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1 Reading

• Lemos, Chapter 9.1-9.6 (9.4 optional), 10.1-10.4 (10.5 optional), 11.1-11.5

• Goldstein, Chapter 10.1-10.5 (10.6-10.8 optional), 12, 13

2 Hamilton-Jacobi Theory and Action-Angle Variables

2.1 The Hamilton-Jacobi Equation

Canonical transformations offer us a great deal of freedom that can be used to simplify the process
of solving the equations of motion of a dynamical system. We have used one possible strategy,
which is to map a given Hamiltonian onto one we know to solve. Hamilton-Jacobi theory explores
another approach, namely to design a canonical transformation that will make all variables cyclic.
If we can make the new Hamiltonian K independent of (Q,P ), then

Q̇i =
∂K

∂Pi
= 0 , Ṗi = − ∂K

∂Qi
= 0 . (1)

and
Qi = const., Pi = const. (2)

We could try to generate a constant K, but the simplest approach is to actually look for K = 0.
Using a generating function of the type F = F2(q, P, t), we will have

K = H(q, p, t) +
∂F2

∂t

!
= 0 (3)

and since

pi =
∂F2

∂qi
, (4)

we can write the condition (3) as

H

(
q1, . . . , qn,

∂F2

∂q1
, . . . ,

∂F2

∂qn
, t

)
+
∂F2

∂t
= 0 . (5)
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which is the time-dependent Hamilton-Jacobi equation. We see that it is a first-order dif-
ferential equation for F2 in the variables (q1, . . . , qn, t). The solution for F2 will depend on n + 1
independent constants of integration α1, . . . , αn+1. Since Eq. (5) only depends on derivatives of F2,
it is invariant under the shift

F2 −→ F2 + αn+1 , (6)

and one of the constants — here chosen to be αn+1 — can be ignored. Let us assume that the
solution is

F2 ≡ S = S (q1, . . . , qn, α1, . . . αn, t) (7)

where S is called Hamilton’s principal function. Since our goal was to make variables cyclic,
we can choose associated conserved momenta as our independent constants:

Pi = αi = const. . (8)

This will specify F2 = F2(q, P, t) = F2(q, α, t) as required. For a generating function of this type,
the new coordinates are given by (cf. worksheet #14)

βi ≡ Qi =
∂S(q, α, t)

∂αi
, (9)

where the notation βi is meant to emphasize that these are constants as well. To solve for the
motion, we invert Eq. (9) to obtain

βi =
∂S

∂αi
⇒ qi = qi(α, β, t) , (10)

and plug it into the partial derivative linking pi to S (cf. worksheet #14):

pi =
∂S

∂qi
⇒ pi = pi(α, β, t) . (11)

Let us now try to interpret the function S. We know that

Ṡ =
∂S

∂qi
q̇i +

∂S

∂Pi
Ṗi +

∂S

∂t
(12)

as well as
∂S

∂qi
= pi , Ṗi = 0 ,

∂S

∂t
= −H . (13)

Combining these relations, we find

Ṡ = piq̇i −H = L ⇒ S =

∫
dt L . (14)

Thus, S is the action! Whenever it is compatible with the assumptions for a generating function,
the action generates a canonical transformation that brings the state of the system at a general
time t to its state at some fixed initial time t0. In that case, we may also swap our 2n constants αi
and βi for the initial conditions qi0 and pi0 by solving the equations obtained above at t = t0:

qi0 = qi (α, β, t0) , pi0 = pi (α, β, t0) . (15)
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2.2 Separation of Variables and the Time-Independent Hamilton-Jacobi Equa-
tion

The structure of the Hamilton-Jacobi equation makes it amenable to a separation of variables
whenever the Hamiltonian does not explicitly depend on one or more of the canonical variables.

Cyclic Variables

Let us assume that qn is cyclic. Then we will have

ṗn =
∂H

∂qn
= 0 , pn = αn , (16)

so we do not have to do any work to turn pn into a constant of the motion. and we only need
to apply an identity transformation to the pair (qn, pn). The generating function for the identity
transformation of these variables is

F2 = qnPn = qnαn , (17)

which is of the same type as S (cf. worksheet #14). This implies that we can make the following
ansatz for Hamilton’s principal function:

S = αnqn + S(q1, . . . , qn−1) (18)

where

αn =
∂S

∂qn
, (19)

as required, and S will satisfy

H

(
q1, . . . , qn−1,

∂S

∂q1
, . . . ,

∂S

∂qn−1
, αn, t

)
+
∂S

∂t
= 0 . (20)

This result is readily generalized: If qk+1, . . . , qn are cyclic, S will have the form

S =
n∑

i=k+1

αiqi + S(q1, . . . , qk−1) , (21)

and

H

(
q1, . . . , qk,

∂S

∂q1
, . . . ,

∂S

∂qk
, αk+1, . . . , αn, t

)
+
∂S

∂t
= 0 . (22)

Time-Independent Hamiltonians

If the Hamiltonian does not explicitly depend on time, we have

Ḣ =
∂H

∂t
= 0 , ⇒ H = const. (23)

The Hamilton-Jacobi equation becomes

H

(
q,
∂S

∂q

)
+
∂S

∂t
= 0 (24)
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which means

α1 ≡ H = −∂S
∂t

. (25)

Upon integration, this implies
S(q, α, t) = W (q, α)− α1t , (26)

where we have dropped an additional irrelevant constant, as explained in the previous section.
The function W (q, α) is known as Hamilton’s characteristic function. It satisfies the time-
independent Hamilton-Jacobi equation

H

(
q,
∂W

∂q

)
= α1 . (27)

If we apply the same strategy as in the time-dependent case, we obtain the equations of motion
by using

pi =
∂W

∂qi
, Q1 ≡ β1 =

∂S

∂α1
=
∂W

∂α1
− t , Qj ≡ βj =

∂W

∂αj
for j > 1 . (28)

Alternatively, we can directly consider W = F2(q, P ) as the generating function and avoid any
reference to S(q, α, t) altogether. Just like before, we will have

pi =
∂W

∂qi
, Pi = αi , H

(
q,
∂W

∂q

)
= α1 , (29)

but we will have a non-zero K and a different equation for Q1:

K = α1 = H , (30)

Qi =
∂W

∂αi
. (31)

As a consequence, the equation of motion for Q1 is modified:

Q̇1 =
∂K

∂α1
= 1 ⇒ Q1 = t+ β1 =

∂W

∂α1
. (32)

Of course, this is just a re-definition of Eq. (28) that allows an explicit linear time dependence.
The equations for the remaining coordinates are the same as before:

Q̇j =
∂K

∂αj
= 0 ⇒ Qj = βj =

∂W

∂αj
. (33)

2.3 Transition to Quantum Mechanics

The time-dependent Hamilton-Jacobi equation can be understood as the leading-order term in an
effective theory of quantum mechanics for ~→ 0 (or ~ω/E � 1), the so-called Wenzel-Kramers-
Brillouin or WKB approximation. To see this, we consider the Schrödinger equation

i~
∂ψ

∂t
= Hψ =

(
− ~2

2m

∂2

∂q2
+ V (q)

)
ψ . (34)

We write the wave function as

ψ = exp

(
i

~
S

)
, (35)
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where S(q, t) is complex, and plug it into Eq. (34), obtaining

−∂S
∂t

= − i~
2m

∂2S

∂q2
+

1

2m

(
∂S

∂q

)2

+ V (q) . (36)

If we now take ~→ 0, we have

0 =
∂S

∂t
+

1

2m

(
∂S

∂q

)2

+ V (q) =
∂S

∂t
+H

(
q,
∂S

∂q

)
, (37)

which is the Hamilton-Jacobi equation for S if the Hamiltonian has the usual form

H =
p2

2m
+ V (q) . (38)

2.4 Examples

2.4.1 Harmonic Oscillator

Let us study our trusty harmonic oscillator using the time-dependent Hamilton-Jacobi equation.
The Hamiltonian is given by

H =
p2

2m
+

1

2
mω2q2 = E . (39)

Here we will look for one constant P = α and one constant Q = β. The Hamilton-Jacobi equation
reads

1

2m

((
∂S

∂q

)2

+ (mωq)2

)
+
∂S

∂t
= 0 , (40)

and we can make the separation ansatz

S(q, α, t) = W (q, α)− αt , (41)

as discussed in Sec. 2.2. The Hamilton-Jacobi equation now implies

H = −∂S
∂t

= α
!

