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The d’Alembert–Lagrange principle (DLP) is designed primarily for dynamical sys-
tems under ideal geometric constraints. Although it can also cover linear-velocity
constraints, its application to nonlinear kinematic constraints has so far remained
elusive, mainly because there is no clear method whereby the set of linear conditions
that restrict the virtual displacements can be easily extracted from the equations of
constraint. On recognition that the commutation rule traditionally accepted for ve-
locity displacements in Lagrangian dynamics implies displaced states that do not
satisfy the kinematic constraints, we show how the property of possible displaced
states can be utilized ab initio so as to provide an appropriate set of linear auxiliary
conditions on the displacements, which can be adjoined via Lagrange’s multipliers to
the d’Alembert–Lagrange equation to yield the equations of state, and also new trans-
positional relations for nonholonomic systems. The equations of state so obtained
for systems under general nonlinear velocity and acceleration constraints are shown
to be identical with those derived (in Appendix A) from the quite different Gauss
principle. The present advance therefore solves a long outstanding problem on the
application of DLP to ideal nonholonomic systems and, as an aside, provides validity
to axioms as the Chetaev rule, previously left theoretically unjustified. A more gen-
eral transpositional form of the Boltzmann–Hamel equation is also obtained. C© 2011
American Institute of Physics. [doi:10.1063/1.3559128]

I. INTRODUCTION

The past decade has witnessed continued growing interest1–9 in theoretical analysis of nonholo-
nomic systems. Modern developments in robotics,10 vehicular control, sensors, feedback control,
servomechanisms, cruise controls, and other advanced technologies make possible interesting sys-
tems operating under general nonholonomic constraints. Graduate texts11 on analytical dynamics
primarily deal with the 222-year-old fundamental d’Alembert–Lagrange principle12, 13 (DLP) of
1788, which involves virtual displacements δr to the particle’s position r(t) with constraints held
frozen during the displacement and which yields the familiar Lagrange’s equations of state. Although
Lagrange12 designed it with only geometric constraints in mind, DLP can also be applied14–18 to
kinematic constraints, linear in velocity, whose very existence even Lagrange at that time did not
anticipate. Lagrange assumed that independent coordinates could always be chosen for any system
once the constraints were acknowledged (embedded). Hertz,19 over 100 years later, was the first
to recognize in 1894 the essential difference between geometric (holonomic) constraints on the
configuration and nonintegrable kinematic (nonholonomic) constraints which directly restrict the
velocities/accelerations of the state. Gauss20 in 1829 had already provided a very different principle
of Least Constraint,14–16, 20–22 based on virtual displacements to the acceleration alone, keeping the
state (r,ṙ) fixed. This principle provides (as in Appendix A) equations of state for both holonomic
and nonholonomic systems. In this paper, we wish to extend, with full theoretical justification, the
capability of DLP to treat general nonholonomic systems.
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There are now essentially four approaches to the dynamics of nonholonomic systems. The first,
analytical dynamics as followed here, is based on the traditional DLP and on Hamilton’s constrained
principle, which follows from DLP and is valid6, 15–17 only for holonomic and integrable constraints.
By analogy with DLP, Gibbs23 and then Jourdain24 introduced methods based, respectively, on
virtual displacements at time t to the acceleration keeping the state {r,ṙ} fixed and to the velocity
keeping the configuration r fixed. These methods were originally deduced15, 23, 24 by comparison
with similar DLP conditions on the virtual displacements δq j of the generalized coordinates q j for
geometric and linear-velocity constraints, respectively, but have recently been shown25 to also cover
general nonlinear kinematic constraints. A second approach, which is the most comprehensive in
coverage and quite different from DLP, is based on the Gauss principle20 and on the resulting Gibbs–
Appell equations15, 23, 26–29 of motion. Geometric analysis,30–36 a third approach, reformulates the
essential principles of analytical dynamics in geometric terms, using tools from modern differential
(Riemannian) geometry, Lie groups, manifolds, jet bundles, and topology. It offers a different
perspective and language to the above traditional methods and has been applied mainly to systems
that can be also covered by DLP.

