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1 Reading
e Lemos, Chapter 9.1-9.6 (9.4 optional), 10.1-10.4 (10.5 optional), 11.1-11.5

e Goldstein, Chapter 10.1-10.5 (10.6-10.8 optional), 12, 13

2 Hamilton-Jacobi Theory and Action-Angle Variables

2.1 The Hamilton-Jacobi Equation

Canonical transformations offer us a great deal of freedom that can be used to simplify the process
of solving the equations of motion of a dynamical system. We have used one possible strategy,
which is to map a given Hamiltonian onto one we know to solve. Hamilton-Jacobi theory explores
another approach, namely to design a canonical transformation that will make all variables cyclic.
If we can make the new Hamiltonian K independent of (Q, P), then

. oK . oK
QZ 8PZ O I 7 aQZ 0 ( )
and
Q; = const., P; = const. (2)

We could try to generate a constant K, but the simplest approach is to actually look for K = 0.
Using a generating function of the type F = Fy(q, P,t), we will have

OF:
K=H(gpt)+ 5> =0 (3)
ot
and since IF
2
;P = ) 4
= B (4)

we can write the condition (3) as

0F» 0F, ) 0F,
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which is the time-dependent Hamilton-Jacobi equation. We see that it is a first-order dif-
ferential equation for Fy in the variables (qi,...,qn,t). The solution for F, will depend on n + 1
independent constants of integration «, ..., a,41. Since Eq. (5) only depends on derivatives of Fj,
it is invariant under the shift

Fy— Fy+antt, (6)

and one of the constants — here chosen to be a,4+1 — can be ignored. Let us assume that the
solution is

F,=S5S=5(q1,--yqn,a1,...ap,t) (7)

where S is called Hamilton’s principal function. Since our goal was to make variables cyclic,
we can choose associated conserved momenta as our independent constants:

P; = a; = const. . (8)

This will specify Fy = Fy(q, P,t) = F»(q, a,t) as required. For a generating function of this type,
the new coordinates are given by (cf. worksheet #14)
08(q, o, t)

ﬁiEQi:Tai, 9)

where the notation (; is meant to emphasize that these are constants as well. To solve for the
motion, we invert Eq. (9) to obtain

oS

Bi = B

qi = Qi(avﬁat) ) (10)

and plug it into the partial derivative linking p; to S (cf. worksheet #14):

oS
pi = B =  pi=pi(e,B,t). (11)

Let us now try to interpret the function S. We know that
oS os . 08

S= "G+ =P+ — 12
2" "o T (12)
as well as oy Py
o ¥ ot (13)
Combining these relations, we find
S=pgi—H=L = S:/dtL. (14)

Thus, S is the action! Whenever it is compatible with the assumptions for a generating function,
the action generates a canonical transformation that brings the state of the system at a general
time t to its state at some fixed initial time 3. In that case, we may also swap our 2n constants «;
and (; for the initial conditions ¢;o and p;p by solving the equations obtained above at t = ty:

q;0 = q; (0[7 /67 tO) ) Pio = Ps (057 /Ba tO) . (15)



2.2 Separation of Variables and the Time-Independent Hamilton-Jacobi Equa-
tion

The structure of the Hamilton-Jacobi equation makes it amenable to a separation of variables
whenever the Hamiltonian does not explicitly depend on one or more of the canonical variables.
Cyclic Variables

Let us assume that ¢, is cyclic. Then we will have

pn—aiqn—(), Pn = CGn, (16)

so we do not have to do any work to turn p, into a constant of the motion. and we only need
to apply an identity transformation to the pair (g,,p,). The generating function for the identity
transformation of these variables is

Fy = ¢, P, = gnan, (17)

which is of the same type as S (cf. worksheet #14). This implies that we can make the following
ansatz for Hamilton’s principal function:

S = Qndn +§(Q17"'7qn*1) (18)
where 55
n—a 1
« aa, (19)

as required, and S will satisfy

oS oS oS
H Qe ey Qi T — =0. 20
<q17 » qn—1 8(]1 8qn_1 « ) + ot ( )
This result is readily generalized: If qx11,...,q, are cyclic, S will have the form
S = Z aigi +S(q1, - qr-1) (21)
i=k+1

and _ _ _

oS oS oS
H — e, — ey Qi t — =0. 22
<q17 7qkaaq17 78qk7ak+17 , ) + ot ( )

Time-Independent Hamiltonians

If the Hamiltonian does not explicitly depend on time, we have

. H
H = on =0, = H = const. (23)
ot
The Hamilton-Jacobi equation becomes
oS ol
H — — =0 24



which means

oS
=H=-——. 25
o 5 (25)
Upon integration, this implies
S(q’aat) = W(qv a) - O[lt, (26)

where we have dropped an additional irrelevant constant, as explained in the previous section.
The function W (q, «) is known as Hamilton’s characteristic function. It satisfies the time-
independent Hamilton-Jacobi equation

H (q, %VD — . (27)

If we apply the same strategy as in the time-dependent case, we obtain the equations of motion
by using

oW o5 oW

= = _ - = t
a(h 3 Ql 61 60(1 (9061 )

ow
Qj=pj =

—— forj>1. 28
da, vz (28)

Dbi

Alternatively, we can directly consider W = F5(q, P) as the generating function and avoid any
reference to S(q, a, t) altogether. Just like before, we will have

pl:aaW> PL:alu H( W):ala (29)
qi

but we will have a non-zero K and a different equation for Q1:

K=oa1=H, (30)
ow
;= . 31
Q= (31)
As a consequence, the equation of motion for ()1 is modified:
. 0K ow
Q1 Do Q1 =t+/p o (32)

Of course, this is just a re-definition of Eq. (28) that allows an explicit linear time dependence.
The equations for the remaining coordinates are the same as before:

oK ow
= =0 = Qj:ﬂj:i. (33)

0= 50, = 9a;
2.3 Transition to Quantum Mechanics

The time-dependent Hamilton-Jacobi equation can be understood as the leading-order term in an
effective theory of quantum mechanics for ~ — 0 (or w/E < 1), the so-called Wenzel-Kramers-
Brillouin or WKB approximation. To see this, we consider the Schrédinger equation

Y A S

We write the wave function as

W = exp <;s> , (35)
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where S(q,t) is complex, and plug it into Eq. (34), obtaining

05 ih 9%S 1 <as

2
_E__%T(ﬂ—i_% (9(]) —l—V(q). (36)

If we now take i — 0, we have
s 1 [(3S\? aS S
= — R — R = — H R
0= o () +ve =5 rm(al). (37)

which is the Hamilton-Jacobi equation for S if the Hamiltonian has the usual form

2.4 Examples
2.4.1 Harmonic Oscillator

Let us study our trusty harmonic oscillator using the time-dependent Hamilton-Jacobi equation.
The Hamiltonian is given by

