PHY422/820: Classical Mechanics

FS 2019
Homework \#12 (Due: Nov 22)

November 22, 2019

Problem 32 - Mass Densities

[10 points] Which solids are described by the following mass densities?

$$
\begin{align*}
& \rho_{1}(\vec{r})=\frac{M}{\pi R^{2}} \theta(R-\rho) \delta(z), \tag{1}\\
& \rho_{2}(\vec{r})=\frac{M}{\pi R^{2} H} \theta(R-\rho) \theta\left(\frac{H}{2}-|z|\right), \tag{2}\\
& \rho_{3}(\vec{r})=\frac{M}{\pi\left(a^{2}-b^{2}\right) H} \theta(a-\rho) \theta(\rho-b) \theta\left(\frac{H}{2}-|z|\right), \tag{3}\\
& \rho_{4}(\vec{r})=\frac{M}{4 \pi R^{2}} \delta(r-R) . \tag{4}
\end{align*}
$$

Perform a volume integration over three-dimensional space in appropriate coordinates to show that you obtain the mass M of the solid.

Note:

$$
\int_{a}^{b} f(x) \delta\left(x-x_{0}\right)=\left\{\begin{array}{ll}
f\left(x_{0}\right) & \text { if } x_{0} \in[a, b], \\
0 & \text { else },
\end{array} \quad \theta(x)=\left\{\begin{array}{lll}
1 & \text { if } & x>0 \\
\frac{1}{2} & \text { if } & x=0 \\
0 & \text { if } & x<0
\end{array}\right.\right.
$$

Problem 33 - Moment of Inertia Tensor

[15 points] A hollow cylinder of mass M and radius R can be described by the mass density

$$
\begin{equation*}
\rho(r, \varphi, z)=\frac{M}{2 \pi R H} \theta\left(\frac{H}{2}-|z|\right) \delta(r-R), \tag{5}
\end{equation*}
$$

where r indicates the radial distance from the cylinder's symmetry axis, chosen to be the z axis of our coordinate system.

1. Compute the moment of inertia tensor $\hat{\boldsymbol{I}}$ of the cylinder, and determine its principal axes.
2. Use rotation matrices to determine $\hat{\boldsymbol{I}}$ in coordinate systems that are rotated by (i) $\frac{2 \pi}{3}$ around the original z axis, and (ii) by $\frac{\pi}{4}$ around the original y axis.
3. Verify by explicit calculation that the kinetic energy for a rotation around the axis $\vec{\omega}=\omega \vec{e}_{z}$ in the original coordinate system is identical to the kinetic energy we obtain for that motion in the two rotated coordinate systems.

Note:

$R_{x}(\alpha)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha\end{array}\right), \quad R_{y}(\alpha)=\left(\begin{array}{ccc}\cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha\end{array}\right), \quad R_{z}(\alpha)=\left(\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right)$

Problem 34 - Rotating Platelet

[15 points] Consider a thin rectangular platelet of mass m with side lengths a, b and a homogeneous mass distribution. Choose a coordinate system whose origin is the platelet's center of mass.

1. Express the platelet's mass density $\rho(x, y, z)$ using δ - and step functions.
2. Compute the moment of inertia tensor $\hat{\boldsymbol{I}}$ in the chosen center-of-mass frame, and determine the principal axes.
3. Determine the platelet's equations of motion in the body-fixed frame, the Euler equations for the rigid body, by starting from

$$
\begin{equation*}
\frac{d^{\prime} \vec{L}^{\prime}}{d t}+\vec{\omega} \times \vec{L}^{\prime}=\vec{N}^{\prime}, \quad \vec{L}^{\prime}=\hat{\boldsymbol{I}} \omega=\left(A \omega_{\xi}, B \omega_{\eta}, C \omega_{\zeta}\right)^{T} \tag{6}
\end{equation*}
$$

A, B and C denote the principal moments of inertia.
4. Compute the torque $\overrightarrow{N^{\prime}}$ that is required to make the platelet rotate with a constant angular velocity around its diagonal. What happens if the platelet is quadratic, i.e., $a=b$?

