PHY422/820: Classical Mechanics

FS 2020
Homework \#6 (Due: Oct 16)

October 9, 2020

Problem H11 - Double Pendulum

[15 Points] Consider a planar double pendulum with lengths l_{1}, l_{2} and masses m_{1}, m_{2} (see figure).

1. Construct the Lagrangian of the system and derive the equations of motion.
2. What are the normal frequencies for small angles $\left(\phi_{1}, \phi_{2} \ll 1\right)$?
Hint: Use the ansatz $\phi_{k}=\phi_{0, k} \exp (i \omega t)$ with identical ω for $k=1,2$, and determine ω such that the resulting system of equations has a non-trivial solution for $\phi_{0,1}, \phi_{0,2}$! Consider the energy conservation for oscillators to analyze whether terms containing $\dot{\phi}_{i}$ can be omitted or not.

Problem H12 - Geometry of Central-Force Trajectories

In general, an observed trajectory $\vec{r}(s)$ can result from a multitude of underlying forces. For central forces, however, we can derive a differential equation that determines the force law from $\vec{r}(s)$. Let us explore this in the following.

1. Use the equations of motion for a mass m in a central force field to prove the following differential equation:

$$
\begin{equation*}
f(r)=\frac{l^{2}}{m r^{4}}\left[\frac{d^{2} r}{d \phi^{2}}-\frac{2}{r}\left(\frac{d r}{d \phi}\right)^{2}-r\right], \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
f(r)=-\frac{\partial}{\partial r} V(r) . \tag{2}
\end{equation*}
$$

2. Use Eq. (1) to show that trajectories of the form

$$
\begin{equation*}
r(\phi)=\frac{p}{1+\epsilon \cos \phi} \tag{3}
\end{equation*}
$$

with positive constants p and ϵ are generated by a central force of the form

$$
\begin{equation*}
f(r)=-\frac{\kappa}{r^{2}}, \quad \kappa>0 \tag{4}
\end{equation*}
$$

How is κ related to the other constants in the problem? Sketch or plot the trajectories for $\epsilon=0,0<\epsilon<1, \epsilon=1$, and $\epsilon>1$.
3. Determine the force field that yields trajectories of the form

$$
\begin{equation*}
r(\phi)=\frac{r_{0} \sqrt{1-\epsilon^{2}}}{\sqrt{1+\epsilon \cos 2 \phi}} . \tag{5}
\end{equation*}
$$

Sketch or plot the trajectory for appropriate values for $0<\epsilon<1$. How is this trajectory distinct from (3), assuming that the meaning of ϵ is the same?
4. Compute the central force that makes the mass m move on the spiral trajectory

$$
\begin{equation*}
r(\phi)=r_{0} \exp (-\phi) . \tag{6}
\end{equation*}
$$