H= ﬁ + 1mouQQQ =F. (39)
2m 2
Here we will look for one constant P = o and one constant () = 5. The Hamilton-Jacobi equation
reads )
1 oS 9 aS
— — — =0 40
2m<(6q) +<qu>>+0t , (40)

and we can make the separation ansatz
S(qaavt) = W(q,Oé) - at? (41)

as discussed in Sec. 2.2. The Hamilton-Jacobi equation now implies

hence we have to solve
1 (/o2 + (mwsg)?
—_ —_— mw
2m 0q a

Rearranging and integrating, we have

N——
Il
=
=
w
=

W=+ / dq\/2mE — (mwq)? (44)

and Hamilton’s principal function is given by

S=-Et+ /dq V2mE — (mwq)?. (45)
Now we can derive the equations of motion:
oS / dgq
=—=—t+tm 46
’ ) V2mE — (mwq)? (46)
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This integral starts to look very familiar. Evaluating it, we obtain

1 mw?
t =+— i — 47
+ 5 _ arcsin ( %5 q) , (47)

at) = 1| 22 sin(u(t + 5)) (18)

so wp is the phase factor in the general oscillator solution. Using these results, we can evaluate p:

p= gj — j:\/QmE — (mwq)? = iWcos(w(f +0)). (49)

and inverting, we have

This is exactly what we would expect, of course. We can switch from («, 8) to the initial conditions
(qo,po) at t = 0, and choose ( such that we only need to consider the positive branch of the
solutions.

2.4.2 The Kepler Problem

As another example, we solve the Kepler problem using the Hamilton-Jacobi method. The Hamil-
tonian is given by

2
H:;ﬁQﬁ+%)+WM:m:E. (50)
Since ¢ is cyclic, we have another constant of the motion:
Py = Q2. (51)
Making the ansatz
W =Wi(r) + a9, (52)

the time-independent Hamilton-Jacobi equation becomes

2 042
2;((?) +73>+v<r>=a1. (53)

Rearranging, we have

(9W1 a%
5 = \/Zm (g =V (r)) — ) (54)
and integration yields
2
W:a2¢+/dr \/2m(a1—V(r))—(j22. (55)
The transformation equations are:
ow d
t+&—a—m/ . ., (56)
o Vom(a - vir) - 3
ow dr
52_8az¢—042/ 5 (57)
2 r2\/2m (a1 —V(r))— %%

We immediately obtain the radial and orbital equations ¢t = t(r) and ¢ = ¢(r), with a; = E and
a9 = l.
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Figure 1: Action-angle variables: Libration (oscillation, (a)) and rotation (b) in phase space. Areas
under the curves indicate the action variables J.

2.5 Action-Angle Variables

Periodic systems are of great importance in practically all branches of physics. Hamilton-Jacobi
theory provides a powerful method for finding the frequencies of such systems that does not require
the detailed solution of the equations of motion. The key is to use canonical transformations to
introduce the so-called action-angle variables.

2.5.1 Definitions

A system whose Hamiltonian does not explicitly depend on time is called separable if for some set
of generalised coordinates ¢y, ..., q, Hamilton’s characteristic function can be written in the form

W(Qla---7Qn7ala---aan):Wl(Q17a17~--7an)+"'+Wn(Qn70¢17-~-7an) (58)

For such a system, we have

o5 _ow,
C dq; 0Ogi

i = fi(gi,o,...,an) (59)
This last equation is the projection of the system’s motion in phase space on the (g;,p;) phase
plane.

A separable Hamiltonian system is said to be multiply periodic if the projection of the
system’s motion on these phase planes fits into one of the following categories (cf. worksheet #13):

1. The system undergoes oscillation or libration. The curve p; = p; (¢;, ) is closed — that is,
q; oscillates between two definite limits ¢; = a;, and ¢; = b;, as in Fig. 2(a).

2. p; is a periodic function of ¢;, with period g;o, although g; is not a periodic function of time, as
in Fig. 2(b). Usually, this is referred to as rotation, because it occurs when g¢; is an angular
coordinate. Upon each complete turn, ¢ changes by 27 and the state of the system repeats
itself.



For multiply periodic systems it is possible to make use of action-angle variables to calculate
the frequencies associated with the motion without solving Hamilton’s equations. If the system has
n degrees of freedom, the action variables are defined by

1 .
Jz‘_zﬂ_j{pid% i=1,...,n, (60)

where the integrals are extended over a period of libration or rotation. Geometrically, 27.J; repre-
sents either of the dashed areas in Fig. 1. According to Eq. (59), the J; are functions of the «.
Conversely, we have

o =05 (J1,...,Jn) . (61)

Using these relations, we can express Hamilton’s characteristic function as W (g, J), and identify the
constants J; instead of the «; with the new momenta. For the canonical transformation generated
by W(q, J), the transformed Hamiltonian becomes

K:H:Oq:Oél(Jl,...,Jn)EH(Jl,...,Jn), (62)

which is simply the original Hamiltonian H expressed as a function of the action variables. The
angle variables ¢; are the canonical conjugates to J;

ow
I 63
¢l aJZ 9 ( )
and their equations of motion are
. oH
¢; = a% wi (64)
where the frequencies w; = w; (Ji, ..., J,) are also constants because they can only depend on the
constants J;. Thus, we can immediately solve the equations of motion (64) to obtain
gzﬁz(t) = ¢z(0) + w;t. (65)

2.5.2 Fundamental Frequencies

In order to interpret the physical meaning of the ws appearing in Eq. (64), we assume that the
motion is periodic with period 7. Evidently, the projection of the motion on each (g;,p;) phase
plane is also periodic and the ratios of the corresponding frequencies are rational numbers. In other
words, after a time 7 each canonical variable will have performed an integer number of complete
cycles. The corresponding change in each angular variable is due to the variation of the coordinates
q;, since the J; are constants. Therefore, in a period of the motion in phase space, we must have

_ 8@ 0 oW
20~ § 2.5 = Z 05 = 37§ 2 g, 10 (%6)

where we have used the definition of the ¢; and inverted the order of differentiation and integration.
Using Egs. 58 and (59), we can rewrite this as

ow, 0
¢i = o 7{2 u Qk_wapdek (67)
'k

If ny is the number of complete cycles performed by the coordinate g in period 7, we have

0
Ag; = EYA Zk:nkQWJk = 27N, (68)



Each variable ¢; increases by an integer multiple of 27 in a period of the motion, which justifies
considering it an angle. On the other hand,

T = N;T; (69)
where 7; is the period associated with the ith degree of freedom. Finally, from Eq. (65), we obtain
A¢z = W;T. (70)

We can infer
wiTi =2m, i=1,...,n (71)

so that the w; are the fundamental frequencies of the system, i.e., the frequencies of the periodic
motion executed by each degree of freedom. The partial derivatives of the Hamiltonian with respect
to the action variables yield the fundamental frequencies.

