PHY422/820: Classical Mechanics

FS 2019
Homework \#6 (Due: Oct 11)

October 5, 2019

Problem 21 - Cycloidal Pendulum

[15 Points] An ideal cycloidal pendulum consists of a mass that oscillates under gravity along a frictionless cycloidal track that is parameterized by the following expressions:

$$
\begin{equation*}
x=R(\theta-\sin \theta), \quad y=R(1-\cos \theta), \tag{1}
\end{equation*}
$$

where the vertical y-axis points downward.

1. Show that the Lagrangian for this system is given by

$$
\begin{equation*}
L=2 m R^{2} \sin ^{2}\left(\frac{\theta}{2}\right) \dot{\theta}^{2}+m g R(1-\cos \theta) . \tag{2}
\end{equation*}
$$

Hint:

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

2. Make a point transformation to the new generalized coordinate $u=\cos \left(\frac{\theta}{2}\right)$ and derive the Lagrangian in u.
3. Derive the Lagrange equations and show that the period of oscillation is

$$
\begin{equation*}
\mathcal{T}=4 \pi \sqrt{\frac{R}{g}} \tag{3}
\end{equation*}
$$

independent of the amplitude. C. Huygens recognized this property of the cycloid in 1659 in his attempt to come up with an improved design for a pendulum clock.

A Jupyter notebook that visualizes the oscillations of the ideal and cycloidal pendula as a function of the amplitude will be distributed with the computational homework C06.

Problem 22 - Double Pendulum

[15 Points] Consider a planar double pendulum with lengths l_{1}, l_{2} and masses m_{1}, m_{2} (see figure).

1. Construct the Lagrangian of the system and derive the equations of motion.
2. What are the normal frequencies for small angles $\left(\phi_{1}, \phi_{2} \ll 1\right)$?
Hint: Use the ansatz $\phi_{k}=\varphi_{0, k} \exp (-i \omega t)$ with identical ω for $k=1,2$, and determine ω such that the resulting system of equations has a non-trivial solution for $\phi_{0,1}, \phi_{0,2}$!

Problem C6 - Driven Oscillators

[15 Points] You can find the Jupyter notebook with comments and code fragments in the Homework section of the course website (http://people.nscl.msu.edu/ hergert/phy820), or by pulling from the course material repository. Follow the procedure described in the Computation section of the website to submit your homework when you are ready.