= E , (42)

hence we have to solve
1

2m

((
∂W

∂q

)2

+ (mωq)2

)
= E . (43)

Rearranging and integrating, we have

W = ±
∫
dq
√

2mE − (mωq)2 (44)

and Hamilton’s principal function is given by

S = −Et±
∫
dq
√

2mE − (mωq)2 . (45)

Now we can derive the equations of motion:

β =
∂S

∂E
= −t±m

∫
dq√

2mE − (mωq)2
(46)
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This integral starts to look very familiar. Evaluating it, we obtain

t+ β = ± 1

ω
arcsin

(√
mω2

2E
q

)
, (47)

and inverting, we have

q(t) = ±
√

2E

mω2
sin(ω(t+ β)) (48)

so ωβ is the phase factor in the general oscillator solution. Using these results, we can evaluate p:

p =
∂S

∂q
= ±

√
2mE − (mωq)2 = ±

√
2mE cos(ω(t+ β)) . (49)

This is exactly what we would expect, of course. We can switch from (α, β) to the initial conditions
(q0, p0) at t = 0, and choose β such that we only need to consider the positive branch of the
solutions.

2.4.2 The Kepler Problem

As another example, we solve the Kepler problem using the Hamilton-Jacobi method. The Hamil-
tonian is given by

H =
1

2m

(
p2
r +

p2
φ

r2

)
+ V (r) = α1 = E . (50)

Since φ is cyclic, we have another constant of the motion:

pφ ≡ α2 . (51)

Making the ansatz
W = W1(r) + α2φ , (52)

the time-independent Hamilton-Jacobi equation becomes

1

2m

((
∂W1

∂r

)2

+
α2

2

r2

)
+ V (r) = α1 . (53)

Rearranging, we have

∂W1

∂r
=

√
2m (α1 − V (r))− α2

2

r2
(54)

and integration yields

W = α2φ+

∫
dr

√
2m (α1 − V (r))− α2

2

r2
. (55)

The transformation equations are:

t+ β1 =
∂W

∂α1
= m

∫
dr√

2m (α1 − V (r))− α2
2
r2

, (56)

β2 =
∂W

∂α2
= φ− α2

∫
dr

r2

√
2m (α1 − V (r))− α2

2
r2

. (57)

We immediately obtain the radial and orbital equations t = t(r) and φ = φ(r), with α1 = E and
α2 = l.
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307 Action-Angle Variables

(b)

qi
qi0

qi

pi
pi

(a)

Fig. 9.3 Libration (a) or rotation (b) on the (qi , pi ) phase plane.

This last equation is the projection on the (qi, pi) phase plane of the system’s motion in
phase space.

Definition 9.6.2 A separable Hamiltonian system is said to be multiply periodic if the
projection of the system’s motion on each (qi, pi) phase plane fits one of the two following
categories: (1) the curve pi = pi(qi, α) is closed – that is, qi oscillates between two definite
limits qi = ai, and qi = bi, as in Fig. 9.3(a); (2) pi is a periodic function of qi, with period
qi0 , although qi is not a periodic function of time, as in Fig. 9.3(b).

Case (1) is called libration, a name borrowed from astronomy. An obvious example is
the one-dimensional harmonic oscillator. Case (2) is usuallly referred to as rotation, for
it typically occurs when qi is an angular coordinate. For example, in the case of a rigid
body freely rotating about a fixed axis with qthe rotation angle, upon each complete turn
qvaries by 2 π and the state of the system repeats itself.

Example 9.7 Find the projections on the phase planes of the phase space motion of a
two-dimensional harmonic oscillator.

Solution
In Cartesian coordinates,

H = 1
2 m

(p2
x + p2

y) + kx

2
x2 +

ky

2
y2 (9.114)

and the Hamilton-Jacobi equation (9.54) is separable in the form W(x, y) = W1 (x) +
W2 (y) where

1
2 m

(
dW1

dx

)2

+ kx

2
x2 = αx , (9.115a)

1
2 m

(
dW2

dy

)2

+
ky

2
y2 = αy , (9.115b)

Figure 1: Action-angle variables: Libration (oscillation, (a)) and rotation (b) in phase space. Areas
under the curves indicate the action variables J .

2.5 Action-Angle Variables

Periodic systems are of great importance in practically all branches of physics. Hamilton-Jacobi
theory provides a powerful method for finding the frequencies of such systems that does not require
the detailed solution of the equations of motion. The key is to use canonical transformations to
introduce the so-called action-angle variables.

2.5.1 Definitions

A system whose Hamiltonian does not explicitly depend on time is called separable if for some set
of generalised coordinates q1, . . . , qn Hamilton’s characteristic function can be written in the form

W (q1, . . . , qn, α1, . . . , αn) = W1 (q1, α1, . . . , αn) + · · ·+Wn (qn, α1, . . . , αn) (58)

For such a system, we have

pi =
∂S

∂qi
=
∂Wi

∂qi
= fi (qi, α1, . . . , αn) (59)

This last equation is the projection of the system’s motion in phase space on the (qi, pi) phase
plane.

A separable Hamiltonian system is said to be multiply periodic if the projection of the
system’s motion on these phase planes fits into one of the following categories (cf. worksheet #13):

1. The system undergoes oscillation or libration. The curve pi = pi (qi, α) is closed – that is,
qi oscillates between two definite limits qi = ai, and qi = bi, as in Fig. 2(a).

2. pi is a periodic function of qi, with period qi0, although qi is not a periodic function of time, as
in Fig. 2(b). Usually, this is referred to as rotation, because it occurs when qi is an angular
coordinate. Upon each complete turn, q changes by 2π and the state of the system repeats
itself.

7



For multiply periodic systems it is possible to make use of action-angle variables to calculate
the frequencies associated with the motion without solving Hamilton’s equations. If the system has
n degrees of freedom, the action variables are defined by

Ji =
1

2π

∮
pidqi, i = 1, . . . , n , (60)

where the integrals are extended over a period of libration or rotation. Geometrically, 2πJi repre-
sents either of the dashed areas in Fig. 1. According to Eq. (59), the Ji are functions of the αi.
Conversely, we have

αi = αi (J1, . . . , Jn) . (61)

Using these relations, we can express Hamilton’s characteristic function as W (q, J), and identify the
constants Ji instead of the αi with the new momenta. For the canonical transformation generated
by W (q, J), the transformed Hamiltonian becomes

K = H = α1 = α1 (J1, . . . , Jn) ≡ H (J1, . . . , Jn) , (62)

which is simply the original Hamiltonian H expressed as a function of the action variables. The
angle variables φi are the canonical conjugates to Ji

φi =
∂W

∂Ji
, (63)

and their equations of motion are

φ̇i =
∂H

∂Ji
= ωi (64)

where the frequencies ωi = ωi (J1, . . . , Jn) are also constants because they can only depend on the
constants Ji. Thus, we can immediately solve the equations of motion (64) to obtain

φi(t) = φi(0) + ωit . (65)

2.5.2 Fundamental Frequencies

In order to interpret the physical meaning of the ωs appearing in Eq. (64), we assume that the
motion is periodic with period τ . Evidently, the projection of the motion on each (qi, pi) phase
plane is also periodic and the ratios of the corresponding frequencies are rational numbers. In other
words, after a time τ each canonical variable will have performed an integer number of complete
cycles. The corresponding change in each angular variable is due to the variation of the coordinates
qi, since the Ji are constants. Therefore, in a period of the motion in phase space, we must have

∆φi =

∮ ∑
k

∂φi
∂qk

dqk =

∮ ∑
k

∂2W

∂qk∂Ji
dqk =

∂

∂Ji

∮ ∑
k

∂W

∂qk
dqk (66)

where we have used the definition of the φi and inverted the order of differentiation and integration.
Using Eqs. 58 and (59), we can rewrite this as

∆φi =
∂

∂Ji

∮ ∑
k

∂Wk

∂qk
dqk =

∂

∂Ji

∑
k

∮
pkdqk (67)

If nk is the number of complete cycles performed by the coordinate qk in period τ, we have

∆φi =
∂

∂Ji

∑
k

nk2πJk = 2πni (68)
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Each variable φi increases by an integer multiple of 2π in a period of the motion, which justifies
considering it an angle. On the other hand,

τ = niτi (69)

where τi is the period associated with the ith degree of freedom. Finally, from Eq. (65), we obtain

∆φi = ωiτ . (70)

We can infer
ωiτi = 2π, i = 1, . . . , n (71)

so that the ωi are the fundamental frequencies of the system, i.e., the frequencies of the periodic
motion executed by each degree of freedom. The partial derivatives of the Hamiltonian with respect
to the action variables yield the fundamental frequencies.

