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Problem 13 – Constraint on a Curve

[5 Points] A bead of mass m is sliding with velocity v along a curve y = f(x) in the xy plane (i.e.,
the horizontal plane). Use the Lagrange formalism of the first kind to determine the constraint
force acting on the bead.

Problem 14 – Two Masses, One Swinging

[10 Points] Two equal masses m that are connected by a massless string of length l hang over two
ideal massless and frictionless pulleys. The left mass is guided and can only move in a vertical line,
but the right mass can swing.

1. Show that the Lagrangian of the sytem is given by

L = mṙ2 +
1

2
mr2θ̇2 −mgr(1− cosθ) , (1)

where r and θ are defined as shown in the figure.

2. Derive the equations of motion.

3. Assume the left mass starts at rest, and the right mass is
undergoing oscillations with a small amplitude ε. What
is the average acceleration r̈ over a few periods of the
oscillation, and what does this imply for the motion of
the left mass?

6.9. PROBLEMS VI-25

6.9 Problems

Section 6.1: The Euler-Lagrange equations

6.1. Moving plane **

A block of mass m is held motionless on a frictionless plane of mass M and angle of
inclination µ (see Fig. 6.8). The plane rests on a frictionless horizontal surface. The

θ

m

M

Figure 6.8block is released. What is the horizontal acceleration of the plane? (This problem
already showed up as Problem 3.8. If you haven’t already done so, try solving it using
F = ma. You will then have a greater appreciation for the Lagrangian method.)

6.2. Two falling sticks **

Two massless sticks of length 2r, each with a mass m fixed at its middle, are hinged
at an end. One stands on top of the other, as shown in Fig. 6.9. The bottom end
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Figure 6.9

of the lower stick is hinged at the ground. They are held such that the lower stick
is vertical, and the upper one is tilted at a small angle ≤ with respect to the vertical.
They are then released. At this instant, what are the angular accelerations of the two
sticks? Work in the approximation where ≤ is very small.

6.3. Pendulum with an oscillating support **

A pendulum consists of a mass m and a massless stick of length `. The pendulum
support oscillates horizontally with a position given by x(t) = A cos(!t); see Fig. 6.10.
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m

Figure 6.10

What is the general solution for the angle of the pendulum as a function of time?

6.4. Two masses, one swinging ***

Two equal masses m, connected by a massless string, hang over two pulleys (of negli-
gible size), as shown in Fig. 6.11. The left one moves in a vertical line, but the right

m

r

m

θ

Figure 6.11

one is free to swing back and forth in the plane of the masses and pulleys. Find the
equations of motion for r and µ, as shown.

Assume that the left mass starts at rest, and the right mass undergoes small oscillations
with angular amplitude ≤ (with ≤ ø 1). What is the initial average acceleration
(averaged over a few periods) of the left mass? In which direction does it move?

6.5. Inverted pendulum ****

A pendulum consists of a mass m at the end of a massless stick of length `. The other
end of the stick is made to oscillate vertically with a position given by y(t) = A cos(!t),
where A ø `. See Fig. 6.12). It turns out that if ! is large enough, and if the pendulum
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is initially nearly upside-down, then surprisingly it will not fall over as time goes by.
Instead, it will (sort of) oscillate back and forth around the vertical position. If you
want to do the experiment yourself, see the 28th demonstration of the entertaining
collection in (Ehrlich, 1994).

Find the equation of motion for the angle of the pendulum (measured relative to its
upside-down position). Explain why the pendulum doesn’t fall over, and find the
frequency of the back and forth motion.

Section 6.2: The principle of stationary action

6.6. Minimum or saddle **

(a) In eq. (6.26), let t1 = 0 and t2 = T , for convenience. And let ª(t) be an easy-to-
deal-with “triangular” function, of the form

ª(t) =

Ω
≤t/T, 0 ∑ t ∑ T/2,
≤(1 ° t/T ), T/2 ∑ t ∑ T.

(6.93)
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Problem 15 – Atwood Machines

[5 Points] Consider the Atwood machine shown in the figure, consisting of the indicated masses,
several ideal pulleys and a string of fixed length l.

1. Show that the Lagrangian of the machine is given by

L =
7

2
mẋ2 + 3mẋẏ + 2mẏ2 −mg(x− 2y), (2)

where x and y are the lengths indicated in the figure.
(Note that there is some flexibility in the definition of
the lengths.)

2. Show that the Lagrangian is invariant under the trans-
formation x→ x+ 2ε and y → y+ ε, and use Noether’s
theorem to compute the conserved momentum.
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Under what condition is the harmonic-oscillator ¢S in eq. (6.26) negative?

