PHY422/820: Classical Mechanics

FS 2020
Exam Preparation

December 1, 2020

Problem P4 - Hoop and Pulley

A mass M is attached to a massless hoop (of radius R) which lies in a vertical plane. The hoop is free to rotate about its fixed center. M is tied to a string which winds part way around the hoop, then rises vertically up and over a massless pulley. A mass m hangs on the other end of the string (see figure).

1. Show that the Lagrangian of the machine is given by

$$
\begin{equation*}
L=\frac{1}{2}(M+m) R^{2} \dot{\theta}^{2}+M g R \cos \theta+m g R \theta . \tag{1}
\end{equation*}
$$

2. Find the equation of motion for the angle of rotation of the hoop. What is the frequency of small oscillations around the equilibrium? Assume that m moves only vertically, and that $M>m$.

