PHY422/820: Classical Mechanics

FS 2019
Midterm \#2 Preparation

November 2, 2019

Problem P10 - Stability of Circular Orbits

In class, we discussed the possible trajectories for an object with energy E that is moving in a central potential $\left.V_{(} r\right)$.

1. Under which condition(s) do we obtain a circular orbit?
2. Determine the equations of motion in polar coordinates for a general potential $V(r)$. What condition does the radial equation of motion have to satisfy for a circular orbit?
3. Now consider a circular trajectory with an added perturbation:

$$
\begin{equation*}
r(t)=R+\epsilon(t), \quad R=\text { const. } \tag{1}
\end{equation*}
$$

Expand the equation of motion through linear order in ϵ to find an ODE for the perturbation. Which condition does $V(r)$ have to satisfy to ensure that the orbit will be stable? (Note: A special case is discussed in P5.)

