PHY422/820: Classical Mechanics

FS 2019
Homework \#11 (Due: Nov 15)

November 10, 2019

Problem 30 - Vectors and Antisymmetric Matrices in Three Dimensions

[15 points] In three dimensions, one can construct a unique mapping between vectors and antisymmetric (or skew-symmetric) matrices:

$$
\Phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3 \times 3}: \quad \Phi(\vec{v})=\Phi\left(\left(\begin{array}{l}
v_{1} \tag{1}\\
v_{2} \\
v_{3}
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & -v_{3} & v_{2} \\
v_{3} & 0 & -v_{1} \\
-v_{2} & v_{1} & 0
\end{array}\right),
$$

or in components

$$
[\Phi(\vec{v})]_{i j}=-\epsilon_{i j k} v_{k}, \quad \epsilon_{i j k}= \begin{cases}1 & \text { if } i j k=123,231,312 \quad \text { (cyclic permutations) } \tag{2}\\ -1 & \text { if } i j k=213,132,321 \quad \text { (anticyclic permutations) } \\ 0 & \text { else }\end{cases}
$$

where ϵ is the usual Levi-Civita tensor.

1. Show that the mapping is linear, i.e.,

$$
\begin{equation*}
\Phi(\alpha \vec{u}+\beta \vec{v})=\alpha \Phi(\vec{u})+\beta \Phi(\vec{v}) . \tag{3}
\end{equation*}
$$

2. Show that the usual scalar product can be written as

$$
\begin{equation*}
\vec{u} \cdot \vec{v}=\frac{1}{2} \operatorname{tr}\left[\Phi(\vec{u})^{T} \Phi(\vec{v})\right] . \tag{4}
\end{equation*}
$$

3. Show that the vector product can be obtained from

$$
\begin{equation*}
\vec{u} \times \vec{v}=\Phi(\vec{u}) \vec{v} \tag{5}
\end{equation*}
$$

or, alternatively,

$$
\begin{equation*}
\Phi(\vec{u} \times \vec{v})=\Phi(\vec{u}) \Phi(\vec{v})-\Phi(\vec{v}) \Phi(\vec{u})=[\Phi(\vec{u}), \Phi(\vec{v})] \tag{6}
\end{equation*}
$$

where we have introduced the commutator

$$
\begin{equation*}
[A, B]=A B-B A . \tag{7}
\end{equation*}
$$

Problem 31 - Infinitesimal Rotations and SO(3) Generators

[15 points] A counter-clockwise rotation by an angle ϕ around the axis \vec{n} can be expressed in vector form as

$$
\begin{equation*}
\vec{r}^{\prime}=\vec{r} \cos \phi+\vec{n}(\vec{n} \cdot \vec{r})(1-\cos \phi)+(\vec{n} \times \vec{r}) \sin \phi . \tag{8}
\end{equation*}
$$

1. Show that for infinitesimal angles

$$
\begin{equation*}
\vec{r}^{\prime}=\vec{r}+(\epsilon \vec{n}) \times \vec{r}=(\mathbb{1}+\boldsymbol{\epsilon}) \vec{r}, \tag{9}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
\boldsymbol{\epsilon} \equiv \Phi(\epsilon \vec{n}) . \tag{10}
\end{equation*}
$$

2. Use the mapping between vectors and antisymmetric matrices to show that

$$
\begin{equation*}
\boldsymbol{\epsilon}=\epsilon n_{x} \boldsymbol{L}_{\boldsymbol{x}}+\epsilon n_{y} \boldsymbol{L}_{\boldsymbol{y}}+\epsilon n_{z} \boldsymbol{L}_{\boldsymbol{z}} \tag{11}
\end{equation*}
$$

where

$$
\boldsymbol{L}_{x}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{12}\\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad \boldsymbol{L}_{y}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad \boldsymbol{L}_{z}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

are the so-called generators of infinitesimal rotations.
3. Show that the generators satisfy

$$
\begin{equation*}
\left[\boldsymbol{L}_{\boldsymbol{x}}, \boldsymbol{L}_{\boldsymbol{y}}\right]=\boldsymbol{L}_{\boldsymbol{z}}, \quad\left[\boldsymbol{L}_{\boldsymbol{y}}, \boldsymbol{L}_{\boldsymbol{z}}\right]=\boldsymbol{L}_{\boldsymbol{x}}, \quad\left[\boldsymbol{L}_{\boldsymbol{z}}, \boldsymbol{L}_{\boldsymbol{x}}\right]=\boldsymbol{L}_{\boldsymbol{y}} \tag{13}
\end{equation*}
$$

where the commutator was defined in Eq. (7).
4. The generators can be used to construct arbitrary antisymmetric matrices. Show that the matrix exponential of any antisymmetric matrix is a rotation matrix, i.e.,

$$
\begin{equation*}
\left(e^{\boldsymbol{A}}\right)^{T}=\left(e^{\boldsymbol{A}}\right)^{-1}, \quad \operatorname{det} e^{\boldsymbol{A}}=1 \tag{14}
\end{equation*}
$$

The matrix exponential is defined by the series

$$
\begin{equation*}
e^{\boldsymbol{A}}=\sum_{k=0}^{\infty} \frac{1}{k!} \boldsymbol{A}^{k} . \tag{15}
\end{equation*}
$$