(b) Answer the same question, but now with ª(t) = ≤ sin(ºt/T ).

Section 6.3: Forces of constraint

6.7. Normal force from a plane **

A mass m slides down a frictionless plane that is inclined at an angle µ. Show, using
the method in Section 6.3, that the normal force from the plane is the familiar mg cos µ.

Section 6.5: Conservation Laws

6.8. Bead on a stick *

A stick is pivoted at the origin and is arranged to swing around in a horizontal plane
at constant angular speed !. A bead of mass m slides frictionlessly along the stick.
Let r be the radial position of the bead. Find the conserved quantity E given in eq.
(6.52). Explain why this quantity is not the energy of the bead.

Section 6.6: Noether’s Theorem

6.9. Atwood’s machine **

Consider the Atwood’s machine shown in Fig. 6.13. The masses are 4m, 3m, and
x y
4m 3m m

Figure 6.13

m. Let x and y be the heights of the left and right masses, relative to their initial
positions. Find the conserved momentum.

Section 6.7: Small oscillations

6.10. Hoop and pulley **

A mass M is attached to a massless hoop (of radius R) which lies in a vertical plane.
The hoop is free to rotate about its fixed center. M is tied to a string which winds
part way around the hoop, then rises vertically up and over a massless pulley. A mass
m hangs on the other end of the string (see Fig. 6.14). Find the equation of motion for
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the angle of rotation of the hoop. What is the frequency of small oscillations? Assume
that m moves only vertically, and assume M > m.

6.11. Bead on a rotating hoop **

A bead is free to slide along a frictionless hoop of radius R. The hoop rotates with
constant angular speed ! around a vertical diameter (see Fig. 6.15). Find the equation
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of motion for the angle µ shown. What are the equilibrium positions? What is the
frequency of small oscillations about the stable equilibrium? There is one value of !
that is rather special; what is it, and why is it special?

6.12. Another bead on a rotating hoop **

A bead is free to slide along a frictionless hoop of radius r. The plane of the hoop is
horizontal, and the center of the hoop travels in a horizontal circle of radius R, with
constant angular speed !, about a given point (see Fig. 6.16). Find the equation of
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Figure 6.16

motion for the angle µ shown. Also, find the frequency of small oscillations about the
equilibrium point.

6.13. Mass on a wheel **

A mass m is fixed to a given point on the rim of a wheel of radius R that rolls without
slipping on the ground. The wheel is massless, except for a mass M located at its
center. Find the equation of motion for the angle through which the wheel rolls. For
the case where the wheel undergoes small oscillations, find the frequency.

Problem 16 – Atwood Machines II

[5 Points] Consider the Atwood machine shown in the figure, consisting of two masses m1, m2, an
ideal pulley and a string of fixed length l.

1. Show that the Lagrangian of the machine is given by

L =
1

2
m1ẋ

2 +
1

2
m2ẏ

2 +m1gx+m2gy, (3)

where x and y are the lengths indicated in the figure.

2. Use the Lagrange formalism of the first kind to show
that the tension in the string is

T =
2m1m2

m1 +m2
g . (4)

x y
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(b) In terms of Æ, find the length of string touching the cycloid.

(c) In terms of Æ, find the Lagrangian.

(d) Show that the quantity sinÆ undergoes simple harmonic motion with frequencyp
g/4R, independent of the amplitude.

(e) In place of parts (c) and (d), solve the problem again by using F = ma. This
actually gives a much quicker solution.

Section 6.2: The principle of stationary action

6.30. Dropped ball *

Consider the action, from t = 0 to t = 1, of a ball dropped from rest. From the E-L
equation (or from F = ma), we know that y(t) = °gt2/2 yields a stationary value
of the action. Show explicitly that the particular function y(t) = °gt2/2 + ≤t(t ° 1)
yields an action that has no first-order dependence on ≤.

6.31. Explicit minimization *

For a ball thrown upward, guess a solution for y of the form y(t) = a2t
2 + a1t + a0.

Assuming that y(0) = y(T ) = 0, this quickly becomes y(t) = a2(t
2 ° Tt). Calculate

the action between t = 0 and t = T , and show that it is minimized when a2 = °g/2.

6.32. Always a minimum *

For a ball thrown up in the air, show that the stationary value of the action is always
a global minimum.