Unlike geometric and linear-velocity constraints, the basic unsurmountable difficulty with the
implementation of DLP to nonlinear velocity constraints was that there was no obvious way of
extracting from the kinematic constraint equations, the set of conditions, linear in δr, needed for
adjoining them via Lagrange’s multipliers to DLP. The comments of Lanczos21 on DLP and non-
holonomic systems pertain only to nonintegrable linear-velocity constraints. Various postulates,
such as Chetaev’s rule37 for DLP application, a reinterpreted variational principle,38 and vakonomic
mechanics,39–41 based on the premise that Hamilton’s constrained principle is valid even for non-
holonomic systems, were therefore advocated for nonlinear velocity constraints. These prescriptions
have, however, remained without any basic theoretical justification and have therefore provoked
some criticism9, 42 and continuing study.4, 43–48

In this paper, we illustrate from first principles how systems under general velocity and accel-
eration constraints may indeed be analyzed by DLP with full justification. The present development
recognizes that the commutation rule, δq̇ j = d(δq j )/dt , conventionally/tacitly assumed in DLP an-
alytical dynamics11, 12, 14, 15, 41 and in Hamilton’s constrained principle, is unnecessarily restrictive
when it comes to dealing with how the dependent velocity displacements δq̇ j in nonholonomic
systems are related to the configuration displacements δq j . Although successful for integrable sys-
tems, the commutation rule proves remarkably unfruitful for nonintegrable systems, because, in
contrast to integrable systems, its use implies that the displaced states no longer satisfy6, 16, 17 the
nonholonomic constraints, thereby inhibiting further progress in finding the constraint requirements
on the displacements. From the desired property that the displaced states (q + δq,q̇ + δq̇) are made
possible by obeying the kinematic constraints, we will derive the key set of linear auxiliary condi-
tions on the displacements δq j needed for adjoining them directly via Lagrange’s multipliers to the
d’Alembert–Lagrange equation to effect solution. The basic problem of implementation of DLP to
general nonholonomic systems is then resolved by the present theory. New transpositional relations,
which show how to calculate the constrained velocity or acceleration displacements δq̇ j or δq̈ j from
δq j or δq̇ j for nonintegrable systems, and which are a consequence of the property of possible states,
are then derived.

Historically,49 there were two viewpoints on transpositional relations. The first maintained
that the commutation rule was satisfied by all true generalized coordinates q j for holonomic and
nonholonomic systems. The second maintained that the commutation rule held only for the dependent
coordinates of nonholonomic systems and that appropriate rules for the dependent coordinates should
be obtained from the constraint equations. Previous work16, 22, 49, 50 was mainly confined, however,
to transpositional relations involving the displacements in the true velocities q̇ j and quasivelocities
θ̇ j for use in the derivation of the Boltzmann–Hamel equation,14, 16, 49 which is free from Lagrange’s
multipliers because the linear-velocity constraints considered are chosen as quasivelocities which can
then be naturally embedded. More recently, a transpositional rule at variance with the Chetaev rule
was derived,48 for a particular restricted class of nonholonomic constraint to yield quite complicated
Lagrange’s equations without Lagrange’s multipliers. The present approach, which is quite different
from all previous work,16, 22, 48–50 is based on obtaining the constraint conditions on δq j from the
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property of possible displaced states which permits implementation of DLP to provide equations
of state in a form suitable for direct comparison with those derived (in Appendix A) from the
different principle of Gauss. It then provides a consistent set of new transpositional relations for
ideal nonholonomic systems.

We adopt a generalized-coordinate (rather than Newtonian) representation because the essential
argument, although in abbreviated notation, remains more physically transparent. Because transpo-
sitional relations can appear awkward and unnecessarily cumbersome, they are expressed here in
compact form via Lagrangian derivatives of the constraint equations. We shall first briefly recall the
known results of the d’Alembert–Lagrange principle, in order to provide a foundation for the present
development, to expose various inherent subtleties and to highlight traditional rules, whose strict
adherence may have necessarily impeded previous implementation of DLP to dynamical systems
under nonlinear velocity and acceleration constraints.