2.5.3 The Harmonic Oscillator

As a first example, we again consider the harmonic oscillator. The Hamiltonian is

2

1
H = 2p—m + §mw2q2 =a. (72)
Rearranging the Hamiltonian, we have
ow
P=p-= +/2mw.J — (mwq)?. (73)
q

Now we introduce the action-angle variables (¢, J). The action variable is

q 90 2
m:]{pdqﬂ/ dq\/m:me/ dg | 22
q0 —qo0

mw?

-2 (3- () -2 g

where the branches of the solutions have been chosen appropriately for the stages of the oscillation
from —qg to qop and back. Thus, Hamilton’s characteristic function is

Wi(q,J) = /dq V2mwJ — (mwq)?, (75)

and we obtain the angle variable

ow mw , mw
= a7 = /dq T — (mop)? = arcsin (\ / 2Jq> ; (76)

In the action-angle variables, our Hamiltonian reads

H=Jw, (77)
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Figure 2: Hamiltonian flow of the harmonic oscillator in the original variables (q,p) (left panel),
and in action-angle variables (¢, J) (right panel).

hence ¢ is a cyclic variable. Hamilton’s equations then yield
. OH _ OH

d)_ﬁ_wv __%_07 (78)

and we obtain the solutions
J =const., ¢(t) = wt+ ¢ . (79)

In Fig. 2, we show the Hamiltonian flow in phase space in the original variables as well as the
action-angle variables. We see that the transformation has “straightened out” the flow from the
original ellipses to straight lines.

As a sanity check, we derive the complete transformation and check its canonicity. Combining
Egs. (73) and (76), we obtain the transformation

2J
q:\/%sinqb, p=V2Jmwcoso. (80)

We can see that it is canonical by evaluating the Poisson bracket, working backward because the
expressions are simpler:

_0q0dp 0Op0q
{q7p}(¢’J) = %@ - %w
2J mw 1 1
_ ]2 S W _(_3 . b .
e cos ¢ mcosqb ( V2Jmw sin qb) e Ta sin @

mw

=cos’p+sinp=1. (81)

2.5.4 Harmonic Oscillator with Two Degrees of Freedom

For a harmonic oscillator with two degrees of freedom, we have

2 2

1 p 1
H= 5—; + imwsz + ﬁ + §mw2y2 =agtay. (82)
The Hamiltonian and Hamilton’s characteristic function are separable. Thus,
ow, ow,
P =5 L =+ 2ma, — (mwz)?, p, = 3 Y= i\/Qmay — (mwy)?. (83)
x Y
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Taking the appropriate signs as the oscillator moves from x_ to x4 and back, we have

Ty
2ndy = 2/ dz \/2may, — (mwez)?. (84)

Using the result for the oscillator with a single degree of freedom, we have

and analogously,
o
We obtain -
by = —— = w, 87
b= 5 = (57)
d
an . OH
Py = a7, v (88)

We note that the overall motion is not periodic unless the ratio of the frequencies is a rational
number: w m

Y == mnezZ. (89)
We N

2.5.5 Kepler Problem
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3 Perturbation Theory

3.1 General Considerations

[...] As our model system, we will consider the nonlinear Duffing oscillator!

Hg.p) = 2+ bt + Lag? (90
q,p) = om 2mw0q 404(]
with o > 0. Hamilton’s equations are
. D .
==, p=—kq—aq, (91)
m

which can be combined into the equation of motion
. 9 a 4
- _ - —. 92
q Wo4q mq (92)

In general, this equation needs to be solved numerically, but if the quartic term is weak, we can
attempt to solve it by performing a perturbation expansion around the solution of a harmonic
oscillator.

We introduce the small parameter

™
Il

<1. (93)

3.

and make an ansatz of the form

q(t) = qo(t) + equ(t) + Eqa(t) + . .., (94)

where go(t) is the solution of the unperturbed oscillator. Inserting this into the equation of motion,
we obtain

. . . 3
do+ei+ e+ +wl(oten +eép+..)re(pten +@g+..)"=0. (95

To satisfy this equation, the coefficients of each term in this polynomial must vanish independently,
hence we obtain the following system of initial-value problems:

do +whgo =0, q0(0) = A, do(0) =0, (96)
G +wia = —q5 q1(0) =0, ¢1(0) =0, (97)
G2 + wige = —3a3q q2(0) =0, 42(0) =0, (98)
{3 + wias = —3q0qt — 3434z » q2(0) =0, 42(0) =0, (99)

where we have assume that the oscillator is released from rest with some amplitude A. The first of
these is easy to solve, and gives us the unperturbed oscillation:

qo(t) = Acoswot . (100)
Plugging this into the equation of motion for the next-to-leading term ¢;, we have

g1 + q1 = —A3 cos® wot (101)

'In project #3, we studied the emergence of chaos in the damped, driven version of this oscillator for wg < 0.
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Figure 3: Perturbative solutions for the Duffing oscillator with A = 1,wq, e = 0.2.
To solve this equation, we rewrite the right-hand side as
3 1
cos” wot = 1 (3 coswpt + cos 3wpt) (102)
which is nothing but the Fourier series expansion of cos® wgt. Then we obtain
L 34
G +wha =~ (3 coswot + cos 3wot) , (103)

which describes an oscillator with two periodic driving forces. Using the initial conditions, the
solution is
A3 A3

(cos 3wt — coswpt) — ——tsinwopt . (104)

£ = —
ull) = 552 8wo

We immediately see that this supposed next-to-leading order correction to the oscillator is unphys-
ical: While the first term is purely periodic, the second term grows linearly in ¢, and is therefore
unbounded. The appearance of such secular terms is a general phenomenon that leads to the
failure of naive perturbative expansions. In the present example, the secular term appears because
there is a driving term that oscillates with the same frequency wg as the undamped oscillator, and
therefore causes an undamped resonance. In Figure 3, we show the exact phase space trajectories
as well as the leading-order and next-to-leading order perturbative solutions

qo(t) = qo(t), qnro(t) = qo(t) + eqi(t). (105)

The resonant behavior of the latter is clearly visible.

3.2 The Poincaré-Lindstedt Method

A solution to the problem of the undamped resonances can be found if we recognize another problem
of our perturbative solution, namely that it oscillates at the wrong frequency. Our solution depends
on wo and the higher harmonic 3wg, so the motion is still periodic with the frequency wg, which
disregards the impact of the quartic perturbation on the oscillation frequency.
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Now note that if gy were to oscillate at a frequency other than wgy, we would no longer have a
resonance in Eq. (103). Let us therefore make the following ansatz for the frequency,

w(e) = wo + ewy + wa + ... . (106)
We introduce a new time variable
T =wt, (107)
which implies
d dt = d 2 (108)
T=w — =w—.
dt dr
Our equation of motion now becomes
Wi Fwdqre® =0, (109)

where the prime indicates the derivative with respect to 7. Now we plug in the expansions for w(e)
and q:

(wo +ewr + ... (qf +eql +...) +wd (g0 +eqr+...)+e(go+eq+...)° =0. (110)