6.33. Second-order change *

Let xa(t) ¥ x0(t)+aØ(t). Eq. (6.19) gives the first derivative of the action with respect
to a. Show that the second derivative is

d2

da2
S[xa(t)] =

Z t2

t1

µ
@2L

@x2
Ø2 + 2

@2L

@x@ẋ
ØØ̇ +

@2L

@ẋ2
Ø̇2

∂
dt. (6.96)

6.34. ẍ dependence *

Assume that there is ẍ dependence (in addition to x,ẋ,t dependence) in the Lagrangian
in Theorem 6.1. There will then be the additional term (@L/@ẍa)Ø̈ in eq. (6.19). It is
tempting to integrate this term by parts twice, and then arrive at a modified form of
eq. (6.22):

@L

@x0
° d

dt

µ
@L

@ẋ0

∂
+

d2

dt2

µ
@L

@ẍ0

∂
= 0. (6.97)

Is this a valid result? If not, where is the error in the reasoning?

Section 6.3: Forces of constraint

6.35. Constraint on a circle *

A bead of mass m slides with speed v around a horizontal hoop of radius R. What
force does the hoop apply to the bead? (Ignore gravity.)

6.36. Atwood’s machine *

Consider the standard Atwood’s machine in Fig. 6.31, with masses m1 and m2. Findm1 m2

Figure 6.31
the tension in the string.
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Problem 17 – Coffee Cup and Mass

[5 Points] A coffee cup of mass M is connected to a mass m by a string of length l. The cup hangs
over a frictionless pulley of negligible size, and the mass is initially held with the string horizontal,
as shown in the figure. The mass m is then released. Assume that m somehow does not run into
the string holding the cup up.

1. Show that the Lagrangian of the system is given by

L =
1

2
m

(
ṙ2 + r2θ̇2

)
+

1

2
Mṙ2 +mgr sin θ +Mg(l − r),

(5)
where r is the length of string between m and the pulley
and θ (the angle that the string to m makes with the
horizontal).

2. Determine the equations of motion. Show that the cof-
fee cup will initially fall, but eventually reach a lowest
point and then rise back up.

6.10. EXERCISES VI-29

6.10 Exercises

Section 6.1: The Euler-Lagrange equations

6.25. Spring on a T **

A rigid T consists of a long rod glued perpendicularly to another rod of length ` that
is pivoted at the origin. The T rotates around in a horizontal plane with constant
frequency !. A mass m is free to slide along the long rod and is connected to the
intersection of the rods by a spring with spring constant k and relaxed length zero (see
Fig. 6.27). Find r(t), where r is the position of the mass along the long rod. There is
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Figure 6.27

a special value of !; what is it, and why is it special?

6.26. Spring on a T, with gravity ***

Consider the setup in the previous exercise, but now let the T swing around in a
vertical plane with constant frequency !. Find r(t). There is a special value of !;
what is it, and why is it special? (You may assume ! <

p
k/m.)

6.27. CoÆee cup and mass **

A coÆee cup of mass M is connected to a mass m by a string. The coÆee cup hangs over
a frictionless pulley of negligible size, and the mass m is initially held with the string
horizontal, as shown in Fig. 6.28. The mass m is then released. Find the equations

m

r

M

Figure 6.28

of motion for r (the length of string between m and the pulley) and µ (the angle that
the string to m makes with the horizontal). Assume that m somehow doesn’t run into
the string holding the cup up.

The coÆee cup will initially fall, but it turns out that it will reach a lowest point and
then rise back up. Write a program (see Section 1.4) that numerically determines the
ratio of the r at this lowest point to the r at the start, for a given value of m/M . (To
check your program, a value of m/M = 1/10 yields a ratio of about 0.208.)

6.28. Three falling sticks ***

Three massless sticks of length 2r, each with a mass m fixed at its middle, are hinged
at their ends, as shown in Fig. 6.29. The bottom end of the lower stick is hinged at

m

m

ε

m

r

r

Figure 6.29

the ground. They are held such that the lower two sticks are vertical, and the upper
one is tilted at a small angle ≤ with respect to the vertical. They are then released.
At this instant, what are the angular accelerations of the three sticks? Work in the
approximation where ≤ is very small. (You may want to look at Problem 6.2 first.)

6.29. Cycloidal pendulum ****

The standard pendulum frequency of
p

g/` holds only for small oscillations. The
frequency becomes smaller as the amplitude grows. It turns out that if you want to
build a pendulum whose frequency is independent of the amplitude, you should hang
it from the cusp of a cycloid of a certain size, as shown in Fig. 6.30. As the string

α

Figure 6.30

wraps partially around the cycloid, the eÆect is to decrease the length of string in the
air, which in turn increases the frequency back up to a constant value. In more detail:

A cycloid is the path taken by a point on the rim of a rolling wheel. The upside-down
cycloid in Fig. 6.30 can be parameterized by (x, y) = R(µ ° sin µ, °1 + cos µ), where
µ = 0 corresponds to the cusp. Consider a pendulum of length 4R hanging from the
cusp, and let Æ be the angle the string makes with the vertical, as shown.

