

PHY422/820: Classical Mechanics

FS 2019

Final Exam Preparation

December 7, 2019

Problem P12 – Poisson Brackets and Conserved Quantities

The total time derivative of a function $f(\vec{q}, \vec{p}, t)$ can be written as

$$\frac{df}{dt} = \left\{ f, H \right\} + \frac{\partial f}{\partial t} \,. \tag{1}$$

For conserved quantities $g(\vec{q}, \vec{p})$, this implies

$$\frac{dg}{dt} = \left\{g, H\right\} = 0.$$
⁽²⁾

1. Show that the Poisson bracket of two conserved quantities g_1 and g_2 ,

$$I = \left\{g_1, g_2\right\} \tag{3}$$

is conserved as well.

2. Show that the angular momentum $l_i = \sum_{jk} \epsilon_{ijk} x_j p_k$ (i, j, k = 1, ..., 3) satisfies the following algebraic relation:

$$\{l_i, l_j\} = \epsilon_{ijk} l_k \,, \tag{4}$$

where ϵ is the Levi-Civita tensor. Use this relation to prove that a Hamiltonian that is invariant under rotations around the x and y axes is also invariant under rotations around the z axis.