We obtain the following system of ODEs:

whdn +wigo =0, (111)
Wi + wig = —qf — 2wowi g (112)
wgqg + w%qQ = —3q8q1 — 2wow1q] — (w% + 2wow2) qa (113)
The first equation of motion
4 + 490 =0, (114)
has the general solution

qo(7) = AcosT + BsinT = Acoswt + Bsinwt. (115)

or, to leading order in the frequency,
qo(t) = Acoswot + Bsinwgt . (116)

Now consider the next-to-leading order equation,
q// +q = _2ﬂq// _ in‘ (117)
1 wo 0 UJ% 0

Choosing the initial conditions of an oscillator released from rest,

qt=0)=A, ¢(t=0)=0, (118)
the chain rule implies that
qr=0=A4, w/(t=0=0=14y'(7=0)=0. (119)
Our leading-order solution is
qo(T) = Acos(T) (120)



and the next-to-leading order equation becomes

A3
4 +q= 24 cos T — —2(30837'. (121)
wo wh
Using the identity (102), we find
3 "
o +a= ——5 (3cosT + cos37) + 24— cosT
40.)0 wo
2 343 A3
— o <Aw1 — 8wo> COST — m cos37. (122)

The first term on the right-hand side could still produce a resonance, but we can cancel it by setting

3A2

W) = —.
80)0

(123)
The same approach can be continued through the higher orders in €, so that the cancellation of all
divergences will define the coefficients w; of the series expansion of w(e). This technique is known
as the Poincaré-Lindstedt method.

Applying the cancellation, our next-to-leading order equation of motion is

AS
g +q =——5cos3T. (124)
4wg
The solution for the correction is
AS
q(r) = 327(% (cos3T — cosT) (125)

so the full next-to-leading order trajectory is given by

q(1) = AcosT + 63252 (cos3T —cosT) , (126)
or switching back to the original time variable,
43
q(t) = Acoswt + €502 (cos 3wt — cos wt) (127)
with 242
W = wy —68—%. (128)

In Fig. 4, we show the perturbative solutions as well as their phase space trajectories. We see
that both the LO and NLO solutions are stable for all times, and we note that the NLO solution
deforms the shape of the phase space trajectory from that of the unperturbed LO oscillator’s ellipse
to that of the exact solution.
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Figure 4: Poincaré-Lindstedt solutions for the Duffing oscillator with A = 1,wg, e = 0.2.

3.3 Canonical Perturbation Theory
3.3.1 Perturbative Canonical Transformations

In the previous sections, we have discussed perturbation theories that are based on expansions of the
equations of motion and their solution. Another common strategy is to work in the Hamiltonian-
Jacobi formalism instead, and to perform a perturbative construction of Hamilton’s principal func-
tion S (or the characteristic function W in the time-independent case).

Let us assume we have a Hamiltonian that can be split into unperturbed and perturbed con-
tributions according to

H(q,p,t) = Ho(q,p,t) + eHi(q,p, t) (129)

where € is a small dimensionless parameter. We introduce the usual type-2 canonical transformation,
generated by S(q, P, t),

~ 0

and expand all quantities in powers of e:

o = Qo + €q1,0 + 62(]2,0 + ...
Do :Pa+€p1,a+€2p2,a+'--
ﬁ:ﬁ0+€ﬁ1+62ﬁ2+...
S =q,Py+ €S + €Sy + ...
We use Greek letters to distinguish coordinate indices from perturbation orders. Also note that

the leading-order term of S is the identity transformation (cf. Sec. 2.2). Plugging these equations
into the expressions for the coordinates ) and p, we find

o oS B 851 2352

ngapgfqa—l—eapa—l—eapa—l—... (135)
B 851 aS2 2
- Q0+ <q1,o'+ 8Pg> €+ <q2,a'+ an) € +..., (136)

16



and

oS 351 2852
o =P, +e— 1
P aqa an + € 90, +. (137)
= Pa+ep1,0+e P2t ... (138)

Comparing coeflicients, we see that order-by-order in ¢, we will have

S, 0Sk

Qk,o:aipga Pk,a:T%-

(139)

Next, we need to expand the Hamiltonian. Since our two sets of coordinates are related by the
perturbative canonical transformation, we perform a Taylor expansion of Hy(q,p,t) and Sk(q, P,t)
around ¢ = @ and p = P, and then express the differences ¢ — () and p — P in our perturbative
expansion. Thus,

H(Q, P,t) = Ho(q,p,t) + eHi(q,p, ) + —

ot
= Ho(Q,P,t) + Z (ggj — Qo) + gfgo (P — Pg)>
+ eH1(Q, P,t) + egtsl(c;), P t)+0 (¢ (140)

Collecting terms and using the relation between S and the coordinates, we have

H(Q,Pt) = Ho(Q,P,t) + Y <_ggo gzil n ZI;O ggl N 8;; i H1> e+ 0 (%) (141)
— Ho(Q, P,t) + <H1+{51,H0}+‘951)e+o(8). (142)
This implies B B B
H(Q,P,t):Ho(Q,P,t)+€H1(Q,P,t)+ (143)
with
-ETO(Q,P7 t) = HO(Q?-P?t) (144)

051

Hy(Q,P,t) = Hy + {51, Ho} + —= 5

(145)

Inspecting this tower of equations, we notice a complication: Through next-to-leading order, the
system is underdetermined because Eq. (145) only provides a single equation for two unknowns,
H and S;. Thus, we must specify some additional requirement, e.g., that the transformation
eliminates the perturbation H; completely through O(e).

Relation to Quantum Mechanics

Our perturbative construction of a canonical transformation mirrors the so-called canonical or Van
Vleck Perturbation Theory in (many-body) quantum mechanics, where a unitary transforma-
tion is implemented to eliminate a perturbation to lowest order in a small parameter.
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In this approach, we consider the Schrdinger equation,
zh— |v) = (H+eH) |¢) (146)

where W> is an exact eigenstate, and define a mapping between an unperturbed reference state
{¢> and this exact solution via

) = eSO g =U(e) o) (147)
The Hermitian generator S of the transformation is expanded perturbatively,
S(e) =eS1 + €Sy + ... . (148)

By construction, U(e) is the identity in the limit ¢ — 0 limit.
The Schrodinger equation for ‘<Z>> can be written as

mf}m H0}¢>+6(H1+ [Sl,H0]+851) o) +...=H|o) (149)

ih

where [A, B] is the commutator. Note the correspondence with Eq. (145).