(a) In terms of Æ, find the value of the parameter µ associated with the point where
the string leaves the cycloid.

Problem 18 – Hoop and Pulley

[5 Points] A mass M is attached to a massless hoop (of radius R) which lies in a vertical plane.
The hoop is free to rotate about its fixed center. M is tied to a string which winds part way around
the hoop, then rises vertically up and over a massless pulley. A mass m hangs on the other end of
the string (see figure).

1. Show that the Lagrangian of the machine is given by

L =
1

2
(M +m)R2θ̇2 +MgR cos θ +mgRθ . (6)

2. Find the equation of motion for the angle of rotation
of the hoop. What is the frequency of small oscillations
around the equilibrium? Assume that m moves only
vertically, and that M > m.
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This is invariant under the transformation x ! x + 2≤ and y ! y + ≤. Hence, we can use
Noether’s theorem, with Kx = 2 and Ky = 1. The conserved momentum is then

P =
@L

@ẋ
Kx +

@L

@ẏ
Ky = m(7ẋ + 3ẏ)(2) + m(3ẋ + 4ẏ)(1) = m(17ẋ + 10ẏ). (6.144)

This P is constant. In particular, if the system starts at rest, then ẋ always equals °(10/17)ẏ.

Second solution: The Euler-Lagrange equations are, from eq. (6.143),

7mẍ + 3mÿ = °mg,

3mẍ + 4mÿ = 2mg. (6.145)

Adding the second equation to twice the first gives

17mẍ + 10mÿ = 0 =) d

dt

≥
17mẋ + 10mẏ

¥
= 0. (6.146)

Third solution: We can also solve this problem using F = ma. Since the tension T is the
same throughout the rope, we see that the three F = dP/dt equations are

2T ° 4mg =
dP4m

dt
, 2T ° 3mg =

dP3m

dt
, 2T ° mg =

dPm

dt
. (6.147)

The three forces depend on only two parameters, so there must be some combination of them
that adds up to zero. If we set a(2T ° 4mg) + b(2T ° 3mg) + c(2T ° mg) = 0, then we have
a + b + c = 0 and 4a + 3b + c = 0, which is satisfied by a = 2, b = °3, and c = 1. Therefore,

0 =
d

dt
(2P4m ° 3P3m + Pm)

=
d

dt

≥
2(4m)ẋ ° 3(3m)(°ẋ ° ẏ) + mẏ

¥

=
d

dt
(17mẋ + 10mẏ). (6.148)

6.10. Hoop and pulley

Let the radius to M make an angle µ with the vertical (see Fig. 6.44). Then the coordinatesθ

R

M

m

Figure 6.44

of M relative to the center of the hoop are R(sin µ,° cos µ). The height of m, relative to its
position when M is at the bottom of the hoop, is y = °Rµ. The Lagrangian is therefore
(and yes, we’ve chosen a diÆerent y = 0 reference point for each mass, but such a definition
only changes the potential by a constant amount, which is irrelevant)

L =
1

2
(M + m)R2µ̇2 + MgR cos µ + mgRµ. (6.149)

The equation of motion is then

(M + m)Rµ̈ = g(m ° M sin µ). (6.150)

This is just F = ma along the direction of the string (because Mg sin µ is the tangential
component of the gravitational force on M).

Equilibrium occurs when µ̇ = µ̈ = 0. From eq. (6.150), we see that this happens at sin µ0 =
m/M . Letting µ ¥ µ0 + ±, and expanding eq. (6.150) to first order in ±, gives

±̈ +

µ
Mg cos µ0

(M + m)R

∂
± = 0. (6.151)

The frequency of small oscillations is therefore

! =

r
M cos µ0

M + m

q
g

R
=
≥

M ° m

M + m

¥1/4 q g

R
, (6.152)
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Problem 19 – Pendulum on Inclined Plane

[10 Points] A mass M is free to slide down a frictionless plane inclined at an angle β. A pendulum
of length l and mass m hangs from M (see figure) (assume that M extends a short distance beyond
the side of the plane, so the pendulum can hang down).

