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1 Preparation

• Lemos, Chapter 4

• Goldstein, Chapter 5

2 Rigid Body Dynamics

2.1 The Euler Equations

In the (inertial) laboratory frame Σ, the rotational dynamics of a rigid body with one fixed point
O is described by the “rotational Second Law”(

d~L

dt

)
Σ

= ~N , (1)

where ~N is the torque about O due to external forces. Using the relation(
d

dt

)
Σ

=

(
d

dt

)
Σ′

+ ~ω× (2)

between time derivatives in the laboratory and body-fixed frames (see worksheet #10), we can
write (

d~L

dt

)
Σ′

+ ~ω × ~L = ~N . (3)

Noting that ~L = I~ω and that the moment of inertia tensor I is time-independent in the body-fixed
frame1, we can write

I ~̇ω + ~ω × (I~ω) = ~N , (4)

where we have used that the time derivative of ~ω is the same in Σ and Σ′:(
d~ω

dt

)
Σ

=

(
d~ω

dt

)
Σ′

+ ~ω × ~ω =

(
d~ω

dt

)
Σ′
. (5)

1In the laboratory frame, we have
I(t) = R(t)I0R

T (t)

because the axes of the rigid body are rotating in space.
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Choosing the principal-axis frame as our Σ′, we can evaluate the cross product in Eq. (4) ,

~ω × I~ω =

ωx′

ωy′

ωz′

×
Aωx′

Bωy′

Cωz′

 =

(C −B)ωy′ωz′

(A− C)ωz′ωx′

(B −A)ωx′ωy′

 , (6)

and we eventually obtain the Euler equations:

Aω̇x′ + (C −B)ωy′ωz′ = Nx′ , (7)

Bω̇y′ + (A− C)ωz′ωx′ = Ny′ , (8)

Cω̇z′ + (B −A)ωx′ωy′ = Nz′ . (9)

2.2 The Free Top

As a first application we consider a free top with ~N = 0. (Note that this does not mean that no
forces are acting on the top!) Then the Euler equations read

Aω̇x′ + (C −B)ωy′ωz′ = 0 , (10)

Bω̇y′ + (A− C)ωz′ωx′ = 0 , (11)

Cω̇z′ + (B −A)ωx′ωy′ = 0 . (12)

Multiplying each equation by the appropriate ωi′ and adding them, we obtain

Aω̇x′ωx′ +Bω̇y′ωy′ + Cω̇z′ωz′ =
1

2

d

dt

(
Aω2

x′ +Bω2
y′ + Cω2

z′
)

= 0 . (13)

Thus, the rotational kinetic energy — which is the total energy of the torque-free top with a fixed
point — is conserved:

E = Trot =
1

2

(
Aω2

x′ +Bω2
y′ + Cω2

z′
)

= const. (14)

Multiplying the Euler equations by the components of ~L instead, addition yields

A2ω̇x′ωx′ +B2ω̇y′ωy′ + C2ω̇z′ωz′ =
1

2

d

dt

(
A2ω2

x′ +B2ω2
y′ + C2ω2

z′
)

= 0 . (15)

We notice that the expression in parentheses is nothing but ~L2, hence

d~L2

dt
= 0 . (16)

Thus, the length of ~L is conserved.
Finally, let us consider under which conditions the direction of ~L is conserved as well. This

requires

Aω̇x′ = 0 , (17)

Bω̇y′ = 0 , (18)

Cω̇z′ = 0 , (19)

so we must have

(C −B)ωy′ωz′ = 0 , (20)
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(A− C)ωz′ωx′ = 0 , (21)

(B −A)ωx′ωy′ = 0 . (22)

Let us consider the possible solutions:

• A trivial solution to these equations is obtained for a rigid body with degenerate moments of
inertia, A = B = C. Then ~ω is fixed and ~L is parallel for any possible ~ω.

• If two moments of inertia are identical, e.g., A = B, then one of the equations will be trivially
satisfied. This implies that ~ez′ , the principal axis associated with C, is the symmetry axis
of the rigid body. If the rotational axis is parallel to ~ez′ , ~L = C~ω = const. is a solution.
Alternatively, ~ω can be a constant rotational axis in the x′y′-plane (ωz′ = 0), but then ~L will
not be parallel to ~ω in general.

• If all three moments of inertia are distinct, the only possible solutions are rotations around
the principal axes, e.g., ωx′ = ωy′ = 0 , ωz′ 6= 0 and ~L = C~ω = const.

2.3 Stability of Rotation and the Intermediate-Axis Theorem
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3 Group Exercises

Problem G27 – Rotating Cuboid

Consider a homogenous rotating cuboid with side lengths a, b, c and mass M .

1. Compute the principal moments of inertia with respect to the cuboid’s center of mass.

Hint: The diagonalization of the moment-of-inertia tensor can be avoided through an appro-
priate choice of coordinate system.

2. Determine the cuboid’s equations of motion in the body-fixed frame, the Euler equations for
the rigid body, by starting from

d~L

dt
+ ~ω × ~L = ~N , ~L = I~ω = (Aωx′ , Bωy′ , Cωz′)

T , (23)

where all vectors are expressed in the body-fixed frame, and A,B and C denote the principal
moments of inertia.

3. Consider the force-free rotation of the cuboid around a principal axis, e.g., ~ω0 = (ω0, 0, 0)T =
const. Under which conditions is a rotation around this axis stable?

Hint: Assume a small perturbation of the rotational axis,

~ω = ~ω0 + ~ε = ~ω0 + (εx′ , εy′ , εz′)
T , (24)

and determine the conditions under which the amplitude of the perturbation ~ε remains small.
Omit terms of order O(ε2) and higher.

Problem G28 – Rotating Platelet

[cf. problem G27] Consider a thin rectangular platelet of mass m with side lengths a, b and a
homogeneous mass distribution. Choose a coordinate system whose origin is the platelet’s center
of mass.

1. Express the platelet’s mass density ρ(x, y, z) using δ and step functions.

2. Determine the moment of inertia tensor I in the chosen center-of-mass frame, and determine
the principal axes.

Hint: You can use your results from problem G27, or compute I explicitly for practice.

3. Derive the Euler equations for the platelet in the body-fixed frame.

4. Compute the torque ~N that is required to make the platelet rotate with a constant angular
velocity around its diagonal. What happens if the platelet is quadratic, i.e., a = b?
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