2.5.3 The Harmonic Oscillator

As a first example, we again consider the harmonic oscillator. The Hamiltonian is

H =
p2

2m
+

1

2
mω2q2 ≡ α . (72)

Rearranging the Hamiltonian, we have

p =
∂W

∂q
= ±

√
2mωJ − (mωq)2 . (73)

Now we introduce the action-angle variables (φ, J). The action variable is

2πJ =

∮
p dq = 2

∫ q0

−q0
dq
√

2mα− (mωq)2 = 2mω

∫ q0

−q0
dq

√
2α

mω2
− q2

= mω

q√ 2α

mω2
− q2 +

2α

mω2
arctan

q√
2α
mω2 − q2

∣∣∣∣∣∣
q0

−q0

=
2α

ω

(π
2
−
(
−π

2

))
= 2π

α

ω
, (74)

where the branches of the solutions have been chosen appropriately for the stages of the oscillation
from −q0 to q0 and back. Thus, Hamilton’s characteristic function is

W (q, J) =

∫
dq
√

2mωJ − (mωq)2 , (75)

and we obtain the angle variable

φ =
∂W

∂J
=

∫
dq

mω√
2mωJ − (mωq)2

= arcsin

(√
mω

2J
q

)
, (76)

In the action-angle variables, our Hamiltonian reads

H = Jω , (77)
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p
10

0

−10

q
−10 0 10 0 π 2π

φ

J

10

0

Figure 2: Hamiltonian flow of the harmonic oscillator in the original variables (q, p) (left panel),
and in action-angle variables (φ, J) (right panel).

hence φ is a cyclic variable. Hamilton’s equations then yield

φ̇ =
∂H

∂J
= ω , J̇ = −∂H

∂φ
= 0 , (78)

and we obtain the solutions
J = const. , φ(t) = ωt+ φ0 . (79)

In Fig. 2, we show the Hamiltonian flow in phase space in the original variables as well as the
action-angle variables. We see that the transformation has “straightened out” the flow from the
original ellipses to straight lines.

As a sanity check, we derive the complete transformation and check its canonicity. Combining
Eqs. (73) and (76), we obtain the transformation

q =

√
2J

mω
sinφ , p =

√
2Jmω cosφ . (80)

We can see that it is canonical by evaluating the Poisson bracket, working backward because the
expressions are simpler:{

q, p
}

(φ,J)
=
∂q

∂φ

∂p

∂J
− ∂p

∂φ

∂q

∂J

=

√
2J

mω
cosφ · mω√

2Jmω
cosφ−

(
−
√

2Jmω sinφ
)
· 1

mω

1√
2J
mω

sinφ

= cos2 φ+ sin2 φ = 1 . (81)

2.5.4 Harmonic Oscillator with Two Degrees of Freedom

For a harmonic oscillator with two degrees of freedom, we have

H =
p2
x

2m
+

1

2
mω2x2 +

p2
y

2m
+

1

2
mω2y2 ≡ αx + αy . (82)

The Hamiltonian and Hamilton’s characteristic function are separable. Thus,

px =
∂Wx

∂x
= ±

√
2mαx − (mωx)2 , py =

∂Wy

∂y
= ±

√
2mαy − (mωy)2 . (83)
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Taking the appropriate signs as the oscillator moves from x− to x+ and back, we have

2πJx = 2

∫ x+

x−

dx
√

2mαx − (mωxx)2 . (84)

Using the result for the oscillator with a single degree of freedom, we have

Jx =
α

ωx
, (85)

and analogously,

Jy =
α

ωy
. (86)

We obtain

φ̇x =
∂H

∂Jx
= ωx (87)

and

φ̇y =
∂H

∂Jy
= ωy . (88)

We note that the overall motion is not periodic unless the ratio of the frequencies is a rational
number:

ωy
ωx

=
m

n
, m, n ∈ Z . (89)

2.5.5 Kepler Problem
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3 Perturbation Theory

3.1 General Considerations

[...] As our model system, we will consider the nonlinear Duffing oscillator1

H(q, p) =
p2

2m
+

1

2
mω2

0q
2 +

1

4
αq4 (90)

with α > 0. Hamilton’s equations are

q̇ =
p

m
, ṗ = −kq − αq3 , (91)

which can be combined into the equation of motion

q̈ = −ω2
0q −

α

m
q3 . (92)

In general, this equation needs to be solved numerically, but if the quartic term is weak, we can
attempt to solve it by performing a perturbation expansion around the solution of a harmonic
oscillator.

We introduce the small parameter

ε ≡ α

m
� 1 . (93)

and make an ansatz of the form

q(t) = q0(t) + εq1(t) + ε2q2(t) + . . . , (94)

where q0(t) is the solution of the unperturbed oscillator. Inserting this into the equation of motion,
we obtain

q̈0 + εq̈1 + ε2q̈2 + . . .+ ω2
0

(
q0 + εq1 + ε2q2 + . . .

)
+ ε
(
q0 + εq1 + ε2q2

2 + . . .
)3

= 0 . (95)

To satisfy this equation, the coefficients of each term in this polynomial must vanish independently,
hence we obtain the following system of initial-value problems:

q̈0 + ω2
0q0 = 0 , q0(0) = A , q̇0(0) = 0 , (96)

q̈1 + ω2
0q1 = −q3

0 , q1(0) = 0 , q̇1(0) = 0 , (97)

q̈2 + ω2
0q2 = −3q2

0q1 , q2(0) = 0 , q̇2(0) = 0 , (98)

q̈3 + ω2
0q3 = −3q0q

2
1 − 3q2

0q2 , q2(0) = 0 , q̇2(0) = 0 , (99)

...

where we have assume that the oscillator is released from rest with some amplitude A. The first of
these is easy to solve, and gives us the unperturbed oscillation:

q0(t) = A cosω0t . (100)

Plugging this into the equation of motion for the next-to-leading term q1, we have

q̈1 + q1 = −A3 cos3 ω0t , (101)

1In project #3, we studied the emergence of chaos in the damped, driven version of this oscillator for ω2
0 < 0.

12



p

1.0

0

−1.0

q
−1.0 0 1.0 2.0

exact

LO

NLO

1.0

0

−1.0

q

t [T0]
0 1 2 3 4

Figure 3: Perturbative solutions for the Duffing oscillator with A = 1, ω0, ε = 0.2.

To solve this equation, we rewrite the right-hand side as

cos3 ω0t =
1

4
(3 cosω0t+ cos 3ω0t) , (102)

which is nothing but the Fourier series expansion of cos3 ω0t. Then we obtain

q̈1 + ω2
0q1 = −3A

4
(3 cosω0t+ cos 3ω0t) , (103)

which describes an oscillator with two periodic driving forces. Using the initial conditions, the
solution is

q1(t) =
A3

32ω2
0

(cos 3ω0t− cosω0t)−
3A3

8ω0
t sinω0t . (104)

We immediately see that this supposed next-to-leading order correction to the oscillator is unphys-
ical: While the first term is purely periodic, the second term grows linearly in t, and is therefore
unbounded. The appearance of such secular terms is a general phenomenon that leads to the
failure of naive perturbative expansions. In the present example, the secular term appears because
there is a driving term that oscillates with the same frequency ω0 as the undamped oscillator, and
therefore causes an undamped resonance. In Figure 3, we show the exact phase space trajectories
as well as the leading-order and next-to-leading order perturbative solutions

qLO(t) = q0(t) , qNLO(t) = q0(t) + εq1(t) . (105)

The resonant behavior of the latter is clearly visible.

3.2 The Poincaré-Lindstedt Method

A solution to the problem of the undamped resonances can be found if we recognize another problem
of our perturbative solution, namely that it oscillates at the wrong frequency. Our solution depends
on ω0 and the higher harmonic 3ω0, so the motion is still periodic with the frequency ω0, which
disregards the impact of the quartic perturbation on the oscillation frequency.
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Now note that if q0 were to oscillate at a frequency other than ω0, we would no longer have a
resonance in Eq. (103). Let us therefore make the following ansatz for the frequency,

ω(ε) = ω0 + εω1 + ε2ω2 + . . . . (106)

We introduce a new time variable
τ = ωt , (107)

which implies

dτ = ωdt ⇒ d

dt
= ω2 d

dτ
. (108)

Our equation of motion now becomes

ω2q′′ + ω2
0q + εq3 = 0 , (109)

where the prime indicates the derivative with respect to τ . Now we plug in the expansions for ω(ε)
and q:

(ω0 + εω1 + . . .)2 (q′′0 + εq′′1 + . . .
)

+ ω2
0 (q0 + εq1 + . . .) + ε (q0 + εq1 + . . .)3 = 0 . (110)

We obtain the following system of ODEs:

ω2
0q
′′
0 + ω2

0q0 = 0 , (111)

ω2
0q
′′
1 + ω2

0q1 = −q3
0 − 2ω0ω1q

′′
0 , (112)

ω2
0q
′′
2 + ω2

0q2 = −3q2
0q1 − 2ω0ω1q

′′
1 −

(
ω2

1 + 2ω0ω2

)
q′′0 , (113)

...