1. Show that the Lagrangian of the machine is given by

L =
1

2
Mż2 +

1

2
m

(
ż2 + l2θ̇2 + 2lżθ̇ cos(θ + β)

)

+Mgz sinβ +mg (z sinβ + l cos θ) , (7)

where z is the distance traveled on the plane and θ is
the angle between the pendulum and the vertical axis.

2. Find the equations of motion and determine the equi-
librium positions. Solve them for small displacements
from equilibrium. (Equivalently, you can determine the
normal modes and frequencies.)
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Therefore, µ(t) = C cos(!t + ¡), where

! =

q
1 +

m

M

q
g

`
. (6.173)

The general solutions for µ and x are therefore

µ(t) = C cos(!t + ¡), x(t) = ° Cm`

M + m
cos(!t + ¡) + At + B. (6.174)

The constant B is irrelevant, so we’ll ignore it. The two normal modes are:

• A = 0: In this case, x = °µm`/(M + m). Both masses oscillate with the frequency !
given in eq. (6.173), always moving in opposite directions. The center of mass does not
move (as you can verify).

• C = 0: In this case, µ = 0 and x = At. The pendulum hangs vertically, with both
masses moving horizontally at the same speed. The frequency of oscillations is zero in
this mode.

Remarks: If M ¿ m, then ! =
p

g/`, as expected, because the support essentially stays still.

If m ¿ M , then ! !
p

m/M
p

g/` ! 1. This makes sense, because the tension in the rod is very

large. We can actually be quantitative about this limit. For small oscillations and for m ¿ M , the

tension of mg in the rod produces a sideways force of mgµ on M . So the horizontal F = Ma equation

for M is mgµ = Mẍ, But x º °`µ in this limit, so we have mgµ = °M`µ̈, which gives the desired

frequency. |
6.15. Pendulum support on an inclined plane

Let z be the coordinate of M along the plane, and let µ be the angle of the pendulum (see
Fig. 6.48). In Cartesian coordinates, the positions of M and m are

θ

z

M

m

l

β

Figure 6.48 (x, y)M = (z cosØ,°z sinØ),

(x, y)m = (z cosØ + ` sin µ,°z sinØ ° ` cos µ). (6.175)

DiÆerentiating these positions, we find that the squares of the speeds are

v2
M = ż2,

v2
m = ż2 + `2µ̇2 + 2`żµ̇(cosØ cos µ ° sinØ sin µ). (6.176)

The Lagrangian is therefore

1

2
Mż2 +

1

2
m
≥
ż2 + `2µ̇2 + 2`żµ̇ cos(µ + Ø)

¥
+ Mgz sinØ + mg(z sinØ + ` cos µ). (6.177)

The equations of motion obtained from varying z and µ are

(M + m)z̈ + m`
≥
µ̈ cos(µ + Ø) ° µ̇2 sin(µ + Ø)

¥
= (M + m)g sinØ,

`µ̈ + z̈ cos(µ + Ø) = °g sin µ. (6.178)

Let us now consider small oscillations about the equilibrium point (where µ̈ = µ̇ = 0). We
must first determine where this point is. The first equation above gives z̈ = g sinØ. The
second equation then gives g sinØ cos(µ + Ø) = °g sin µ. By expanding the cosine term, we
find tan µ = ° tanØ, so µ = °Ø. (µ = º ° Ø is also a solution, but this is an unstable
equilibrium.) The equilibrium position of the pendulum is therefore where the string is
perpendicular to the plane.14

14This makes sense. The tension in the string is perpendicular to the plane, so for all the pendulum bob
knows, it may as well be sliding down a plane parallel to the given one, a distance ` away. Given the same
initial speed, the two masses slide down their two “planes” with equal speeds at all times.

Problem 20 – Friction

[10 Points] A dumbbell consisting of two equal masses that are connected by a massless rod of
length l can move in a horizontal plane. The dumbbell is subject to a frictional force that is linear
in the velocity.

1. Show that the Lagrangian for the motion without fric-
tion is

L = m
(
ẋ2 + ẏ2

)
+

1

4
ml2φ̇2 (8)

and Rayleigh’s dissipation function

D = β
(
ẋ2 + ẏ2

)
+

1

4
βl2φ̇2 , (9)

where x, y are the coordinates of the center of mass and
φ is the angle indicated in the figure.

m

m

(x, y)

l

φ

2. Compute the generalized forces Qx, Qy and Qφ for the case with friction, and derive the equa-
tions of motion. State the general solutions in terms of the initial values for the coordinates
(x0, y0, φ0) and velocities (vx0, vy0, ω0).

4