3.3.2 Application to Systems with a Single Degree of Freedom

In the following, we will consider a Hamiltonian H that does not depend explicitly on time, so that

H(q,p) = Ho(q,p) + €H1(q,p) . (150)

Let us now assume that Hy describes a bounded system that is described in the action angle
variables (¢o, Jo). Then

Hy (¢0, Jo) = Ho (q (¢0. Jo) . p (¢, Jo)) = Ho (Jo) , (151)

as discussed in Sec. 2.5 (cf. Eq. (62)). The transformed perturbation is analogously,

Hy (¢0, Jo) = Hi (q(¢0, Jo) ,p (60, Jo)) (152)

but it will in general not be cyclic in ¢g. We assume that H = ﬁo +eH; is integrable so that action-
angle variables exists, which we denote by (¢, J). Thus, there must be a canonical transformation
from (¢, Jo) to (¢, J), such that

H (¢0(6, ), Jo(¢, ) = E(J). (153)
Writing Hamilton’s principal function as
S(¢0,J):¢QJ+631 (¢0,J)+62S2 ((b(),J)—i-... , (154)

where ¢g.J is the identity transformation, we have

oS 951 505

Jo= — =J+e +e + ... 155

07 9¢o Ao Ao (155)
oS . 051 2652

o=gr =t e (156)
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and
E(J) = Eo(J) + By (J) + €E5(J) + ... = Ho (¢, Jo) + eHi (¢o, Jo) - (157)

Now we can expand H (o, Jo) in powers of Jy — J:

H (¢0, Jo) = Ho (¢0, Jo) + €H (o, Jo)

OH,
o)+ 57| (o=T)+
%o

10%Hy
2 0.J2

I
mz

(Jo—J)* +...
%0

OH,
a.J

+ eHy (g, J) + € (Jo—J)+.... (158)

o)

Grouping the terms according to powers of €, we obtain

~ = ~  9Hy 95 OHy 0S>  19°Hy (0S1\> L OH1 951 »
H (g0, Jo) = HolJ) + <H1 a7 8¢0> <8J 9o 2 02 <a¢0> 0T 960 | €
(159)

where all terms on the right-hand side are functions of ¢y and J. Comparing Egs. (157) and (159),
we find

Eo(J) = Ho(J) (160)
= 9Hy DS,

Ey(J) = H (¢07J)+W% (161)
_ OHydSy  19°Hy (0S1\> 0H, S,

BN =57 960 T2 002 <a¢0> 07 90y (162)

We now choose the Si such that the dependence of the right-hand sides of these equations on the
angle variable ¢ is eliminated. To that end, we average the expressions on the right-hand side over

®0,
27
(F (d0)) = /0 990 ¢ (o) (163)

These averages are performed at fixed J and not at fixed Jy.

Now we note that if we hold J constant and increase ¢g by 27, we will returns to the same
starting point in phase space if the motion is bounded. Therefore, J is a periodic function of ¢,
and we can write

k (¢, J Z Skn(J)e™? (164)

for each k£ > 0, hence

oSy 1
ZERN T 2 — =0. 1
<8¢0> 5 [Sk(27,J) — Sk(0,J)] =0 (165)

Let us now apply the averaging to the first two orders of the hierarchy. Since Efo(J ) is indepen-
dent of ¢y and 851 is periodic (cf. Eq. (164), we have

Bu(0) = (T (00, ) + 20 (990 (166)
\)
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and S7 must satisfy
aS1 _ <ﬁ1> - (167)
Do wo(J)
where wo(J) = %. The right-hand side of this equation averages to zero, and must be a periodic
function of ¢q, per our previous discussion. Thus, the solution is

S1 =51 (o, J) + f(J), (168)

where f(J) is an arbitrary function of J. However, f(J) affects only the difference ¢ — ¢, which
is changed by a constant value f’(.J), so we can simply take f(J) = 0.
Now consider the second order in e. We have

OH, 08 Ow 051\ ? a8
Exld) = < o7 a¢;> a7 <(8¢1> > Tl) <¢>§> | (169)
N—_——

=0

Thus, we obtain

0, [[oil\  Joi g\ oil | oil
Ao w2(J) {< 8.J ><H°> - < a.J H°> a.J <H1> oo th
1 0lnwyq ~, ~ 1\ 2 - —,
+5757 (<Hl>—2<H1> +2<H1>—H1>}, (170)
and the expansion for the energy F(.J) becomes

~ e (Jom\ . Jof -

B() = Ho(7) +e(Bh) + 55 {<8J> () - <8JH1
+5757 <<Hl—<H1>>}+O(e) (171)

Note that we do not need to know S to find E(J). The perturbed fundamental frequencies are

w(J) = 0E/dJ] . (172)

Sometimes these frequencies are all that is desired, but if necessary, we can reconstruct the full
motion of the system via the successive canonical transformations

(¢, J) — (0, Jo) — (g,p) - (173)

3.3.3 Example: The Duffing Oscillator

Let us now return to the Duffing oscillator, and define

H( _ﬁ 1202t 0 174
q,p) = o T 5MwWod” +eaq” (174)
|y —

EHO

Note the slight change in definition form previous sections. Here, we will set ¢ = 1 in the end.
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The action-angle variables for the harmonic oscillator Hamiltonian Hy are (cf. Sec. 2.5)

2
1
¢p = tan™? (m:w) , Jo= P + —mwoq?, (175)

2mwgy 2

and we have
H() = l/oJO . (176)

For the full Hamiltonian, we have

4

~ 1 2J,

H (¢o, Jo) = woJo + —ea (\/ 0 Sin¢o> = woJo + —— Jo sin ¢
4 mwo Wo

= Hy (g0, Jo) + eHy (0, Jo) - (177)
We can now evaluate the energy contribution from O(e), which is given by
aJ? 77 d¢0 o 3aJ?
Ey(J H — 178
1( ) < 1 (¢07 )> meg A 271' ¢0 8m2w % ( )

For the fundamental frequency, we have

3ead
w(J) = wo g (179)
To lowest order in €, we may replace J by
1
Jo = 5mwoA2 (180)
where A is the amplitude of the ¢ motion. Thus,
3eaA?
A) = 181
() =+ o (181)

which matches the result we obtained using the Poincar-Lindstedt method (identifying (€:%)can =

(e)pL)-
Next, we can construct the canonical transformation (¢g, Jo) — (¢, J). We have
951 aJ? (3,
2 22 (2 182
ot = i (§ st (182)
and therefore
eaJ?
S (¢po,J) = ¢0J+8 o (3+251n o) sin ¢ cos ¢ + O (e ) (183)
Using S, we obtain
¢ = %_¢0+46aj (3+251n2¢0) sin ¢ cos ¢o + O (e ) (184)
2
Jozgqi:J+§O‘jg(4cos2¢o—cos4¢o)+o( 2. (185)

To lowest order, we may again replace J by Jy in these expressions, which yields

eaJ2
J=Jy— 8728 (4 cos2¢g — cosdapg) + O ( ) (186)
J .
¢ = o+ 860‘2 03 (3 + 2sin2 ¢p) sin 26 + O (2) . (187)

These relations implicitly define the coordinates (g, p), but they cannot be inverted analytically.
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3.4 Renormalization Group Approach

[TBD] and see Ref. [1].
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a a

Figure 5: Coupled longitudinal and transversal oscillators.