The first equation of motion
q′′0 + q0 = 0 , (114)

has the general solution

q0(τ) = A cos τ +B sin τ = A cosωt+B sinωt . (115)

or, to leading order in the frequency,

q0(t) = A cosω0t+B sinω0t . (116)

Now consider the next-to-leading order equation,

q′′1 + q1 = −2
ω1

ω0
q′′0 −

1

ω2
0

y3
0 . (117)

Choosing the initial conditions of an oscillator released from rest,

q(t = 0) = A , q̇(t = 0) = 0 , (118)

the chain rule implies that

q(τ = 0) = A , ωy′(τ = 0) = 0⇒ y′(τ = 0) = 0 . (119)

Our leading-order solution is
q0(τ) = A cos(τ) (120)
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and the next-to-leading order equation becomes

q′′1 + q1 = 2A
ω1

ω0
cos τ − A3

ω2
0

cos3 τ . (121)

Using the identity (102), we find

q′′1 + q1 = − A3

4ω2
0

(3 cos τ + cos 3τ) + 2A
ω1

ω0
cos τ

=
2

ω0

(
Aω1 −

3A3

8ω0

)
cos τ − A3

4ω2
0

cos 3τ . (122)

The first term on the right-hand side could still produce a resonance, but we can cancel it by setting

ω1 =
3A2

8ω0
. (123)

The same approach can be continued through the higher orders in ε, so that the cancellation of all
divergences will define the coefficients ωi of the series expansion of ω(ε). This technique is known
as the Poincaré-Lindstedt method.

Applying the cancellation, our next-to-leading order equation of motion is

q′′1 + q1 = − A3

4ω2
0

cos 3τ . (124)

The solution for the correction is

q1(τ) =
A3

32ω2
0

(cos 3τ − cos τ) (125)

so the full next-to-leading order trajectory is given by

q(τ) = A cos τ + ε
A3

32ω2
(cos 3τ − cos τ) , (126)

or switching back to the original time variable,

q(t) = A cosωt+ ε
A3

32ω2
(cos 3ωt− cosωt) (127)

with

ω = ω0 − ε
3A2

8ω0
. (128)

In Fig. 4, we show the perturbative solutions as well as their phase space trajectories. We see
that both the LO and NLO solutions are stable for all times, and we note that the NLO solution
deforms the shape of the phase space trajectory from that of the unperturbed LO oscillator’s ellipse
to that of the exact solution.
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Figure 4: Poincaré-Lindstedt solutions for the Duffing oscillator with A = 1, ω0, ε = 0.2.

3.3 Canonical Perturbation Theory

3.3.1 Perturbative Canonical Transformations

In the previous sections, we have discussed perturbation theories that are based on expansions of the
equations of motion and their solution. Another common strategy is to work in the Hamiltonian-
Jacobi formalism instead, and to perform a perturbative construction of Hamilton’s principal func-
tion S (or the characteristic function W in the time-independent case).

Let us assume we have a Hamiltonian that can be split into unperturbed and perturbed con-
tributions according to

H(q, p, t) = H0(q, p, t) + εH1(q, p, t) (129)

where ε is a small dimensionless parameter. We introduce the usual type-2 canonical transformation,
generated by S(q, P, t),

H̃(Q,P, t) = H(q, p, t) +
∂

∂t
S(q, P, t) , (130)

and expand all quantities in powers of ε:

qσ = Qσ + εq1,σ + ε2q2,σ + . . . (131)

pσ = Pσ + εp1,σ + ε2p2,σ + . . . (132)

H̃ = H̃0 + εH̃1 + ε2H̃2 + . . . (133)

S = qσPσ + εS1 + ε2S2 + . . . (134)

We use Greek letters to distinguish coordinate indices from perturbation orders. Also note that
the leading-order term of S is the identity transformation (cf. Sec. 2.2). Plugging these equations
into the expressions for the coordinates Q and p, we find

Qσ =
∂S

∂Pσ
= qσ + ε

∂S1

∂Pσ
+ ε2

∂S2

∂Pσ
+ . . . (135)

= Qσ +

(
q1,σ +

∂S1

∂Pσ

)
ε+

(
q2,σ +

∂S2

∂Pσ

)
ε2 + . . . , (136)
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and

pσ =
∂S

∂qσ
= Pσ + ε

∂S1

∂qσ
+ ε2

∂S2

∂qσ
+ . . . (137)

= Pσ + εp1,σ + ε2p2,σ + . . . . (138)

Comparing coefficients, we see that order-by-order in ε, we will have

Qk,σ =
∂Sk
∂Pσ

, pk,σ =
∂Sk
∂qσ

. (139)

Next, we need to expand the Hamiltonian. Since our two sets of coordinates are related by the
perturbative canonical transformation, we perform a Taylor expansion of Hk(q, p, t) and Sk(q, P, t)
around q = Q and p = P , and then express the differences q − Q and p − P in our perturbative
expansion. Thus,

H̃(Q,P, t) = H0(q, p, t) + εH1(q, p, t) +
∂S

∂t

= H0(Q,P, t) +
∑
σ

(
∂H0

∂Qσ
(qσ −Qσ) +

∂H0

∂Pσ
(pσ − Pσ)

)
+ εH1(Q,P, t) + ε

∂

∂t
S1(Q,P, t) +O

(
ε2
)

(140)

Collecting terms and using the relation between S and the coordinates, we have

H̃(Q,P, t) = H0(Q,P, t) +
∑
σ

(
−∂H0

∂Qσ

∂S1

∂Pσ
+
∂H0

∂Pσ

∂S1

∂Qσ
+
∂S1

∂t
+H1

)
ε+O

(
ε2
)

(141)

= H0(Q,P, t) +

(
H1 +

{
S1, H0

}
+
∂S1

∂t

)
ε+O

(
ε2
)
. (142)

This implies
H̃(Q,P, t) = H̃0(Q,P, t) + εH̃1(Q,P, t) + . . . (143)

with

H̃0(Q,P, t) = H0(Q,P, t) (144)

H̃1(Q,P, t) = H1 + {S1, H0}+
∂S1

∂t
(145)

...

Inspecting this tower of equations, we notice a complication: Through next-to-leading order, the
system is underdetermined because Eq. (145) only provides a single equation for two unknowns,
H̃ and S1. Thus, we must specify some additional requirement, e.g., that the transformation
eliminates the perturbation H̃1 completely through O(ε).

Relation to Quantum Mechanics

Our perturbative construction of a canonical transformation mirrors the so-called canonical or Van
Vleck Perturbation Theory in (many-body) quantum mechanics, where a unitary transforma-
tion is implemented to eliminate a perturbation to lowest order in a small parameter.
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In this approach, we consider the Schrdinger equation,

i~
∂

∂t

∣∣ψ 〉 = (H + εH1)
∣∣ψ 〉 (146)

where
∣∣ψ 〉 is an exact eigenstate, and define a mapping between an unperturbed reference state∣∣φ 〉 and this exact solution via ∣∣ψ 〉 ≡ eiS(ε)/~ ∣∣φ 〉 ≡ U(ε)

∣∣φ 〉 (147)

The Hermitian generator S of the transformation is expanded perturbatively,

S(ε) = εS1 + ε2S2 + . . . . (148)

By construction, U(ε) is the identity in the limit ε→ 0 limit.
The Schrödinger equation for

∣∣φ 〉 can be written as

i~
∂

∂t

∣∣φ 〉 = H0

∣∣φ 〉+ε

(
H1 +

1

i~
[
S1, H0

]
+
∂S1

∂t

) ∣∣φ 〉+ . . . ≡ H̃
∣∣φ 〉 (149)

where
[
A,B

]
is the commutator. Note the correspondence with Eq. (145).

3.3.2 Application to Systems with a Single Degree of Freedom

In the following, we will consider a Hamiltonian H that does not depend explicitly on time, so that

H(q, p) = H0(q, p) + εH1(q, p) . (150)

Let us now assume that H0 describes a bounded system that is described in the action angle
variables (φ0, J0). Then

H̃0 (φ0, J0) = H0 (q (φ0, J0) , p (φ0, J0)) = H̃0 (J0) , (151)

as discussed in Sec. 2.5 (cf. Eq. (62)). The transformed perturbation is analogously,

H̃1 (φ0, J0) ≡ H1 (q (φ0, J0) , p (φ0, J0)) , (152)

but it will in general not be cyclic in φ0. We assume that H̃ = H̃0 +εH̃1 is integrable so that action-
angle variables exists, which we denote by (φ, J). Thus, there must be a canonical transformation
from (φ0, J0) to (φ, J), such that

H̃ (φ0(φ, J), J0(φ, J)) ≡ E(J) . (153)

Writing Hamilton’s principal function as

S (φ0, J) = φ0J + εS1 (φ0, J) + ε2S2 (φ0, J) + . . . , (154)

where φ0J is the identity transformation, we have

J0 =
∂S

∂φ0
= J + ε

∂S1

∂φ0
+ ε2

∂S2

∂φ0
+ . . . (155)

φ =
∂S

∂J
= φ0 + ε

∂S1

∂J
+ ε2

∂S2

∂J
+ . . . (156)

18



and
E(J) = E0(J) + εE1(J) + ε2E2(J) + . . . = H̃0 (φ0, J0) + εH̃1 (φ0, J0) . (157)

Now we can expand H̃ (φ0, J0) in powers of J0 − J :

H̃ (φ0, J0) = H̃0 (φ0, J0) + εH̃1 (φ0, J0)

= H̃0(J) +
∂H̃0

∂J

∣∣∣∣∣
φ0

(J0 − J) +
1

2

∂2H̃0

∂J2

∣∣∣∣∣
φ0

(J0 − J)2 + . . .

