PHY422/820: Classical Mechanics

FS 2019

Final Exam Preparation

December 7, 2019

Problem P12 - Poisson Brackets and Conserved Quantities

The total time derivative of a function $f(\vec{q}, \vec{p}, t)$ can be written as

$$
\begin{equation*}
\frac{d f}{d t}=\{f, H\}+\frac{\partial f}{\partial t} . \tag{1}
\end{equation*}
$$

For conserved quantities $g(\vec{q}, \vec{p})$, this implies

$$
\begin{equation*}
\frac{d g}{d t}=\{g, H\}=0 . \tag{2}
\end{equation*}
$$

1. Show that the Poisson bracket of two conserved quantities g_{1} and g_{2},

$$
\begin{equation*}
I=\left\{g_{1}, g_{2}\right\} \tag{3}
\end{equation*}
$$

is conserved as well.
2. Show that the angular momentum $l_{i}=\sum_{j k} \epsilon_{i j k} x_{j} p_{k}(i, j, k=1, \ldots, 3)$ satisfies the following algebraic relation:

$$
\begin{equation*}
\left\{l_{i}, l_{j}\right\}=\epsilon_{i j k} l_{k}, \tag{4}
\end{equation*}
$$

where ϵ is the Levi-Civita tensor. Use this relation to prove that a Hamiltonian that is invariant under rotations around the x and y axes is also invariant under rotations around the z axis.

