PHY422/820: Classical Mechanics

FS 2019
Homework \#8 (Due: Oct 30)

October 25, 2020

Problem H15 - Scattering off Constant Potentials

[10 points] A particle is scattering off the potential well

$$
V(r)= \begin{cases}-V_{0} & R \leq 0 \tag{1}\\ 0 & R>0\end{cases}
$$

where V_{0} and R are positive constants.

1. Show that

$$
\begin{equation*}
\frac{\sin \alpha_{1}}{\sin \alpha_{2}}=\frac{v_{2}}{v_{1}}=\sqrt{\frac{E+V_{0}}{E}} \equiv n . \tag{2}
\end{equation*}
$$

This is identical to what we would find for the refraction of light rays at the boundary of two substances with relative index of refraction n.
Hint: Consider which quantities will
 be conserved or not conserved at the boundary of the potential region.
2. Show that the scattering angle θ is given by

$$
\begin{equation*}
\theta(b)=2\left(\arcsin \frac{b}{R}-\arcsin \frac{b}{n R}\right) . \tag{3}
\end{equation*}
$$

Problem H16 - Scattering from a Repulsive Inverse-Square Potential

[10 points] Show that the differential cross section for the repulsive inverse-square potential

$$
\begin{equation*}
V(r)=\frac{k}{r^{2}}, \quad k>0 \tag{4}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{k \pi^{2}}{E} \frac{\pi-\theta}{\theta^{2}(2 \pi-\theta)^{2} \sin \theta} . \tag{5}
\end{equation*}
$$

Hint: Determine the distance of closest approach from energy conservation, and use

$$
\begin{equation*}
\int d u \frac{1}{\sqrt{1-\alpha^{2} u^{2}}}=\frac{1}{\alpha} \arcsin (\alpha u)+c \tag{6}
\end{equation*}
$$

(cf. hard-sphere scattering) or your favorite computer-algebra system.

Problem H17 - Inverse Scattering Problem

[10 points] In the following, we will use inverse-scattering techniques to extract the potential (4) from the differential cross section (5).

1. Determine $b(\theta)$ by rearranging and integrating

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=-\frac{b}{\sin \theta} \frac{d b}{d \theta} . \tag{7}
\end{equation*}
$$

How must the integration limits be chosen?
2. Invert $b(\theta)$ to obtain $\theta(b)$ and compute the function $T(y)$.

Note: The integration is straightforward with an appropriate substitution. It is not necessary to work with the partial derivative trick discussed in the example in the lecture notes.
3. Determine $r(y)=y \exp T(y)$ and extract the potential $V(r)$.

