PHY422/820: Classical Mechanics

FS 2020
Exam Preparation

December 1, 2020

Problem P3 - Atwood Machines II

[cf. problem G6] Consider the Atwood machine shown in the figure, consisting of two masses m_{1}, m_{2}, an ideal pulley and a string of fixed length l.

1. Show that the unconstrained Lagrangian of the machine is given by

$$
\begin{equation*}
L=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}+m_{1} g x_{1}+m_{2} g x_{2} \tag{1}
\end{equation*}
$$

where x_{1} and x_{2} are the lengths indicated in the figure, increasing in downward direction.
2. Starting from the holonomic form of the constraint, use the Lagrange formalism of the first kind to show that the tension in the string is

$$
\begin{equation*}
T=\frac{2 m_{1} m_{2}}{m_{1}+m_{2}} g . \tag{2}
\end{equation*}
$$

3. Repeat the analysis based on the nonholonomic form of the constraint, and show that you obtain the same result for T.