+ εH̃1 (φ0, J) + ε
∂H̃1

∂J

∣∣∣∣∣
φ0

(J0 − J) + . . . . (158)

Grouping the terms according to powers of ε, we obtain

H̃ (φ0, J0) = H̃0(J) +

(
H̃1 +

∂H̃0

∂J

∂S1

∂φ0

)
ε+

(
∂H̃0

∂J

∂S2

∂φ0
+

1

2

∂2H̃0

∂J2

(
∂S1

∂φ0

)2

+
∂H̃1

∂J

∂S1

∂φ0

)
ε2 + . . .

(159)

where all terms on the right-hand side are functions of φ0 and J . Comparing Eqs. (157) and (159),
we find

E0(J) = H̃0(J) (160)

E1(J) = H̃1 (φ0, J) +
∂H̃0

∂J

∂S1

∂φ0
(161)

E2(J) =
∂H̃0

∂J

∂S2

∂φ0
+

1

2

∂2H̃0

∂J2

(
∂S1

∂φ0

)2

+
∂H̃1

∂J

∂S1

∂φ0
. (162)

We now choose the Sk such that the dependence of the right-hand sides of these equations on the
angle variable φ0 is eliminated. To that end, we average the expressions on the right-hand side over
φ0,

〈f (φ0)〉 =

∫ 2π

0

dφ0

2π
f (φ0) (163)

These averages are performed at fixed J and not at fixed J0.
Now we note that if we hold J constant and increase φ0 by 2π, we will returns to the same

starting point in phase space if the motion is bounded. Therefore, J is a periodic function of φ0,
and we can write

Sk (φ0, J) =
∞∑

m=−∞
Sk,m(J)eimφ0 (164)

for each k > 0, hence 〈
∂Sk
∂φ0

〉
=

1

2π
[Sk(2π, J)− Sk(0, J)] = 0 . (165)

Let us now apply the averaging to the first two orders of the hierarchy. Since H̃0(J) is indepen-
dent of φ0 and ∂S1

∂φ0
is periodic (cf. Eq. (164), we have

E1(J) =
〈
H̃1 (φ0, J)

〉
+
∂H̃0

∂J

〈
∂S1

∂φ0

〉
︸ ︷︷ ︸

=0

(166)
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and S1 must satisfy

∂S1

∂φ0
=

〈
H̃1

〉
− H̃1

ω0(J)
(167)

where ω0(J) = ∂H0
∂J . The right-hand side of this equation averages to zero, and must be a periodic

function of φ0, per our previous discussion. Thus, the solution is

S1 = S1 (φ0, J) + f(J) , (168)

where f(J) is an arbitrary function of J . However, f(J) affects only the difference φ − φ0, which
is changed by a constant value f ′(J), so we can simply take f(J) = 0.

Now consider the second order in ε. We have

E2(J) =

〈
∂H̃1

∂J

∂S1

∂φ0

〉
+

1

2

∂ω0

∂J

〈(
∂S1

∂φ1

)2
〉

+ ν0(J)

〈
∂S2

∂φ0

〉
︸ ︷︷ ︸

=0

. (169)

Thus, we obtain

∂S2

∂φ0
=

1

ω2
0(J)

{〈
∂H̃1

∂J

〉〈
H̃0

〉
−

〈
∂H̃1

∂J
H̃0

〉
− ∂H̃1

∂J

〈
H̃1

〉
+
∂H̃1

∂J
H̃1

+
1

2

∂lnω0

∂J

(〈
H̃2

1

〉
− 2

〈
H̃1

〉2
+ 2

〈
H̃1

〉
− H̃2

1

)}
, (170)

and the expansion for the energy E(J) becomes

E(J) = H̃0(J) + ε
〈
H̃1

〉
+

ε2

ω0(J)

{〈
∂H̃1

∂J

〉〈
H̃1

〉
−

〈
∂H̃1

∂J
H̃1

〉

+
1

2

∂ lnω0

∂J

(〈
H̃2

1 −
〈
H̃1

〉2
)}

+O
(
ε3
)

(171)

Note that we do not need to know S to find E(J). The perturbed fundamental frequencies are

ω(J) = ∂E/∂J . (172)

Sometimes these frequencies are all that is desired, but if necessary, we can reconstruct the full
motion of the system via the successive canonical transformations

(φ, J) −→ (φ0, J0) −→ (q, p) . (173)

3.3.3 Example: The Duffing Oscillator

Let us now return to the Duffing oscillator, and define

H(q, p) =
p2

2m
+

1

2
mω2

0q
2︸ ︷︷ ︸

≡H0

+
1

4
εαq4 . (174)

Note the slight change in definition form previous sections. Here, we will set ε = 1 in the end.
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The action-angle variables for the harmonic oscillator Hamiltonian H0 are (cf. Sec. 2.5)

φ0 = tan−1

(
mω0q

p

)
, J0 =

p2

2mω0
+

1

2
mω0q

2 , (175)

and we have
H0 = ν0J0 . (176)

For the full Hamiltonian, we have

H̃ (φ0, J0) = ω0J0 +
1

4
εα

(√
2J0

mω0
sinφ0

)4

= ω0J0 +
εα

m2ω2
0

J2
0 sin4 φ0

≡ H0 (φ0, J0) + εH̃1 (φ0, J0) . (177)

We can now evaluate the energy contribution from O(ε), which is given by

E1(J) =
〈
H̃1 (φ0, J)

〉
=

αJ2

m2ω2
0

∫ 2π

0

dφ0

2π
sin4 φ0 =

3αJ2

8m2ω2
0

. (178)

For the fundamental frequency, we have

ω(J) = ω0 +
3εαJ

4m2ω2
0

(179)

To lowest order in ε, we may replace J by

J0 =
1

2
mω0A

2 (180)

where A is the amplitude of the q motion. Thus,

ω(A) = ω0 +
3εαA2

8mω0
, (181)

which matches the result we obtained using the Poincar-Lindstedt method (identifying (ε αm)can =
(ε)PL).

Next, we can construct the canonical transformation (φ0, J0)→ (φ, J). We have

ω0
∂S1

∂φ0
=

αJ2

m2ω2
0

(
3

8
− sin4 φ0

)
(182)

and therefore

S (φ0, J) = φ0J +
εαJ2

8m2ω3
0

(
3 + 2 sin2 φ0

)
sinφ0 cosφ0 +O

(
ε2
)
. (183)

Using S, we obtain

φ =
∂S

∂J
= φ0 +

εαJ

4m2ω3
0

(
3 + 2 sin2 φ0

)
sinφ0 cosφ0 +O

(
ε2
)

(184)

J0 =
∂S

∂φ0
= J +

εαJ2

8m2ω3
0

(4 cos 2φ0 − cos 4φ0) +O
(
ε2
)
. (185)

To lowest order, we may again replace J by J0 in these expressions, which yields

J = J0 −
εαJ2

0

8m2ω3
0

(4 cos 2φ0 − cos 4φ0) +O
(
ε2
)
, (186)

φ = φ0 +
εαJ0

8m2ω3
0

(
3 + 2 sin2 φ0

)
sin 2φ0 +O

(
ε2
)
. (187)

These relations implicitly define the coordinates (q, p), but they cannot be inverted analytically.
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3.4 Renormalization Group Approach

[TBD] and see Ref. [1].
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Figure 5: Coupled longitudinal and transversal oscillators.

