PHY422/820: Classical Mechanics

FS 2019
Homework \#14 (Due: Dec 6)

November 30, 2019

Problem 37 - Hamiltonian of a Particle in an Electromagnetic Field

[10 Points] We recall from problem 12 that the Lagrangian of a particle of mass m and charge q in an electromagnetic field is given (in SI units) by

$$
\begin{equation*}
L(\vec{r}, \dot{\vec{r}})=\frac{1}{2} m \dot{\vec{r}}^{2}-q(\phi(\vec{r}, t)-\dot{\vec{r}} \cdot \vec{A}(\vec{r}, t)) . \tag{1}
\end{equation*}
$$

The electric and magnetic fields are obtained from the scalar and vector potentials via

$$
\begin{equation*}
\vec{E}(\vec{r}, t)=-\nabla \phi(\vec{r}, t)-\frac{\partial}{\partial t} \vec{A}(\vec{r}, t), \quad \vec{B}(\vec{r}, t)=\nabla \times \vec{A}(\vec{r}, t) . \tag{2}
\end{equation*}
$$

1. Compute the canonical momentum \vec{p}. How is it related to the mechanical momentum $m \dot{\vec{r}}$ of the particle? Use \vec{p} to construct the Hamiltonian.
2. Derive Hamilton's equations and show that they yield the familiar Lorentz force

$$
\begin{equation*}
\vec{F}(\vec{r}, \dot{\vec{r}})=q \vec{E}(\vec{r}, t)+q \dot{\vec{r}} \times \vec{B}(\vec{r}, t) . \tag{3}
\end{equation*}
$$

Problem 38 - Hamiltonians and Reference Frames

[10 points] We consider the Lagrangian of a mass falling in a gravitational field,

$$
\begin{equation*}
L(y, \dot{y})=\frac{1}{2} m \dot{y}^{2}-m g y . \tag{4}
\end{equation*}
$$

1. Make a change of coordinates to an inertial frame that is moving with a constant velocity v_{0}, $y \rightarrow y^{\prime}=y+v_{0} t$. Construct the Lagrangian L^{\prime} in the new frame, and show that the Lagrange equations remain unchanged.
2. Construct the Hamiltonians in the original and transformed frames, $H(y, p, t)$ and $H^{\prime}\left(y^{\prime}, p^{\prime}, t\right)$, and compute their time derivatives. Are the Hamiltonians conserved? Do they correspond to the total energy of the falling mass?
Hint: Eliminate \dot{p} and \dot{y} using the Hamilton equations.

Problem 39 - Poisson Brackets

[15 points] We consider a system with n generalized coordinates q_{j} and canonical momenta p_{j}, that is described by the Hamiltonian $H\left(q_{j}, p_{j}, t\right)$. The Poisson bracket of two functions $f\left(q_{j}, p_{j}, t\right), g\left(q_{j}, p_{j}, t\right)$ is defined by

$$
\begin{equation*}
\{f, g\} \equiv \sum_{k=1}^{n}\left(\frac{\partial f}{\partial q_{k}} \frac{\partial g}{\partial p_{k}}-\frac{\partial g}{\partial q_{k}} \frac{\partial f}{\partial p_{k}}\right) . \tag{5}
\end{equation*}
$$

Prove the following properties:

1. $\left\{q_{i}, p_{j}\right\}=\delta_{i j}$.
2. $\{f, g\}=-\{g, f\}$.
3. $\{f g, h\}=\{f, h\} g+f\{g, h\}$.
4. Show that the Poisson brackets satisfy the Jacobi identity

$$
\begin{equation*}
\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0 . \tag{6}
\end{equation*}
$$

Hint: Compute the sum of two of the three terms, e.g., $\{f,\{g, h\}\}+\{g,\{h, f\}\}$, and compare your result to the remaining term of the identity.
5. Use Hamilton's equations to show that the total time derivative of an arbitrary function $f\left(q_{j}, p_{j}, t\right)$ can be written as

$$
\begin{equation*}
\frac{d f}{d t}=\{f, H\}+\frac{\partial f}{\partial t} . \tag{7}
\end{equation*}
$$

What happens if f is a conserved quantity?
6. Show that the Poisson brackets can be used to write Hamilton's equations as

$$
\begin{equation*}
\dot{q}_{i}=\left\{q_{i}, H\right\}, \quad \dot{p}_{i}=\left\{p_{i}, H\right\} . \tag{8}
\end{equation*}
$$

Problem C14 - Nonlinear Dynamics

[ungraded] You can find the Jupyter notebook with comments and code fragments in the Homework section of the course website (http://people.nscl.msu.edu/ hergert/phy820), or by pulling from the course material repository.