II. D’ALEMBERT–LAGRANGE PRINCIPLE

The classical state, the representative point (q,q̇) of a system at time t of N -particles with
Lagrangian L and n = 3N generalized coordinates q j is, in principle, determined by the solution of

L j
def≡

[
d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j

]
= QN P

j + QC
j ( j = 1,2, . . . ,n = 3N ) (2.1)

obtained by setting the Lagrangian derivative L j equal to the known applied nonpotential forces
QN P

j plus the unknown forces QC
j which constrain the system. The Lagrangian L(q,q̇,t) in (2.1) is

unconstrained, being written in terms of the n(= 3N ) generalized coordinates q j and n velocities
q̇ j for the unconstrained system. Because the constraint forces QC

j are generally unknown, (2.1)
cannot be solved, except under the special circumstance when QC

j are “ideal,” in that the summed
virtual work QC

j δq j done in the virtual displacement δq(t) from the unknown physical configuration
q(t) vanishes. The constrained system then evolves with time in such a manner that the summed
projections,

(L j − QN P
j ) δq j = QC

j δq j = 0 (d′Alembert–Lagrange principle) , (2.2)

of each QC
j onto δq j along the q-surface are zero. This is the DLP, a fundamental principle of

analytical dynamics established by Lagrange12 and based on the J. Bernoulli principle of virtual
work in statics and the d’Alembert principle13 for a single rigid body. The summation convention
for repeated indices ( j = 1,2, . . . ,n = 3N ) is adopted throughout. The coefficient (L j − QN P

j ) of
δq j is the projection (mi r̈i − Fi )(∂ri/∂q j ) of Newton’s equations summed over all N -particles at
positions ri onto the various tangent vectors q̂ j ≡ (∂ri/∂q j ) along direction of increasing q j alone on
the multisurface q = {q j }. The Newtonian equivalent of (2.2) is then (mi r̈i − Fi ). δri = 0, where the
forces Fi exclude the constraint forces. The principle (2.2) is therefore limited to these “workless”
constraints QC

j , called “ideal” or “perfect” and applies to a wide class of problems which can be
solved without direct knowledge of the forces actuating the constraints. The n = 3N − δq j ’s, in
general, are not all independent of each other but are linked by the unknown constraints acting on
the system, so that the coefficient (L j − QN P

j ) of each δq j in (2.2) cannot be arbitrarily set to zero.
Although (2.2) is, in principle, valid for all ideal constraints, its application has been limited to

geometric and linear-velocity constraints because the relations restricting the displacements δq j are
then easy to determine in the linear form required for “adjoining” them to the already linear set (2.2)
via Lagrange’s multiplier method. Application to general nonholonomic systems has so far remained
elusive because the auxiliary conditions on the displacements have been impossible to determine in a
manner consistent with the conventional commutation rule, δq̇ j = d(δq j/dt), traditionally accepted
for calculation of the velocity displacements δq̇ j . However, we shall show how application of (2.2)
to general kinematic constraints can indeed be accomplished from the property of possible displaced
states, which in turn allows determination of the displacement conditions and construction of a
consistent set of transpositional relations to be established between δq̇ j and d(δq j/dt) for velocity
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constraints and between δq̈ j and d(δq̇ j/dt) for acceleration constraints. The δq j in (2.2) will then
be compatible with the constraints.

A. Background: Geometric constraints embedded and adjoined

When the constraints are described by geometric equations,

fk(q,t) = 0 (k = 1,2, . . . ,c), (2.3)

in configuration space, they are holonomic because they impose restrictions on the possible configu-
rations of the system (and consequently on velocities and accelerations). Often (2.3), at the outset, can
be utilized to reduce the number n = 3N of generalized coordinates to the least number m = (n − c)
of independent coordinates, which is the actual number of degrees of freedom. The remaining
m-infinitesimal displacements δq j in (2.2) are then all independent—free from the constraints—and
are arbitrary. For these holonomic constraints so “embedded” within the reduced Lagrangian L ,
expressed in terms of the m-independent coordinates and associated velocities, (2.2) yields

L j = d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= QN P

j ( j = 1,2, . . . ,m), (embedded EOS) , (2.4)

which are the Lagrange’s equations of state (EOS), to be solved for the explicit time t-dependence
of the m-independent coordinates q j (t).