4 Classical Field Theory

4.1 From Discrete to Continuous Systems

In our discussion of coupled oscillators, we found that the equation of motion for a mass m that
is connected via identical springs to equal masses m is given by (cf. worksheet #12, and exercises
H22, P16)

miji = k(miv1 —mi) — k(ni —ni-1) , (188)
where 7; are the displacements of the masses out of equilibrium. It does not matter if the dis-
placement out ouf equilibrium is in longitudinal direction, along the chain of coupled oscillators,

or transversal. The longitudinal case was discussed before, and for the transversal case, we refer to
Fig. 5: We have

mij; = —k sina + k—2 sin f = —katan a + katan 3 (189)
COoS (v cos 3
and using
tana:w7 tanﬁzw’ (190)
a a
we also obtain
mij; = katan § — katana = k(niy1 —mi) — k(0 — ni—1) - (191)

The Lagrangian leading to these equations of motion is given by
1 o 1 2
= §Zm7712 — §Zk(m+1 —772') . (192)
(2 (2

Now let us take the continuous limit of this expression, so that the coupled oscillator become
an elastic medium. First, we rewrite the Lagrangian as

Loy St 3k (Y DS Yar (ML) o

% 4
where 1 = * is the mass density and 7 = ka the “string” tension or modulus of elasticity of the

medium. We now let @ — 0 while keeping p and 7 fixed. Then
u (t) — SO(:L" t) ) (194)
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ma(t) —mit) - Oplxt) (195)

a ox
2 <?7i+1(t)a— m(t)  mi(t) —am—1<t>> R 6eg<t> (196)

Yoa - /(dx. (197)

i

The Lagrangian becomes

B dp Op\ _ 1 [0y 2_1 dp 2

where we have introduced the Lagrangian density

Op 0p\ 1 (0Op 2_1 8902

In continuum mechanics or classical field theory, £ is often also referred to as the Lagrangian,
for simplicity.
The continuous limit of the equation of motion is

0% 0%

— =T 200
Koz = T o2 (200)
Rearranging, we obtain the wave equation
10% 0%
e Y 201
2 ot?2 Oz ’ (201)
where we have introduced the phase velocity of the medium,
T
c=,/—. 202
. (202)

4.2 Lagrange Formalism for Fields in Three Dimensions

The results of the previous section were obtained by taking the continuous limit of a Lagrangian
and its Lagrange equations that were defined in discrete variables. Let us now generalize this result
to N fields in three spatial dimensions, and derive the general form of the Lagrange equations for
these fields.

Just as in the case of discrete variables, we introduce the tuple of fields

o(Z,t) = (p1(Z,t),...,on(Z, 1)), (203)

where we have used the notation & = (x,y, z)T for the spatial vector instead of 7" to prepare for the
extension to relativity later on. The action for these fields can be written as

to agﬂ N
S = ﬁ/d%ﬁ<%,v%@0. (204)
£ v ot
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The principle of least action implies

to .
55:5/ dt/d%ﬁ(go,aaf,v%f,t)

/tl dt/ &z Z:: 9L e+ §é5¢a+?ﬁ ).5(6%)

0P o (v%
(205)

where the variations of the ¢, are mutually independent and vanish at the endpoints of the time
integration as well as the boundary 0V of our volume. Using

. D0pe,
Spa = af , (206)

just as for discrete coordinates, we can integrate by parts and obtain

to to
dt/d?’xéa_ / dt/d3 ( >5a 207
A bu== | 5 (5 (207)

For the spatial derivatives, we can use

5 (Vou) =V (6a) (208)
the identity
F-Vg=V-(gF)—-gV- -F (209)
and Gauss’ theorem
/d%ﬁﬁ:}[ dA . F (210)
v ov

to perform another integration by parts:

to . to .
/ dt/ d3:c(27£ -0 (Vgoa) :/ dt/ d3x?7£ -V (0pq)
t 1% a v% i v 8 cha)
to to E
/ dt }z{ / dt / PREAVE 67 50a
VSOOc 2 v@a)

to .
= —/ dt/ Bz V- L 5Pa s (211)
0o Jv 90 (wa)

where we have used that the variations dp, vanish on V.
Plugging these results into the principle of least action, we have

6S = dt/d3 8(@)—?- ?7£ dpa =0, (212)
t1 8@0( at 8§0a 8 (V@a)

and since this relation must hold for arbitrary variations d¢,, we obtain the Lagrange equations

3<3F>+§. Ok )\ _95 o ac1,.. N (213)
Ot \ 0pq 8<cha) Ipa
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Box 4.1: Einstein’s Summation Convention

Finstein’s summation convention offers a compact notation for writing contractions in rela-
tivistic calculations. It states that any index that appears exactly twice in a given term,
once as an upper, contravariant index and once as a lower, covariant index and that is not
otherwise defined is implicitly summed over its entire range.

For example, the scalar product of two four-vectors a and b can be written as

a,b* = a'b, = a%g — @b =agh’ — - b. (14.1-1)

4.3 Relativistic Field Theory
4.3.1 Lagrange Equations

Let us now move on to relativistic fields. We define the contravariant four vector as
= (ct,0)T, p=0,1,2,3, (214)

and the covariant four-vector gradient as

0 (10 2\"
6“:%:<E§,V> : (215)

The corresponding covariant vector and contravariant gradient are

Ty =N’ , O =n"0, (216)
where we have used Einstein’s summation convention and introduced the metric for flat Minkowski
spacetime?,

Ny = 7]“” = diag(l, —-1,—-1, —1) . (217)
For future use, we note that
"N = 52‘ = diag(1,1,1,1). (218)

The Lagrange equations (213) are invariant under scale transformations of the coordinates &, ¢,

and we have
2 oL B i oL (219)
ot \0(0pa/0t) ) 029 \ 0(0ps/0x0) )

Thus, we can assume that time derivatives are taken with respect to z°, which allows us to write
the Lagrange equations in the form

oc )—‘%:0, a=1,...,N, (220)

On (8(8u90a) 0pa

which is manifestly covariant: If . is a scalar, the first term is a scalar product between covariant
and contravariant objects, and therefore invariant under any Lorentz transformation between iner-
tial frames. Manifest covariance of the Lagrange equations (220) is ensured if £ is a scalar. Since

%We use the particle-physics convention for the signature of the metric, n* = diag(+1, —1, —1, —1). In General
Relativity, it is customary to use the opposite signature, n** = diag(—1, +1,+1, +1).
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the volume element in Minkowski spacetime, d*z, is a scalar, this requirement also ensures that
the action

S = / d*z L (221)
is a scalar as well.