4 Classical Field Theory

4.1 From Discrete to Continuous Systems

In our discussion of coupled oscillators, we found that the equation of motion for a mass m that
is connected via identical springs to equal masses m is given by (cf. worksheet #12, and exercises
H22, P16)

mη̈i = k(ηi+1 − ηi)− k(ηi − ηi−1) , (188)

where ηi are the displacements of the masses out of equilibrium. It does not matter if the dis-
placement out ouf equilibrium is in longitudinal direction, along the chain of coupled oscillators,
or transversal. The longitudinal case was discussed before, and for the transversal case, we refer to
Fig. 5: We have

mη̈i = −k a

cosα
sinα+ k

a

cosβ
sinβ = −ka tanα+ ka tanβ (189)

and using

tanα =
ηi − ηi−1

a
, tanβ =

ηi+1 − ηi
a

, (190)

we also obtain
mη̈i = ka tanβ − ka tanα = k(ηi+1 − ηi)− k(ηi − ηi−1) . (191)

The Lagrangian leading to these equations of motion is given by

L =
1

2

∑
i

mη̇2
i −

1

2

∑
i

k (ηi+1 − ηi)2 . (192)

Now let us take the continuous limit of this expression, so that the coupled oscillator become
an elastic medium. First, we rewrite the Lagrangian as

L =
1

2

∑
i

a
m

a
η̇2
i −

1

2

∑
i

ka2

(
ηi+1 − ηi

a

)2

=
1

2

∑
i

aµη̇2
i −

1

2

∑
i

aτ

(
ηi+1 − ηi

a

)2

, (193)

where µ = m
a is the mass density and τ = ka the “string” tension or modulus of elasticity of the

medium. We now let a→ 0 while keeping µ and τ fixed. Then

ηi(t) → ϕ(x, t) , (194)
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ηi+1(t)− ηi(t)
a

→ ∂ϕ(x, t)

∂x
, (195)

1

a

(
ηi+1(t)− ηi(t)

a
− ηi(t)− ηi−1(t)

a

)
→ ∂2ϕ(x, t)

∂x2
, (196)∑

i

a →
∫
dx . (197)

The Lagrangian becomes

L =

∫
dx L

(
ϕ,
∂ϕ

∂t
,
∂ϕ

∂x

)
≡
∫
dx

(
1

2
µ

(
∂ϕ

∂t

)2

− 1

2
τ

(
∂ϕ

∂x

)2
)
, (198)

where we have introduced the Lagrangian density

L
(
ϕ,
∂ϕ

∂t
,
∂ϕ

∂x

)
=

1

2
µ

(
∂ϕ

∂t

)2

− 1

2
τ

(
∂ϕ

∂x

)2

. (199)

In continuum mechanics or classical field theory, L is often also referred to as the Lagrangian,
for simplicity.

The continuous limit of the equation of motion is

µ
∂2ϕ

∂t2
= τ

∂2ϕ

∂x2
. (200)

Rearranging, we obtain the wave equation

1

c2

∂2ϕ

∂t2
− ∂2ϕ

∂x2
= 0 , (201)

where we have introduced the phase velocity of the medium,

c =

√
τ

µ
. (202)

4.2 Lagrange Formalism for Fields in Three Dimensions

The results of the previous section were obtained by taking the continuous limit of a Lagrangian
and its Lagrange equations that were defined in discrete variables. Let us now generalize this result
to N fields in three spatial dimensions, and derive the general form of the Lagrange equations for
these fields.

Just as in the case of discrete variables, we introduce the tuple of fields

ϕ(~x, t) ≡ (ϕ1(~x, t), . . . , ϕN (~x, t)) , (203)

where we have used the notation ~x = (x, y, z)T for the spatial vector instead of ~r to prepare for the
extension to relativity later on. The action for these fields can be written as

S =

∫ t2

t1

dt

∫
V
d3x L

(
ϕ,
∂ϕ

∂t
, ~∇ϕ, ~x, t

)
. (204)
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The principle of least action implies

δS = δ

∫ t2

t1

dt

∫
V
d3x L

(
ϕ,
∂ϕ

∂t
, ~∇ϕ, ~x, t

)

=

∫ t2

t1

dt

∫
V
d3x

N∑
α=1

 ∂L
∂ϕα

δϕα +
∂L
∂ϕ̇α

δϕ̇α +
∂L

∂
(
~∇ϕα

) · δ (~∇ϕα)


= 0 , (205)

where the variations of the ϕα are mutually independent and vanish at the endpoints of the time
integration as well as the boundary ∂V of our volume. Using

δϕ̇α =
∂δϕα
∂t

, (206)

just as for discrete coordinates, we can integrate by parts and obtain∫ t2

t1

dt

∫
V
d3x

∂L
∂ϕ̇α

δϕ̇α = −
∫ t2

t1

dt

∫
V
d3x

∂

∂t

(
∂L
∂ϕ̇α

)
δϕα (207)

For the spatial derivatives, we can use

δ
(
~∇ϕα

)
= ~∇ (δϕα) , (208)

the identity
~F · ~∇g = ~∇ · (g ~F )− g~∇ · ~F (209)

and Gauss’ theorem ∫
V
d3x ~∇ · ~F =

∮
∂V
d ~A · ~F (210)

to perform another integration by parts:∫ t2

t1

dt

∫
V
d3x

∂L

∂
(
~∇ϕα

) · δ (~∇ϕα) =

∫ t2

t1

dt

∫
V
d3x

∂L

∂
(
~∇ϕα

) · ~∇ (δϕα)

=

∫ t2

t1

dt

∮
∂V
d ~A · ∂L

∂
(
~∇ϕα

)δϕα − ∫ t2

t1

dt

∫
V
d3x~∇ ·

 ∂L

∂
(
~∇ϕα

)
 δϕα

= −
∫ t2

t1

dt

∫
V
d3x ~∇ ·

 ∂L

∂∂
(
~∇ϕα

)
 δϕα , (211)

where we have used that the variations δϕα vanish on ∂V .
Plugging these results into the principle of least action, we have

δS =

∫ t2

t1

dt

∫
V
d3x

N∑
α=1

 ∂L
∂ϕα

− ∂

∂t

(
∂L
∂ϕ̇α

)
− ~∇ ·

 ∂L

∂
(
~∇ϕα

)
 δϕα = 0 , (212)

and since this relation must hold for arbitrary variations δϕα, we obtain the Lagrange equations

∂

∂t

(
∂L
∂ϕ̇α

)
+ ~∇ ·

 ∂L

∂
(
~∇ϕα

)
− ∂L

∂ϕα
= 0, α = 1, . . . , N . (213)
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Box 4.1: Einstein’s Summation Convention

Einstein’s summation convention offers a compact notation for writing contractions in rela-
tivistic calculations. It states that any index that appears exactly twice in a given term,
once as an upper, contravariant index and once as a lower, covariant index and that is not
otherwise defined is implicitly summed over its entire range.
For example, the scalar product of two four-vectors a and b can be written as

aµb
µ = aµbµ = a0b0 − ~a ·~b = a0b

0 − ~a ·~b . (I4.1-1)

4.3 Relativistic Field Theory

4.3.1 Lagrange Equations

Let us now move on to relativistic fields. We define the contravariant four vector as

xµ ≡ (ct, ~x)T , µ = 0, 1, 2, 3 , (214)

and the covariant four-vector gradient as

∂µ ≡
∂

∂xµ
≡
(

1

c

∂

∂t
, ~∇
)T

. (215)

The corresponding covariant vector and contravariant gradient are

xµ = ηµνx
ν , ∂µ = ηµν∂ν (216)

where we have used Einstein’s summation convention and introduced the metric for flat Minkowski
spacetime2,

ηµν = ηµν = diag(1,−1,−1,−1) . (217)

For future use, we note that
ηµνηνρ = δµρ = diag(1, 1, 1, 1) . (218)

The Lagrange equations (213) are invariant under scale transformations of the coordinates ~x, t,
and we have

∂

∂t

(
∂L

∂(∂ϕα/∂t)

)
=

∂

∂x0

(
∂L

∂(∂ϕα/∂x0)

)
. (219)

Thus, we can assume that time derivatives are taken with respect to x0, which allows us to write
the Lagrange equations in the form

∂µ

(
∂L

∂(∂µϕα)

)
− ∂L
∂ϕα

= 0, α = 1, . . . , N , (220)

which is manifestly covariant : If ϕα is a scalar, the first term is a scalar product between covariant
and contravariant objects, and therefore invariant under any Lorentz transformation between iner-
tial frames. Manifest covariance of the Lagrange equations (220) is ensured if L is a scalar. Since

2We use the particle-physics convention for the signature of the metric, ηµν = diag(+1,−1,−1,−1). In General
Relativity, it is customary to use the opposite signature, ηµν = diag(−1,+1,+1,+1).
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the volume element in Minkowski spacetime, d4x, is a scalar, this requirement also ensures that
the action

S =

∫
d4x L (221)

is a scalar as well.

