PHY422/820: Classical Mechanics

FS 2019
Midterm \#2 Preparation
November 4, 2019

Problem P2 - Two Coupled Masses

Consider the system shown in the figure: Two masses m_{1} and m_{2} are connected to the walls by springs with constants k_{1} and k_{2}, respectively, and to each other with a spring with a different constant k^{\prime}.

1. Construct the Lagrangian and write it in the usual quadratic form:

$$
\begin{equation*}
L=\frac{1}{2} \dot{\vec{\eta}}^{T} \boldsymbol{T} \dot{\vec{\eta}}-\frac{1}{2} \vec{\eta}^{T} \boldsymbol{V} \vec{\eta} . \tag{1}
\end{equation*}
$$

2. Determine the normal modes for the special case where $m_{1}=m, m_{2}=2 m, k_{1}=k, k_{2}=$ $2 k, k^{\prime}=2 k$.

Now consider the case $m_{1}=m_{2}=m, k_{1}=k_{2}=k$, and $k^{\prime}=\epsilon k$ for weak coupling, $\epsilon \ll 1$.
3. Find the normal modes and use them to state a general solution.
4. Assume that the system is set in motion at $t=0$ by displacing the left mass out of rest by an amount d while the right mass is held fixed at its equilibrium position. Show that the motion can be expressed as

$$
\begin{align*}
& \eta_{1}(t)=d \cos \left(\frac{\omega_{2}-\omega_{1}}{2} t\right) \cos \left(\frac{\omega_{1}+\omega_{2}}{2} t\right), \tag{2}\\
& \eta_{2}(t)=d \sin \left(\frac{\omega_{2}-\omega_{1}}{2} t\right) \sin \left(\frac{\omega_{1}+\omega_{2}}{2} t\right) . \tag{3}
\end{align*}
$$

Thus, the masses exhibit beats with a slow frequency $\frac{\omega_{2}-\omega_{1}}{2}$ and a fast frequency $\frac{\omega_{1}+\omega_{2}}{2}$.

