter 5


## 2 Rigid Body Dynamics

### 2.1 The Euler Equations

In the (inertial) laboratory frame $\Sigma$, the rotational dynamics of a rigid body with one fixed point $O$ is described by the "rotational Second Law"

$$
\begin{equation*}
\left(\frac{d \vec{L}}{d t}\right)_{\Sigma}=\vec{N} \tag{1}
\end{equation*}
$$

where $\vec{N}$ is the torque about $O$ due to external forces. Using the relation

$$
\begin{equation*}
\left(\frac{d}{d t}\right)_{\Sigma}=\left(\frac{d}{d t}\right)_{\Sigma^{\prime}}+\vec{\omega} \times \tag{2}
\end{equation*}
$$

between time derivatives in the laboratory and body-fixed frames (see worksheet \#10), we can write

$$
\begin{equation*}
\left(\frac{d \vec{L}}{d t}\right)_{\Sigma^{\prime}}+\vec{\omega} \times \vec{L}=\vec{N} \tag{3}
\end{equation*}
$$

Noting that $\vec{L}=\boldsymbol{I} \overrightarrow{\boldsymbol{\omega}}$ and that the moment of inertia tensor $\boldsymbol{I}$ is time-independent in the body-fixed frame ${ }^{1}$, we can write

$$
\begin{equation*}
\boldsymbol{I} \dot{\vec{\omega}}+\vec{\omega} \times(\boldsymbol{I} \vec{\omega})=\vec{N}, \tag{4}
\end{equation*}
$$

where we have used that the time derivative of $\vec{\omega}$ is the same in $\Sigma$ and $\Sigma^{\prime}$ :

$$
\begin{equation*}
\left(\frac{d \vec{\omega}}{d t}\right)_{\Sigma}=\left(\frac{d \vec{\omega}}{d t}\right)_{\Sigma^{\prime}}+\vec{\omega} \times \vec{\omega}=\left(\frac{d \vec{\omega}}{d t}\right)_{\Sigma^{\prime}} . \tag{5}
\end{equation*}
$$

[^0]because the axes of the rigid body are rotating in space.

Choosing the principal-axis frame as our $\Sigma^{\prime}$, we can evaluate the cross product in Eq. (4),

$$
\overrightarrow{\boldsymbol{\omega}} \times \boldsymbol{I} \overrightarrow{\boldsymbol{\omega}}=\left(\begin{array}{c}
\omega_{x^{\prime}}  \tag{6}\\
\omega_{y^{\prime}} \\
\omega_{z^{\prime}}
\end{array}\right) \times\left(\begin{array}{l}
A \omega_{x^{\prime}} \\
B \omega_{y^{\prime}} \\
C \omega_{z^{\prime}}
\end{array}\right)=\left(\begin{array}{c}
(C-B) \omega_{y^{\prime}} \omega_{z^{\prime}} \\
(A-C) \omega_{z^{\prime}} \omega_{x^{\prime}} \\
(B-A) \omega_{x^{\prime}} \omega_{y^{\prime}}
\end{array}\right),
$$

and we eventually obtain the Euler equations:

$$
\begin{align*}
& A \dot{\omega}_{x^{\prime}}+(C-B) \omega_{y^{\prime}} \omega_{z^{\prime}}=N_{x^{\prime}}  \tag{7}\\
& B \dot{\omega}_{y^{\prime}}+(A-C) \omega_{z^{\prime}} \omega_{x^{\prime}}=N_{y^{\prime}}  \tag{8}\\
& C \dot{\omega}_{z^{\prime}}+(B-A) \omega_{x^{\prime}} \omega_{y^{\prime}}=N_{z^{\prime}} \tag{9}
\end{align*}
$$

### 2.2 The Free Top

As a first application we consider a free top with $\vec{N}=0$. (Note that this does not mean that no forces are acting on the top!) Then the Euler equations read

$$
\begin{align*}
& A \dot{\omega}_{x^{\prime}}+(C-B) \omega_{y^{\prime}} \omega_{z^{\prime}}=0,  \tag{10}\\
& B \dot{\omega}_{y^{\prime}}+(A-C) \omega_{z^{\prime}} \omega_{x^{\prime}}=0,  \tag{11}\\
& C \dot{\omega}_{z^{\prime}}+(B-A) \omega_{x^{\prime}} \omega_{y^{\prime}}=0 . \tag{12}
\end{align*}
$$

Multiplying each equation by the appropriate $\omega_{i^{\prime}}$ and adding them, we obtain

$$
\begin{equation*}
A \dot{\omega}_{x^{\prime}} \omega_{x^{\prime}}+B \dot{\omega}_{y^{\prime}} \omega_{y^{\prime}}+C \dot{\omega}_{z^{\prime}} \omega_{z^{\prime}}=\frac{1}{2} \frac{d}{d t}\left(A \omega_{x^{\prime}}^{2}+B \omega_{y^{\prime}}^{2}+C \omega_{z^{\prime}}^{2}\right)=0 \tag{13}
\end{equation*}
$$

Thus, the rotational kinetic energy - which is the total energy of the torque-free top with a fixed point - is conserved:

$$
\begin{equation*}
E=T_{\mathrm{rot}}=\frac{1}{2}\left(A \omega_{x^{\prime}}^{2}+B \omega_{y^{\prime}}^{2}+C \omega_{z^{\prime}}^{2}\right)=\text { const. } \tag{14}
\end{equation*}
$$