Possible states (q,q̇) satisfy the velocity form,

ḟk(q,t) =
(

∂ fk

∂q j

)
q̇ j + ∂ fk

∂t
= 0, (2.5)

of (2.3) while the actual physical state must, in addition, satisfy (2.4). Because virtual displacements
δq coincide with possible displacements dq in the limit of frozen constraints18 when (∂ fk/∂t)dt = 0,
they therefore satisfy the linear set of conditions,

δ fk =
(

∂ fk

∂q j

)
δq j = 0 (k = 1,2, . . . ,c), (2.6)

suitable for adjoining directly to (2.2), which is also linear in δq j . The virtual displacement δq takes
the system from one possible configuration, where fk(q,t) = 0, to another possible configuration
where the constraint conditions fk(q + δq,t) = 0 are again satisfied. The displaced state (q + δq,q̇ +
δq̇) is also possible because ḟk(q + δq,q̇ + δq̇,t) = 0, as shown in Sec. II C. For a given fk , (2.6),
which involves dependent and independent δq j , may be used directly in order to reduce (2.2) to a
summation only over m-independent δq j and the particular EOS can then be obtained. For general
fk , the conditions (2.6) can be formally adjoined to (2.2) by the Lagrange multiplier method which,
in turn, provides the extended principles[

L j − QN P
j − λk

(
∂ fk

∂q j

)]
δq j = 0 (adjoined DLP) ( j = 1,2, . . . ,n) (2.7)

for the state and [
QC

j − λk

(
∂ fk

∂q j

)]
δq j = 0 ( j = 1,2, . . . ,n) (2.8)

for the constraint forces, where all the δq j can now be all regarded as free (independent) and arbitrary.
Then (2.7) and (2.8) readily yield both the familiar n-equations of state

L j = d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= QN P

j + λk

(
∂ fk

∂q j

)
( j = 1,2, . . . ,n) (adjoined EOS) , (2.9)

where the unconstrained L is written in terms of all q j and q̇ j , and the generalized forces of constraint

QC
j = λk

(
∂ fk

∂q j

)
. (2.10)
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The original equation (2.1) with constraint forces is therefore recovered from (2.9) and (2.10),
thereby completing the circle. Simultaneous solution of (2.9) with the c-constraints (2.3) provides
both the state [q(t),q̇(t)] of the system and the multipliers λk , which determine the constraint forces
QC

j of (2.10). The 2n constants of integration are evaluated from the 2m = 2(n − c) initial values
of q j and q̇ j and the 2c constraint conditions fk = 0 and ḟk = 0 at t = 0.

B. Background: Linear-velocity constraints adjoined and embedded

Linear-velocity constraints,

θ̇k = g(1)
k (q̇,q,t) = Ak j (q,t)q̇ j + Bk(q,t) = 0 (k = 1,2, . . . ,c), (2.11)

often occur in the rotational (rolling/turning) motion of rigid bodies on a rough surface, in feedback
(cruise) control and in robotics. Because (2.11) is nonintegrable, in general, the function θk(q,t)
remains unknown. In contrast to holonomic, the nonintegrable constraints (2.11) directly restrict the
kinematically possible velocities and therefore cannot be directly embedded in L(q̇,q,t) in order
to reduce the number n of generalized coordinates to m-independent coordinates. Because virtual
displacements δq coincide with possible displacements dq in the limit of frozen constraints, they
therefore satisfy the linear set of conditions,

δθk = Ak j (q,t)δq j = 0 (k = 1,2, . . . ,c) , (2.12)

which can be directly adjoined to (2.2). Thus (L j − λk Ak j )δq j = 0, where all the δq j are considered
effectively as independent. Hence,

L j = d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= QN P

j + λk

(
∂g(1)

k

∂ q̇ j

)
( j = 1,2, . . . ,n) (2.13)

are the standard n-equations of state for linear-velocity systems, to be solved in conjunction with
the c-constraints (2.11). Because of the c restrictions (2.11) on q̇ j , only (n − c) initial values of
q̇ j and n q j need be assigned to provide the 2n constants of integration. For exactly integrable
constraints, g(E)

k = ḟk(q,t) and the holonomic EOS (2.9) are recovered from (2.13). By taking (2.11)
as c quasivelocities θ̇k , the linear-velocity constraints can be embedded within a quasicoordinate
δθ -version (Sec. VII) of DLP, to give m Boltzmann–Hamel equations14 which, in contrast to the
m + c equations (2.11) and (2.13), are free from Lagrange’s multipliers.