4.3.2 The Klein-Gordon Field

As a first example of a relativistic field theory, we consider the theory of an uncharged scalar
particle, which is described by the Lagrangian

L= % . POM P — %m%?. (222)

Here, m is the particle’s mass (in units such that i =c =1 ). As discussed in the previous section,
the Lagrangian is a scalar under Lorentz transformations, since ¢ is a scalar field. Comparing this
to the usual expression L =T — V, we see that

T = % / 3z ¢? (223)
and
1 3 = 1\2 2,2
V=3 d:n((qu) +m¢>). (224)
Let us now compute the partial derivatives: We have
oL 1 0 1 1
B vp — Z (prPsH vp i — Z (pPH wp
=0"¢p (225)
and Py

Inserting these results into Eq. (220), we obtain the Klein-Gordon equation

0" +m?p=(0+m?) ¢ =0, (227)

where we have introduced the D’Alembert operator

0= "9, =2 — V2, (228)

4.3.3 The Electromagnetic Field

An even more important example of relativistic field theory is the electromagnetic field in the
presence of charges and currents described by the four-current

= (ep, 7). (229)
Here, our independent fields are the components of the four-potential

AP = (¢)c, A)T . (230)
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The Lagrangian can be written as

1
L= —ZFWF‘“’ — poJ" A, (231)
where we have defined the electromagnetic field strength tensor
F., =0,A,-0,A,. (232)

The partial derivatives are

oL 1 0
= %7 ((8,Ag — 0,A,) (0aAs — DsAq
1 (0% g 14 14 1% v
= Py <(5550 — 016Y) (0adp — OsAa) + (0pAs — 05A,) (5555 - 5‘5%))
1
= = (A" — AP 1 AT — 5" AV
— _pm (233)
and
oL
= —poJ” 234
so the Lagrange equations become
— 0, F* + poJ” =0, (235)
or after rearrangement
O FH = pmoJ” . (236)
Traditional Form of Maxwell’s Equations
In terms of the fields E and E, the field-strength tensor is given by
0 —E;/¢c —Ey/c —E./c
E./c 0 -B B
py T z Yy
F Ey/c B, 0 —-B, |’ (237)
E./c —By B, 0
hence
0 —E,/c —Ey/c —E./c
w_ (1o o o o)|Efec 0 =B. By
aﬂF - (c ot  Odxr Oy Bz) Ey/C Bz 0 _B:):
E./c —By B, 0
0 —E,;/c —Ey/c —E./c
_ (1@ R @) Epfe 0 -B. B,
cot Ox Jy Oz Ey/c Bz 0 _Bw
E./c —By By 0
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) . (238)

V- E=poctp = L , (239)
60
VxB= 0] + E 1o (] oty 60E> (240)

where we have used ¢ = 1/,/Ho€o .

Maxwell’s homogenous equations are automatically satisfied when the electromagnetic field
is described by the potentials ¢ and A. In the manifestly covariant formalism the homogeneous
equations do not arise from the Lagrangian, but from the identities (see Exercise 4.1):

OFPY 4 OPF L TFF =, (241)

Prove that Egs. (11.43) are automatically satisfied if the electromagnetic field strength tensor
is defined as in Eq. (232).

4.4 Hamiltonian Field Theory

While the Lagrangian formalism has the advantage of manifest covariance, the transition to quan-
tum field theory is perhaps easier to achieve in the Hamiltonian formalism, where we can rely on
canonical quantization. Thus, it is worth having a look at Hamiltonian field theory.

4.4.1 Canonical Momenta and Hamiltonian Field Equations

Analogous to Hamiltonian mechanics, we can define the canonical momentum associated with a

field pq(x) as
oL

() = — .
Opa(z)
For simplicity, we are going to assume here that we do not worry about constraints and that we can

find a unique solution of these equations for ¢,. Then the Hamiltonian density H or energy
density can be defined

(242)

H=> 7% —L, (243)

The Hamiltonian is a functional of 7% ¢:

H [po, 7] = /d?’x H (cpa(x),6900(50),770‘(36),6%0‘(@) (244)

is a functional of the fields and their conjugate momenta.
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Using the Hamiltonian, we can write the action as

S = / d*z {Z %00 — H (4,00“ Voo, T, 6%“)} (245)
Q «

and derive Hamilton’s equations from the variatonal principle S = 0. Varying the fields and their
conjugate momenta, we have

58 = /Q d%%j TG0 + 0% — 525% — (9(5;;) ) (WQ)

0 o 0 -
faz_iéﬂ' 8(6771)-5(V7r)

—/d4xz —7%0‘—87-[4—§~8_,H> 0Pa
Q (63

Ipa 8<Vg0a
+ sba—g;i +ﬁ-a((§;a) 5
=0 (246)

where we performed the usual integration by parts and exploited that the boundary terms vanish.
Requiring that the coefficients of dp, and 7% vanish, we obtain

H H

po=— =V (€7TO‘> (247)
fraz—;:Jrﬁ-(;:a) (248)

which are the field equations in Hamiltonian form. They can be written more compactly as func-
tional derivatives of H (cf. Box 4.2),

buld) = s, (8 =~ (219

mirroring the structure of Hamilton’s equations for discrete systems.

4.4.2 Application to the Klein-Gordon Field

As an example, we construct the Hamiltonian density and field equations for the Klein-Gordon
field (cf. Eq. (222)). Making the time derivative explicit, we can write

1. 1=, = m?
L =202 V- — 2 250
582 =5V Vo - o (250)
and compute the canonical momentum via

m(z) = ——— = d(a) (251)




Box 4.2: Functional Derivatives

The procedure we used to study the variation of the action functional (or other functionals
in the calculus of variations) can be used to define the notion of a functional derivative. It
generalizes the derivative of a function with respect to its variables. To that of a functional
with respect to the functions that are its argument.

The Hamiltonian field equations (249) can be understood as the defining equations for the
functional derivatives of H. While we had no nned to use them before, the Lagrange equa-
tions for fields can be understood as the functional derivatives of the action S,

08 oL oL

69001 . 8(8;L90a) a(Pa ( )
and the discrete Lagrange equations can be written as

08

— =0. 14.2-2

- (14.22)
Consequently,

. 1, 1o, =, m?,
and Hamilton’s equations read
d(x) =n(z), 7(z) = Vi(x) - m’¢(x). (253)

Taking another time derivative of the first equation and plugging in 7(x), we obtain the Klein-
Gordon equation:

-

6(x) = V29 (x) +m’p(z) = (O+m®)¢(z) =0, (254)
(recall h =c=1).

4.5 Noether’s Theorem

The version of Noether’s theorem that we discussed earlier is really just a special case of the more
general version, which is one of the most powerful tools of classical and quantum field theory.