4.3.2 The Klein-Gordon Field

As a first example of a relativistic field theory, we consider the theory of an uncharged scalar
particle, which is described by the Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 . (222)

Here, m is the particle’s mass (in units such that ~ = c = 1 ). As discussed in the previous section,
the Lagrangian is a scalar under Lorentz transformations, since φ is a scalar field. Comparing this
to the usual expression L = T − V , we see that

T =
1

2

∫
d3x φ̇2 (223)

and

V =
1

2

∫
d3x

(
(~∇φ)2 +m2φ2

)
. (224)

Let us now compute the partial derivatives: We have

∂L
∂(∂µφ)

=
1

2

∂

∂(∂µφ)
(ηνρ∂ρφ ∂νφ) =

1

2

(
ηνρδµρ δνφ+ ηνρδµν δρφ

)
=

1

2
(ηνµδνφ+ ηµρδρφ)

= ∂µφ (225)

and
∂L
∂φ

= −m2φ . (226)

Inserting these results into Eq. (220), we obtain the Klein-Gordon equation

∂µ∂
µφ+m2φ =

(
� +m2

)
φ = 0 , (227)

where we have introduced the D’Alembert operator

� ≡ ∂µ∂µ = ∂2
0 − ~∇2 . (228)

4.3.3 The Electromagnetic Field

An even more important example of relativistic field theory is the electromagnetic field in the
presence of charges and currents described by the four-current

Jµ = (cρ,~j)T . (229)

Here, our independent fields are the components of the four-potential

Aµ = (φ/c, ~A)T . (230)
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The Lagrangian can be written as

L = −1

4
FµνF

µv − µ0J
µAµ (231)

where we have defined the electromagnetic field strength tensor

Fµν ≡ ∂µAν − ∂νAµ . (232)

The partial derivatives are

∂L
∂(∂µAν)

= −1

4

∂

∂(∂µAν)
ηαρηβσ ((∂ρAσ − ∂σAρ) (∂αAβ − ∂βAα))

= −1

4
ηαρηβσ

((
δµρ δ

ν
σ − δµσδνρ

)
(∂αAβ − ∂βAα) + (∂ρAσ − ∂σAρ)

(
δµαδ

ν
β − δ

µ
βδ

ν
α

))
= −1

2
(∂µAν − ∂νAµ + ∂µAν − ∂νAµ)

= −Fµν (233)

and

∂L
∂Aν

= −µ0J
ν , (234)

so the Lagrange equations become

−∂µFµν + µ0J
ν = 0 , (235)

or after rearrangement

∂µF
µν = µ0J

ν . (236)

Traditional Form of Maxwell’s Equations

In terms of the fields ~E and ~B, the field-strength tensor is given by

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0

 , (237)

hence

∂µF
µν =

(
1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

)
0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0



=
(

1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

)
0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0
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=


~∇ · ~E/c

−Ėx/c2 + (~∇× ~B)x
−Ėy/c2 + (~∇× ~B)y
−Ėz/c2 + (~∇× ~B)z

 . (238)

Thus, the Lagrange equations yield the inhomogenous Maxwell equations:

~∇ · ~E = µ0c
2ρ =

ρ

ε0
, (239)

~∇× ~B = µ0
~j +

1

c2
~̇E = µ0

(
~j + ε0 ~̇E

)
, (240)

where we have used c = 1/
√
µ0ε0 .

Maxwell’s homogenous equations are automatically satisfied when the electromagnetic field
is described by the potentials φ and ~A. In the manifestly covariant formalism the homogeneous
equations do not arise from the Lagrangian, but from the identities (see Exercise 4.1):

∂αF βγ + ∂βF γα + ∂γFαβ = 0 . (241)

Exercise 4.1: The Homogenous Maxwell Equations

Prove that Eqs. (11.43) are automatically satisfied if the electromagnetic field strength tensor
is defined as in Eq. (232).

4.4 Hamiltonian Field Theory

While the Lagrangian formalism has the advantage of manifest covariance, the transition to quan-
tum field theory is perhaps easier to achieve in the Hamiltonian formalism, where we can rely on
canonical quantization. Thus, it is worth having a look at Hamiltonian field theory.

4.4.1 Canonical Momenta and Hamiltonian Field Equations

Analogous to Hamiltonian mechanics, we can define the canonical momentum associated with a
field ϕα(x) as

πα(x) ≡ ∂L
∂ϕ̇α(x)

. (242)

For simplicity, we are going to assume here that we do not worry about constraints and that we can
find a unique solution of these equations for ϕ̇α. Then the Hamiltonian density H or energy
density can be defined

H ≡
∑
α

παϕ̇α − L , (243)

The Hamiltonian is a functional of πα, ϕα:

H [ϕα, π
α] =

∫
d3x H

(
ϕα(x), ~∇ϕα(x), πα(x), ~∇πα(x)

)
(244)

is a functional of the fields and their conjugate momenta.
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Using the Hamiltonian, we can write the action as

S =

∫
Ω
d4x

{∑
α

παϕ̇α −H
(
ϕα, ~∇ϕα, πα, ~∇πα

)}
(245)

and derive Hamilton’s equations from the variatonal principle δS = 0. Varying the fields and their
conjugate momenta, we have

δS =

∫
Ω
d4x

∑
α

παδϕ̇α + δπαϕ̇α −
∂H
∂ϕα

δϕα −
∂H

∂
(
~∇ϕα

) · δ (~∇ϕα)

− ∂H
∂πα

δπα − ∂H

∂
(
~∇πα

) · δ (~∇πα)


=

∫
Ω
d4x

∑
α


−π̇α − ∂H

∂ϕα
+ ~∇ · ∂H

∂
(
~∇ϕα

)
 δϕα

+

ϕ̇α − ∂H
∂πα

+ ~∇ · ∂H

∂
(
~∇πα

)
 δπα


= 0 (246)

where we performed the usual integration by parts and exploited that the boundary terms vanish.
Requiring that the coefficients of δϕα and δπα vanish, we obtain

ϕ̇α =
H
πα
− ~∇ · H(

~∇πα
) (247)

π̇α = − H
ϕα

+ ~∇ · H(
~∇ϕα

) (248)

which are the field equations in Hamiltonian form. They can be written more compactly as func-
tional derivatives of H (cf. Box 4.2),

ϕ̇α(x) =
δH

δπα(x)
, π̇α(x) = − δH

δϕα(x)
, (249)

mirroring the structure of Hamilton’s equations for discrete systems.

4.4.2 Application to the Klein-Gordon Field

As an example, we construct the Hamiltonian density and field equations for the Klein-Gordon
field (cf. Eq. (222)). Making the time derivative explicit, we can write

L =
1

2
φ̇2 − 1

2
~∇φ · ~∇φ− m2

2
φ2 (250)

and compute the canonical momentum via

π(x) =
∂L
∂φ̇(x)

= φ̇(x) (251)
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Box 4.2: Functional Derivatives

The procedure we used to study the variation of the action functional (or other functionals
in the calculus of variations) can be used to define the notion of a functional derivative. It
generalizes the derivative of a function with respect to its variables. To that of a functional
with respect to the functions that are its argument.
The Hamiltonian field equations (249) can be understood as the defining equations for the
functional derivatives of H. While we had no nned to use them before, the Lagrange equa-
tions for fields can be understood as the functional derivatives of the action S,

δS

δϕα
= ∂µ

∂L
∂(∂µϕα)

− ∂L
∂ϕα

= 0 , (I4.2-1)

and the discrete Lagrange equations can be written as

δS

δq
= 0 . (I4.2-2)

Consequently,

H = πφ̇− L =
1

2
π2 +

1

2
~∇φ · ~∇φ+

m2

2
φ2 (252)

and Hamilton’s equations read

φ̇(x) = π(x), π̇(x) = ~∇2φ(x)−m2φ(x) . (253)

Taking another time derivative of the first equation and plugging in π̇(x), we obtain the Klein-
Gordon equation:

φ̈(x)− ~∇2φ(x) +m2φ(x) = (� +m2)φ(x) = 0 , (254)

(recall ~ = c = 1).

4.5 Noether’s Theorem

The version of Noether’s theorem that we discussed earlier is really just a special case of the more
general version, which is one of the most powerful tools of classical and quantum field theory.

