PHY422/820: Classical Mechanics

FS 2019
Homework \#7 (Due: Oct 18)

October 15, 2019

Problem 23 - Coupled Oscillators on a Circle

[15 Points] Consider three identical masses m that can move on a circular track of radius R (see figure). Each of the masses is coupled to its neighbors by identical springs. Assume that the resulting potential between masses i and j can be written as

$$
\begin{equation*}
V_{i j}=\frac{D}{2}\left(\phi_{i}-\phi_{j}\right)^{2}, \tag{1}
\end{equation*}
$$

where ϕ_{i} indicates the position of mass i on the track.

1. Construct the Lagrangian of the system and derive the equations of motion for the angles ϕ_{i}.
2. Determine the normal modes, i.e., characteristic fre-
 quencies and vectors (vectors do not need to be normalized). Interpret your solutions.

Problem 24 - Linear Chain of Oscillators

[15 Points] The Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} m \sum_{l=1}^{N-1} \dot{\eta}_{l}^{2}-\frac{1}{2} m \omega_{0}^{2} \sum_{l=0}^{N-1}\left(\eta_{l+1}-\eta_{l}\right)^{2} \tag{2}
\end{equation*}
$$

describes a linear chain of oscillators whose ends are fixed by the boundary conditions

$$
\begin{equation*}
\eta_{0}=0, \eta_{N}=0 . \tag{3}
\end{equation*}
$$

1. State the \boldsymbol{T} and \boldsymbol{V} matrices.
2. Find the equations of motion for $\eta_{1}, \ldots, \eta_{N-1}$ and show that they are solved by the following normal modes:

$$
\begin{equation*}
\eta_{l}^{(s)}=\rho_{l}^{(s)} \cos \left(\omega_{s} t+\phi_{s}\right), \quad s, l=1, \ldots, N-1, \tag{4}
\end{equation*}
$$

where the characteristic frequencies and vectors are given by

$$
\begin{equation*}
\omega_{s} \equiv 2 \omega_{0} \sin \frac{s \pi}{2 N}, \quad \rho_{l}^{(s)} \equiv C^{(s)} \sin \frac{s l \pi}{N}, \tag{5}
\end{equation*}
$$

and $C^{(s)}$ are normalization constants.
Hint:

$$
\begin{aligned}
& \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
& \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta
\end{aligned}
$$

3. Show that all frequencies ω_{s} are distinct, which means that the characteristic vectors for different frequencies are orthogonal in the inner product induced by \boldsymbol{T}.
Hint: Consider the range of values that the argument of the sine function in ω_{s} can take.
4. Show that all characteristic vectors $\vec{\rho}^{(s)}$ are normalized by the same factor

$$
\begin{equation*}
C^{(s)}=\sqrt{\frac{2}{N m}} \tag{6}
\end{equation*}
$$

5. Combine your previous results to prove the following trigonometric identity:

$$
\begin{equation*}
\sum_{l=1}^{N-1} \sin \frac{r l \pi}{N} \sin \frac{s l \pi}{N}=\frac{N}{2} \delta_{r s}, \quad r, s=1, \ldots, N-1 \tag{7}
\end{equation*}
$$

Note: Recall that the inner product induced by \boldsymbol{T} is defined as

$$
\begin{equation*}
\left(\vec{\rho}^{(r)}, \vec{\rho}^{(s)}\right) \equiv \sum_{k, l=1}^{N-1} \rho_{k}^{(r)} T_{k l} \rho_{l}^{(s)} \tag{8}
\end{equation*}
$$

Problem C7 - Coupled Oscillators

[15 Points] You can find the Jupyter notebook with comments and code fragments in the Homework section of the course website (http://people.nscl.msu.edu/ hergert/phy820), or by pulling from the course material repository. Follow the procedure described in the Computation section of the website to submit your homework when you are ready.

