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Problem 25 – Normal Modes and Generalized Forces

[10 Points] In our discussion of coupled oscillators, we only considered the forces resulting from a
potential, e.g., a spring potential, or the Taylor expansion of a general potential around equilibrium.
Let us now assume that each degree of freedom ηj is also subject to a generalized external force
Qj , e.g., friction or a driving term. We can write the equations of motion componentwise as∑

k

Tjkη̈k +
∑
k

Vjkηk = Qj , j = 1, . . . , N , (1)

or vectorially as
T ~̈η + V ~η = ~Q . (2)

1. Show that the equations of motion in the normal mode basis are given by

ζ̈s + ω2ζs =
∑
k

AskQk = (AT ~Q)s , (3)

where the indices s and k refer to the normal mode and original bases, respectively, and A is
the modal matrix built from the characteristic vectors.
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a de¢nite indicator of temperature of CO2 £uid
[10], did not show a statistical correlation with
laser power. These results imply that the present
experimental condition did not cause any consid-
erable artifact to the obtained R^v values.

Based on Raman microscopic analyses, CO2
was identi¢ed in the liquid inclusions (Fig. 2). Be-
side CO2, only C (graphite) was rarely detected on
the wall of the CO2 inclusions. Other components
such as CH4, H2O, N2 and CO were not detected.
Because the liquid inclusions consist mostly of
CO2, a plot of R vs. v for the CO2 Fermi diad
by Raman spectroscopic analyses can be applied
to estimate the internal pressures of the CO2 in-
clusions.

3. Results and discussion

3.1. R^v plot for the CO2 Fermi diad

Fig. 3 shows plots of R vs. v. Internal pressure
of CO2 increases toward the upper right direction
along the lines. The inclusion data plot close to a
line for the gas phase proposed by Bertra¤n [7], but
it might be because CO2 was transformed into the
supercritical state during laser irradiation beyond
the critical point of CO2 (31.1‡C). Overall, there is
no systematic di¡erence in internal pressure be-
tween the two samples, and the R^v plots are
roughly separated into ¢ve regimes: spinel, pyrox-
ene, olivine, £uid inclusion coexisting with vapor
bubbles and gas state indicating a low v regime.
The CO2 inclusions in spinels show the highest v

values among them, and those in pyroxenes fol-
low. Those in olivines show relatively low v val-
ues. This gradation in present internal pressure
between olivine and spinel+pyroxenes certainly
occurs beyond the spectral resolution in the
present study. This is because the wavenumbers
of the Fermi diad were precisely determined
with a resolution enhancement technique as de-
scribed in Section 2. Since such a gradation of
present internal pressure between olivine and py-
roxenes was also reported by microthermometry
for other mantle-derived xenoliths [4], it may be a
general phenomenon for mantle-derived xenoliths,
while the inclusions having vapor bubbles are
plotted on an area of low v value irrespective of
the samples or mineral species. Furthermore,
there are many inclusions showing de¢nitely lower
v values than the inclusions having vapor bub-

Fig. 2. Raman spectra of £uid inclusion. Only two narrow
peaks for CO2 are observed. No Raman signals occur for N2

(2331 cm31) and CO (2140 cm31).

Fig. 3. R^v plot for the CO2 Fermi doublet of CO2 inclu-
sions in several mineral species with data of homogenization
temperatures of CO2 in ¢ve inclusions, which are shown by
arrows. R is the intensity ratio of the CO2 Fermi diad. v is
the separation of wavenumber of the CO2 Fermi diad. The
symbols of inclusions containing vapor bubbles are sur-
rounded with a circle. The homogenization temperature was
analyzed for ¢ve CO2 inclusions in olivine, opx and cpx
from a xenolith of En1. An inclusion in a cpx showed a low
homogenization temperature of 318.1‡C. This may be ex-
plained by partial loss of CO2, because it was observed that
this inclusion was penetrated by many Wm-size melt inclu-
sions (Fig. 1c). The reproducibility of the homogenization
temperature was approximately ! 0.2‡C estimated by triple
analyses of the same CO2 inclusion. The reproducibility of v
and R for data with moderate intensity (counts) is typically
V0.15 cm31 and V0.2, respectively. Because inclusions with
low v values have a lower density than those with high v
values, the data tend to show wide variation particularly in
the R value.
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2. Let us now consider CO2 as a classical tri-atomic molecule. To perform molecular spectroscopy,
samples are exposed to (nearly) monochromatic radiation to excite their molecular normal
modes. The changing fields of the electromagnetic waves can be viewed as a periodic driving
force with a (nearly) unique external frequency ωext.

The left figure shows an infrared absorption spectrum. Dips in the radiation transmission indi-
cate wave numbers k = 2π/λ = ω/c at which the molecule is absorbing high amounts of the
incoming radiation, i.e., a normal mode’s resonance frequency.

The right figure shows a spectrum from Raman scattering, which is an approach that can excite
normal modes that are not activated by simple IR irradiation.

Which normal modes of CO2 do the highlighted peaks A (kA ≈ 2350 cm−1) and B (kB ≈
1388 cm−1) correspond to? Are the relative positions of the peaks (roughly) consistent with
expectations, based on the mass ratio of the C and O atoms?

Problem 26 – Central Forces and Trajectories

[5 Points] In class we have shown the following relation between a central force f(r) and the
allowed trajectories r(φ):

−dV
dr

= f(r) =
l2

mr4

[
d2r

dφ2
− 2

r

(
dr

dφ

)2

− r

]
. (4)

Use Eq. (4) to find the central force that gives rise to the spiraling trajectory

r(φ) = r0 exp(−φ) . (5)

Problem 27 – The Laplace-Runge-Lenz Vector

[15 Points] As shown in class, a general trajectory in the potential V (r) = −κ
r is given by the

conic section with focal parameter p and eccentricity ε:

r(φ) =
p

1 + ε cosφ
. (6)

For such trajectories, there is an additional conserved quantity besides the angular momentum ~l
and energy E, the so-called Laplace-Runge-Lenz vector

~A =
~p×~l
mκ

− ~er. (7)

1. Show that ~̇A = 0.

2. Show that | ~A| is the eccentricity ε of the trajectory (6). To achieve this, start by computing
~l · ~A and ~r · ~A, and parameterize the trajectory by defining the angular variable as φ ≡ ^(~r, ~A).
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Problem C8 – The Kepler Problem

[15 Points] You can find the Jupyter notebook with comments and code fragments in the Ho-
mework section of the course website (http://people.nscl.msu.edu/ hergert/phy820), or by
pulling from the course material repository. Follow the procedure described in the Computation
section of the website to submit your homework when you are ready.
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