4.5.1 Infinitesimal Transformation

Let us consider the infinitesimal transformation

xµ −→ x′µ = xµ + ∆xµ (255)

ϕα(x) −→ ϕ′α
(
x′
)

= ϕα(x) + ∆ϕα(x) (256)

with ∆xµ = ∆xµ(x). The variation ∆ differs from the usual variation δ because it takes into
account how the field is affected by the change of both its functional form and its argument. This is
the generalization of the treatment of transformations of the time variable in our earlier discussion
of Noether’s theorem to all spacetime variables. The variation due to the change of form alone is
defined by

δϕα(x) = ϕ′α(x)− ϕα(x) , (257)
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so we have

∆ϕα(x) = ϕ′α
(
x′
)
− ϕα

(
x′
)

+ ϕα
(
x′
)
− ϕα(x) = δϕα

(
x′
)

+ ∂µϕα(x)∆xµ . (258)

Neglecting terms of second order in the infinitesimal variations, this reduces to

∆ϕα(x) = δϕα(x) + (∂µϕα)∆xµ . (259)

We need to be careful here, because the partial derivatives ∂µ commute with the δ variation, but
not with the ∆s due to the changes in the arguments! Thus,

∆ (∂µϕα) 6= ∂µ (∆ϕα) . (260)

Applying Eq. (259) to ∂µϕα we find

∆[∂µϕα(x)] = δ[∂µϕα(x)] + [∂ν∂µϕα]∆xν . (261)

4.5.2 Invariance of the Action

The variation of the action is now defined by

∆S =

∫
Ω′
d4x′ L

(
ϕ′α
(
x′
)
, ∂′µϕ

′
α

(
x′
)
, x′
)
−
∫

Ω
d4x L (ϕα(x), ∂µϕα(x), x) . (262)

The varied Lagrangian is given by

L′ ≡ L
(
ϕ′α
(
x′
)
, ∂′µϕ

′
α

(
x′
)
, x′
)

= L (ϕα(x) + ∆ϕα(x), ∂µϕα(x) + ∆∂µϕα(x), x+ ∆x)

= L (ϕα(x), ∂µϕα(x), x) +
∂L
∂ϕα

∆ϕα +
∂L

∂(∂µϕα)
∆∂µϕα +

∂L
∂xµ

∆xµ

= L+
∂L
∂ϕα

δϕα +
∂L

∂(∂µϕα)
δ(∂µϕα) +

dL
dxµ

∆xµ

≡ L+ δL+
dL
dxµ

∆xµ , (263)

where we have used Eqs. (259) and (261), and introduced the “total partial derivative” with respect
to xµ:

dL
dxµ

=
∂L
∂ϕα

∂ϕα
∂xµ

+
∂L

∂(∂νϕα)

∂(∂νϕα)

∂xµ
+

∂L
∂xµ

. (264)

Next, we consider the spacetime volume element. Using Eq. (255) and the following relation
for infinitesimal changes in a matrix,

B = 1+ εA ⇒ detB = 1+ ε trA , (265)

we see that

d4x′ =
∂
(
x′0, x′1, x′2, x′3

)
∂(x0, x1, x2, x3)

d4x =

(
1 +

∂∆xµ

∂xµ

)
d4x . (266)

Plugging our intermediate results into Eq. (262) and keeping terms up to linear order in the varia-
tions, we obtain

∆S =

∫
Ω
d4x

[
δL+

dL
dxµ

∆xµ + L∂∆xµ

∂xµ

]
=

∫
Ω
d4x

[
δL+

d

dxµ
(L∆xµ)

]
. (267)
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Using the field equations of motion

∂L
∂ϕα

=
d

dxµ

(
∂L

∂(∂µϕα)

)
, (268)

we find

δL =
∂L
∂ϕα

δϕα +
∂L

∂(∂µϕα)
δ(∂µϕα)

=
d

dxµ

(
∂L

∂(∂µϕα)

)
δϕα +

∂L
∂(∂µϕα)

∂µ (δϕα)

=
d

dxµ

(
∂L

∂(∂µϕα)
δϕα

)
. (269)

Plugging this into Eq. (267), the invariance condition for the action becomes

∆S =

∫
Ω
d4x

d

dxµ

{
∂L

∂(∂µϕα)
δϕα + L∆xµ

}
= 0 . (270)

Since we can choose an arbitray spacetime volume, the integrand needs to vanish, and we obtain a
conservation law for the Noether current,

Jµ ≡ ∂L
∂(∂µϕα)

δϕα + L∆xµ (271)

in the form of the continuity equation

∂µJ
µ = 0 . (272)

4.5.3 Conserved Quantities

It is usually more convenient to express the four-current conservation in terms of the infinitesi-
mal parameters of the transformation. Suppose the transformation (255), (256) is specified by R
independent infinitesimal parameters ε1, . . . , εR in the form

∆xµ =

R∑
r=1

Xµ(r)εr ≡ Xµ(r)εr, ∆ϕα =

R∑
r=1

Ψ(r)
α εr ≡ Ψ(r)

α εr . (273)

The indices α and r of the fields and of the transformation parameters may or may not have tensor
character,but we still adhere to Einstein’s summation convention. Substituting the expressions
(273) into Eq. (259) we have

∆xµ = Xµ(r)εr, δϕα =
(

Ψ(r)
α − (δνϕα)Xν(r)

)
εr (274)

and when we insert this into Eq. (262), we obtain

∆S = −
∫

Ω
d4x εr

d

dxµ
Θµ(r) = 0 (275)

with
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Θµ(r) = − ∂L
∂(∂µϕα)

(
Ψ(r)
α − (∂νϕα)Xν(r)

)
− LXµ(r) . (276)

Since the integration region and the parameters εr are arbitrary, Eq. (275) implies that we have
R local conservation laws

∂µΘµ(r) = 0, r = 1, . . . , R , (277)

and noting Θµ(r) =
(

Θ0(r), ~Θ(r)
)

we can write this in the form of the continuity equations

∂0Θ0(r) + ~∇ ·Θ(r) = 0 , r = 1, . . . , R (278)

Now
d

dx0

∫
V
d3x Θ0(r) =

∫
V
d3x ∂0Θ0(r) = −

∫
V
d3x ~∇ ·Θ(r) = −

∮
∂V
d ~A ·Θ(r) (279)

where we have again used the divergence theorem. If V is the entire three-dimensional space and
the fields vanish sufficiently fast at infinity, the surface integral vanishes and the volume integrals

C(r) =

∫
d3x Θ0(r) , r = 1, . . . , R , (280)

are conserved quantities, since they are time independent. Thus, for each R-parametric infinitesimal
transformation of coordinates and fields that leaves the action invariant, we obtain R conserved
quantites C(r) which are known as Noether charges.

4.5.4 Conservation of Four-Momentum

As an example, we consider the spacetime translation

x′µ = xµ + εµ (281)

which does not modify the fields:
∆ϕα = 0 . (282)

The Jacobian of the transformation is the identity, hence the action is invariant if the Lagrangian
does not depend explicitly oon spacetime coordinates, generalizing our previous results for the
explicit time dependence of the Lagrangian or Hamiltonian.

In the present example, the index r of the transformation parameters has four-vector character
and Eq. (273) implies

Xµ(ν) = ηµν , Ψ(ν)
α = 0 . (283)

Substituting these expressions into Eq. (276), we obtain the (canonical) energy-momentum
tensor

Tµν =
∂L

∂(∂µϕα)
(∂ρϕα)ηρν − Lηµν =

∂L
∂(∂µϕα)

∂ϕα
∂xν

− Lηµν (284)

The conserved Noether charges constitute the four-vector

P ν =

∫
d3x T 0ν . (285)
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The zeroth component of this four-vector is the spatial integral of the Hamiltonian density H, i.e.,
the field energy. Covariance and the fact that the conservation of linear momentum is associated
with invariance under translations in space imply that P ν = (P 0 ~p), hence it is the field four-
momentum. Thus, the name for Tµν is appropriate.

Exercise 4.2: The Homogenous Maxwell Equations

Show that the energy-momentum tensor of the scalar field described by the Klein-Gordon
Lagrangian (222) is given by

Tµν = ∂µφ∂νφ− 1

2

(
∂ρφ∂

ρφ−m2φ2
)
ηµν (E4.2-1)

and find the expression for the (conserved) field momentum.

4.5.5 Gauge Invariance and Conservation of Electric Charge

Let us now consider a complex scalar field described by the Lagrangian

L = ∂µφ
∗ ∂µφ−m2φ∗φ (286)

which is easily seen to be invariant under the one-parameter transformation

φ′ = eiλφ, φ∗′ = e−iλφ∗ , (287)

where λ is an arbitrary real number. This transformation is known as a global gauge transfor-
mation. Since the phase factor can be understood as a one-dimensional unitary “matrix”, we say
that the Lagrangian has a global U(1) gauge symmetry.

The infinitesimal version of the transformation with λ = ε is

∆φ = iεφ, ∆φ∗ = −iεφ∗ , (288)

which implies

Xµ(1) = 0, Ψ
(1)
1 = i, Ψ

(1)
2 = −i (289)

with ϕ1 = φ, ϕ2 = φ∗ and the index r taking the single value r = 1. Since the coordinates remain
unchanged, invariance of the Lagrangian implies invariance of the action.

The Noether current (276) has the form

Jµ ≡ Θµ(1) = − ∂L
∂(∂µϕ1)

Ψ
(1)
1 −

∂L
∂(∂µϕ2)

Ψ
(1)
2 = −i (φ∗∂µφ− φ∂µφ∗) (290)

Computing the spatial integral, we see that the conserved Noether charge is

Q = i

∫
d3x

(
φφ̇∗ − φ̇φ∗

)
. (291)

It is intepreted as the electric charge of the scalar particles described by the Lagrangian (286).
Equations (290) and (291) imply that a real scalar field cannot be used to describe charged particles
that couple to the electromagnetic field because Jµ and Q would vanish.
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