Although not required for the above standard derivations of the EOS (2.9) and (2.13), the
transpositional rule

δq̇ j = d

dt
(δq j ) (Traditional commutation rule) (2.14)

is traditionally assumed and used to obtain subsequent action principles11, 15 from the integrated
version of (2.2). When combined with the displacement conditions (2.12), the variation (g(1)

k (q̇ +
δq̇,q + δq,t) − g(1)

k (q̇,q,t)) to g(1)
k is

δg(1)
k = −gk jδq j (2.15)

to first order where

gk j =
(

∂ Ak j

∂qi
− ∂ Aki

∂q j

)
q̇i +

(
∂ Ak j

∂t
− ∂ Bk

∂q j

)
. (2.16)

The displaced states (q̇ + δq̇,q + δq) for linear-velocity constraints (2.11) cannot then be possible,
unless gk jδq j vanishes which happens for integrable constraints. For exactly integrable constraints
in particular, gk = ḟk(q,t) and gk j = ḟk j = 0. Hamilton’s principle of least action (Sec. 6A), which
internally insists on a family of variationally displaced paths which are both possible and continuous,
will hold6, 15 for holonomic but not for nonholonomic systems. More importantly, δgk = 0 cannot
be used to deduce displacement conditions while (2.14) is in operation. Fortunately, as we shall see,
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the traditional rule is not the only option for nonholonomic systems so that (2.15) need not then be
the case.

C. Transpositional rule for exactly integrable systems

The explicit proof18 of the commutation rule (2.14) considers only embedded holonomic sys-
tems where the qi are all independent. Here we generalize it in order to include the dependent
coordinates for adjoined holonomic systems. The c-constraints (2.3) can be formally used to sub-
divide the n coordinates into m=(n − c) independent coordinates qi with (i = 1,2, . . . ,m) and c
dependent coordinates ηk(q,t) with (k = 1,2, . . . ,c). Let qi (α,t) denote the displaced configurations
for the independent coordinates, where the variational parameter α is independent of t . The virtual
displacements,

δqi (t) =
(

∂qi (t,α)

∂α

)
0

δα,

of the independent coordinates are taken about the actual physical trajectory labeled by qi (α = 0,t).
Because α is independent of t , then

d

dt
[δqi (t)] = ∂

∂t

[(
∂qi (t,α)

∂α

)
0

δα

]
= ∂

∂α

(
∂qi (t,α)

∂t

)
0

δα = δq̇i (2.17)

with the result18 that (2.14) holds for all the independent δqi . The response of the dependent
displacements ηk = ηk[q(t,α),t] to these independent displacements is

δηk(t) =
(

∂ηk

∂qi

)[
∂qi (t,α)

∂α

]
0

δα =
(

∂ηk

∂qi

)
δqi .

With the aid of the standard relations,

d

dt

(
∂ηk

∂qi

)
= ∂η̇k

∂qi
;

∂ηk

∂qi
= ∂η̇k

∂ q̇i
,

for any function ηk(q,t) with independent qi ’s, and of (2.17), then

d

dt
(δηk) =

(
∂η̇k

∂qi

)
δq j +

(
∂η̇k

∂q̇i

)
δq̇i = δη̇k . (2.18)

On relabeling ηk by qm+k , the commutation relation,

d

dt
(δq j ) = δq̇ j ( j = 1,2, . . . ,m, . . . ,n), (2.19)

is proven for both the independent (q1,q2, . . . ,qm) and dependent (qm+1,qm+2, . . . ,qn) sets of coor-
dinates for adjoined holonomic system. We can also show in a similar fashion that the transpositional
rule,

δ ḟk − d

dt
(δ fk) =

(
∂ fk

∂q j

)[
δq̇ j − d

dt
(δq j )

]
, (2.20)

holds for any function fk(q,t) with dependent and independent coordinates. The commutation rule
(2.19) combined with δ fk = 0, the condition (2.6) on the displacements, then implies the condition
δ ḟk = 0 for possible states for exactly integrable constraints gk = ḟk = 0.