Multiplying the Euler equations by the components of $\vec{L}$ instead, addition yields

$$
\begin{equation*}
A^{2} \dot{\omega}_{x^{\prime}} \omega_{x^{\prime}}+B^{2} \dot{\omega}_{y^{\prime}} \omega_{y^{\prime}}+C^{2} \dot{\omega}_{z^{\prime}} \omega_{z^{\prime}}=\frac{1}{2} \frac{d}{d t}\left(A^{2} \omega_{x^{\prime}}^{2}+B^{2} \omega_{y^{\prime}}^{2}+C^{2} \omega_{z^{\prime}}^{2}\right)=0 \tag{15}
\end{equation*}
$$

We notice that the expression in parentheses is nothing but $\vec{L}^{2}$, hence

$$
\begin{equation*}
\frac{d \vec{L}^{2}}{d t}=0 \tag{16}
\end{equation*}
$$

Thus, the length of $\vec{L}$ is conserved.
Finally, let us consider under which conditions the direction of $\vec{L}$ is conserved as well. This requires

$$
\begin{align*}
& A \dot{\omega}_{x^{\prime}}=0,  \tag{17}\\
& B \dot{\omega}_{y^{\prime}}=0,  \tag{18}\\
& C \dot{\omega}_{z^{\prime}}=0, \tag{19}
\end{align*}
$$

so we must have

$$
\begin{equation*}
(C-B) \omega_{y^{\prime}} \omega_{z^{\prime}}=0 \tag{20}
\end{equation*}
$$

$$
\begin{align*}
& (A-C) \omega_{z^{\prime}} \omega_{x^{\prime}}=0,  \tag{21}\\
& (B-A) \omega_{x^{\prime}} \omega_{y^{\prime}}=0 . \tag{22}
\end{align*}
$$

Let us consider the possible solutions:

- A trivial solution to these equations is obtained for a rigid body with degenerate moments of inertia, $A=B=C$. Then $\vec{\omega}$ is fixed and $\vec{L}$ is parallel for any possible $\vec{\omega}$.
- If two moments of inertia are identical, e.g., $A=B$, then one of the equations will be trivially satisfied. This implies that $\vec{e}_{z^{\prime}}$, the principal axis associated with $C$, is the symmetry axis of the rigid body. If the rotational axis is parallel to $\vec{e}_{z^{\prime}}, \vec{L}=C \vec{\omega}=$ const. is a solution. Alternatively, $\vec{\omega}$ can be a constant rotational axis in the $x^{\prime} y^{\prime}$-plane $\left(\omega_{z^{\prime}}=0\right)$, but then $\vec{L}$ will not be parallel to $\vec{\omega}$ in general.
- If all three moments of inertia are distinct, the only possible solutions are rotations around the principal axes, e.g., $\omega_{x^{\prime}}=\omega_{y^{\prime}}=0, \omega_{z^{\prime}} \neq 0$ and $\vec{L}=C \vec{\omega}=$ const.


### 2.3 Stability of Rotation and the Intermediate-Axis Theorem

## 3 Group Exercises

## Problem G27 - Rotating Cuboid

Consider a homogenous rotating cuboid with side lengths $a, b, c$ and mass $M$.

1. Compute the principal moments of inertia with respect to the cuboid's center of mass.

Hint: The diagonalization of the moment-of-inertia tensor can be avoided through an appropriate choice of coordinate system.
2. Determine the cuboid's equations of motion in the body-fixed frame, the Euler equations for the rigid body, by starting from

$$
\begin{equation*}
\frac{d \vec{L}}{d t}+\vec{\omega} \times \vec{L}=\vec{N}, \quad \vec{L}=\boldsymbol{I} \vec{\omega}=\left(A \omega_{x^{\prime}}, B \omega_{y^{\prime}}, C \omega_{z^{\prime}}\right)^{T} \tag{23}
\end{equation*}
$$

where all vectors are expressed in the body-fixed frame, and $A, B$ and $C$ denote the principal moments of inertia.
3. Consider the force-free rotation of the cuboid around a principal axis, e.g., $\vec{\omega}_{0}=\left(\omega_{0}, 0,0\right)^{T}=$ const. Under which conditions is a rotation around this axis stable?
Hint: Assume a small perturbation of the rotational axis,

$$
\begin{equation*}
\vec{\omega}=\vec{\omega}_{0}+\vec{\epsilon}=\vec{\omega}_{0}+\left(\epsilon_{x^{\prime}}, \epsilon_{y^{\prime}}, \epsilon_{z^{\prime}}\right)^{T} \tag{24}
\end{equation*}
$$

and determine the conditions under which the amplitude of the perturbation $\vec{\epsilon}$ remains small. Omit terms of order $O\left(\epsilon^{2}\right)$ and higher.

## Problem G28 - Rotating Platelet

[cf. problem G27] Consider a thin rectangular platelet of mass $m$ with side lengths $a, b$ and a homogeneous mass distribution. Choose a coordinate system whose origin is the platelet's center of mass.

1. Express the platelet's mass density $\rho(x, y, z)$ using $\delta$ and step functions.
2. Determine the moment of inertia tensor $\boldsymbol{I}$ in the chosen center-of-mass frame, and determine the principal axes.
Hint: You can use your results from problem G27, or compute I explicitly for practice.
3. Derive the Euler equations for the platelet in the body-fixed frame.
4. Compute the torque $\vec{N}$ that is required to make the platelet rotate with a constant angular velocity around its diagonal. What happens if the platelet is quadratic, i.e., $a=b$ ?

[^0]:    ${ }^{1}$ In the laboratory frame, we have

    $$
    \boldsymbol{I}(t)=\boldsymbol{R}(t) \boldsymbol{I}_{0} \boldsymbol{R}^{T}(t)
    $$