4.5.1 Infinitesimal Transformation

Let us consider the infinitesimal transformation

at — 't = 2t + Axt (255)
(@) — v (2) = pal(@) + Apa(@) (256)

with Az# = Ax#(z). The variation A differs from the usual variation § because it takes into
account how the field is affected by the change of both its functional form and its argument. This is
the generalization of the treatment of transformations of the time variable in our earlier discussion
of Noether’s theorem to all spacetime variables. The variation due to the change of form alone is
defined by

dpa(T) = (Pix(x) —alz), (257)
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so we have

Apy(z) = ¢, (:U') — Pa (:L") + Vo (3:') — va(x) = dpq (:U') + Oppa(x)Axt . (258)
Neglecting terms of second order in the infinitesimal variations, this reduces to
Apa(r) = 6pa(r) + (Oupa) Axt . (259)

We need to be careful here, because the partial derivatives 9, commute with the ¢ variation, but
not with the As due to the changes in the arguments! Thus,

A (Oupa) # Ou (Apa) - (260)
Applying Eq. (259) to 0upq we find
Aldupa(x)] = 60upalz)] + [00upa] Az” . (261)

4.5.2 Invariance of the Action

The variation of the action is now defined by

AS = dz' L (¢, (), ;Lgo/a (z'),2") — / d*r L (palz),0ppalz), ) . (262)
194 Q

The varied Lagrangian is given by
€= L6 () 3l () )

=L ((Poc(x) + A(pa(fr), 8#9004(3:) + Aau%a(l’), T+ Aw)

oL oL oL
= « ’ « ) A « A « Axt
oL oL dl

=L+ 9 —0(0 —Az#

007 T BB et g

dl

= H
= L+0L+ Ak, (263)

where we have used Egs. (259) and (261), and introduced the “total partial derivative” with respect
to xt:

dL 0L dpa . oL  9(0vpa) OL
det  Opy 0zt 0(0ypa) OxH Ozt
Next, we consider the spacetime volume element. Using Eq. (255) and the following relation
for infinitesimal changes in a matrix,

(264)

B=1+¢cA = det B=1+¢ctrA, (265)
we see that 8( 0 ,3)
N N e OAzxH
d*z = T Tt =1 da. 266
o = oy 1= (14 ) (260)

Plugging our intermediate results into Eq. (262) and keeping terms up to linear order in the varia-
tions, we obtain

dL OAxH d
= 4 = Azt = 4 — z
AS /Qd x [5c+ TG S } /Q diz [5£+ o (LAx )} : (267)
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Using the field equations of motion

oL d oL
A e 2
0py  dxh (6‘(8,%;@)) ’ (268)
we find
oL oL
0L =—"0py + =—0(0,0a
8%001 @ a(aﬂgpa) ( /JISO )

d oL oL
S T P, W P
dur <‘o‘<awa>> 20 S Bppm) O (000

- & <a(§foa>5%> . (269)

Plugging this into Eq. (267), the invariance condition for the action becomes

d oL
= [ dz —{ —=—— pl—
AS /Qd T {a(amoa)(sgoa + LAx } 0. (270)

Since we can choose an arbitray spacetime volume, the integrand needs to vanish, and we obtain a
conservation law for the Noether current,

oL
JH = ————6pq + LAZH 271
5(upe) H1E
in the form of the continuity equation
ouJ" =0. (272)

4.5.3 Conserved Quantities

It is usually more convenient to express the four-current conservation in terms of the infinitesi-
mal parameters of the transformation. Suppose the transformation (255), (256) is specified by R

independent infinitesimal parameters €1, ..., eg in the form
R R
Azt = Z XHMe, = XFMe Ap, = Z e, =we, (273)
r=1 r=1

The indices a and r of the fields and of the transformation parameters may or may not have tensor
character,but we still adhere to Finstein’s summation convention. Substituting the expressions
(273) into Eq. (259) we have

[0}

Arkt = XFOe, S = (\W) - (5,,%)XV<T>) & (274)

and when we insert this into Eq. (262), we obtain

AS = — / diz er%@“(r) =0 (275)
0 X

with
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ouir) _ __ 9L (

= (D)~ (8,0,) X)) — LX) 276
56,70 (D) X)) (276)

«

Since the integration region and the parameters ¢, are arbitrary, Eq. (275) implies that we have
R local conservation laws

9,00 =0, r=1,....R, (277)

and noting ©#(") = (@0(7"), é(r)) we can write this in the form of the continuity equations

0" +v.0M =0,  r=1,....R (278)

io d*z ©°") = / APz 90°") = — / Pz V-0 = — f dA- e (279)
dz? Jy, 1% 1% v

where we have again used the divergence theorem. If V' is the entire three-dimensional space and
the fields vanish sufficiently fast at infinity, the surface integral vanishes and the volume integrals

C(m:/d% e ,.—1,...R, (280)

are conserved quantities, since they are time independent. Thus, for each R-parametric infinitesimal
transformation of coordinates and fields that leaves the action invariant, we obtain R conserved
quantites C") which are known as Noether charges.

4.5.4 Conservation of Four-Momentum
As an example, we consider the spacetime translation
't =l + et (281)

which does not modify the fields:
Apa =0. (282)

The Jacobian of the transformation is the identity, hence the action is invariant if the Lagrangian
does not depend explicitly oon spacetime coordinates, generalizing our previous results for the
explicit time dependence of the Lagrangian or Hamiltonian.
In the present example, the index r of the transformation parameters has four-vector character
and Eq. (273) implies
XH) = g =g, (283)

Substituting these expressions into Eq. (276), we obtain the (canonical) energy-momentum
tensor

oL 0L  0pa
T = ————(0ppa)n — Lt = ———— — Lyt 284
8(0upa) ) 8(0,¢2) O, .
The conserved Noether charges constitute the four-vector
P¥ = / 3z T . (285)
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The zeroth component of this four-vector is the spatial integral of the Hamiltonian density H, i.e.,
the field energy. Covariance and the fact that the conservation of linear momentum is associated
with invariance under translations in space imply that P¥ = (P°p), hence it is the field four-
momentum. Thus, the name for T#" is appropriate.

Show that the energy-momentum tensor of the scalar field described by the Klein-Gordon
Lagrangian (222) is given by

TH = OHpd” ¢ — % (0,007 — m*¢*) nH” (B4.2-1)

and find the expression for the (conserved) field momentum.

4.5.5 Gauge Invariance and Conservation of Electric Charge

Let us now consider a complex scalar field described by the Lagrangian
L =0,0"0"¢p—m?¢*¢ (286)
which is easily seen to be invariant under the one-parameter transformation
¢/ _ ei)\¢’ ¢*/ _ €_M¢* 7 (287)

where A is an arbitrary real number. This transformation is known as a global gauge transfor-
mation. Since the phase factor can be understood as a one-dimensional unitary “matrix”, we say
that the Lagrangian has a global U(1) gauge symmetry.

The infinitesimal version of the transformation with A\ = € is

A¢ =iep, A" = —ied*, (288)
which implies
xrm =g, vl =i wl) = (289)

with @1 = ¢, w2 = ¢* and the index r taking the single value r = 1. Since the coordinates remain
unchanged, invariance of the Lagrangian implies invariance of the action.
The Noether current (276) has the form

oL RON oL
8(811@1) ! 8(59#@2)

Computing the spatial integral, we see that the conserved Noether charge is

JH=eml) = oV = —i (6" 0" — 0" ") (290)
Q=i [ d*x (0"~ do") . (201)

It is intepreted as the electric charge of the scalar particles described by the Lagrangian (286).
Equations (290) and (291) imply that a real scalar field cannot be used to describe charged particles
that couple to the electromagnetic field because J* and ) would vanish.
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