

PHY422/820: Classical Mechanics

FS 2020

Homework #7 (Due: Oct 23)

October 19, 2020

Problem H13 – Kepler Problem with Perturbation

[15 points; cf. problems G17, H12] Consider the potential

$$V(r) = -\frac{k}{r} - \frac{\alpha}{r^2} \tag{1}$$

with constants k > 0 and α , which corresponds to the traditional Kepler problem with an additional perturbing potential.

- 1. Construct the effective potential $V_{\text{eff}}(r)$. For which angular momenta l and energies E will we obtain bounded motion, i.e., orbits? HINT: Use your results from G17.
- 2. The trajectory $r(\phi)$ for a given potential can be obtained by solving the integral equation (cf. worksheet #7)

$$\phi - \phi_0 = \int dr \frac{l}{r^2 \sqrt{2m \left(E - V_{\text{eff}}(r)\right)}},\tag{2}$$

with integration constant ϕ_0 . Show that

$$r(\phi) = \frac{p}{1 + \epsilon \cos \beta(\phi - \phi_0)}, \qquad (3)$$

where

$$\beta^2 = 1 - \frac{2m\alpha}{l^2} > 0, \quad p = \beta^2 \frac{l^2}{mk}, \quad \epsilon = \sqrt{1 + \beta^2 \frac{2l^2 E}{mk^2}}.$$
 (4)

HINT: Use the substitution u = 1/r and

$$\int du \frac{1}{\sqrt{a+bu-u^2}} = -\arccos \frac{2u-b}{\sqrt{4a+b^2}} + c, \quad \text{if } 4a+b^2 > 0.$$
(5)

3. Which values of β correspond to attractive ($\alpha > 0$) and repulsive perturbations ($\alpha < 0$), respectively?

- 4. Show that orbits in this potential will be closed if β is rational. Why does this not contradict Bertrand's theorem?
- 5. Create and (briefly) discuss polar plots of the trajectories for $\epsilon = \frac{4}{5}$ and $\beta = \frac{1}{2}, \frac{1}{3}, \frac{4}{5}, \frac{2+\pi}{2\pi}, 3, \frac{3+8\pi}{3\pi}$. Use a sufficiently large range of values for ϕ to illustrate whether the orbits are closed or not.

Problem H14 – Laplace-Runge-Lenz Vector in Scattering

[15 points] For classical scattering off a repulsive potential $V(r) = \frac{k}{r}$ with k > 0 (e.g., Rutherford scattering), the relationship between the scattering angle θ and the impact parameter b is

$$b(\theta) = \pm \frac{k}{2E} \cot \frac{\theta}{2}.$$
 (6)

Validate this relationship using the conservation of the Laplace-Runge-Lenz vector by computing \vec{A} for the incoming and outgoing particle(s), whose trajectories and velocities are

$$t \to -\infty: \quad \vec{r}(-\infty) = (b, -d, 0)^T, \\ \dot{\vec{r}} = (0, v_\infty, 0)^T, \quad (7) \\ t \to \infty: \quad \vec{r}(\infty) = (d \tan \theta + \frac{b}{\cos \theta}, d, 0)^T, \\ \dot{\vec{r}} = (v_\infty \sin \theta, v_\infty \cos \theta, 0)^T, \quad (8)$$

respectively. Here, we can assume that d is large at an appropriate stage of our calculation (see figure).

HINT: Use energy and angular momentum conservation. It is sufficient to consider a single component of \vec{A} .