III. GENERAL KINEMATIC CONSTRAINTS: NEW RESULTS

Direct application of the d’Alembert–Lagrange principle (2.2) to systems under nonlinear
kinematic constraints

gk(q̇,q,t) = 0 (k = 1,2, . . . ,c) (3.1)
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with a general velocity-dependence or

hk(q̈,q̇,q,t) = 0 (k = 1,2, . . . ,c) (3.2)

with general acceleration-dependence, has remained elusive in the past because the above traditional
methods in Secs. II A and II B, although practical for holonomic and linear-velocity constraints,
cannot be implemented. Under the commutation rule (2.14), it is impossible to extract from the
nonlinear constraints (3.1) and (3.2), or from their associated variations δgk and δhk , the set of
linear restrictions on the variational displacements δq j needed for adjoining them, via Lagrange
multipliers, to (2.2) for subsequent solution. We shall show below that a more rewarding alternative
to (2.14) exists for nonholonomic systems.

From the property of possible states, the required set of linear conditions for nonholonomic sys-
tems under general velocity and acceleration constraints (3.1) and (3.2) will be established, together
with a new set of transpositional relations. The EOS so obtained by adjoining these conditions to
(2.2) are identical to those derived in Appendix A from the quite different Gauss principle20 of least
constraint. The reverse procedure of obtaining the EOS from transpositional relations is also viable.

A. Equations of state for homogeneous velocity constraints

We first illustrate how DLP can be directly applied to velocity constraints g(p)
k homogeneous to

degree p in the velocities q̇ j . For example, the velocity constraint,

g(2)
k (q̇,q,t) = A(k)

i j (q,t)q̇i q̇ j = 0, A(k)
i j = A(k)

j i , (3.3)

is a homogeneous quadratic polynomial in q̇ j . Euler’s theorem on homogeneous functions with
power p yields (

∂g(p)
k

∂q̇ j

)
q̇ j = pg(p)

k = 0 ( j = 1,2, . . . ,n) (3.4)

from which the set of linear conditions, (
∂g(p)

k

∂ q̇ j

)
δq j = 0 , (3.5)

on the displacements readily arise in the linear form required for adjoining to (2.2). When (3.5) is
adjoined to (2.2), the EOS are

L j = d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= QN P

j + λk

(
∂g(p)

k

∂ q̇ j

)
( j = 1,2, . . . ,n) (3.6)

and the forces QC
j actuating the homogenous velocity constraints are λk(∂g(p)

k /∂q̇ j ). Using geomet-
rical arguments and Hertz’ principle of least curvature which is a geometrical version14 of Gauss’
principle of least constraint, Rund51 has also derived (3.6). For systems under the general quadratic
constraint (3.3), the EOS are

d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= QN P

j + 2λk A(k)
j i q̇i (i, j = 1,2, . . . ,n). (3.7)

Example 1: For the nonintegrable quadratic homogeneous constraint,

g1 = ẋ1 ẏ2 − ẋ2 ẏ1 = 0, (3.8)

constructed32 to keep the planar velocities of two particles always parallel, solution of (3.7) for no
external forces predicts that λ1 = 0, so that the forces of constraint are zero and the motion of the
two particles given parallel velocities initially is free, in accord with the correct physical solution.
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B. Equations of state for general velocity constraints

A desirable property in analytical dynamics is that the virtual displacements result in displaced
states which are possible. Although any point on n-fold configuration space q is accessible by a
geometrically possible path, the configurations accessible from a given q by dynamically possible
paths lie on a manifold of only m dimensions, so that coupling to the remaining (n − m) δqj’s must
be obtained. We note that use of its linear-acceleration form,

ġk =
(

∂gk

∂q̇ j

)
q̈ j +

(
∂gk

∂q j

)
q̇ j + ∂gk

∂t
= 0 ( j = 1,2, . . . ,n), (3.9)

automatically guarantees possible displaced states, because it leads directly to the condition,

δgk =
(

∂gk

∂q̇ j

)
δq̇ j +

(
∂gk

∂q j

)
δq j = ∇Q gk · δQ = 0, (3.10)

for possible states. Because ∇Q gk is normal to gk , the displacement δQ of the representative point
Q = (q,q̇) in state space is tangential to the gk-surface and the displaced state lies on the manifold of
velocity constraints gk . Denote the m-independent and c-dependent coordinates within the {q j }-set
by qi with i ≤ m and by ηs = qm+s , respectively, so that (3.9) decomposes as

ġk = Gks η̈s +
[(

∂gk

∂ q̇i

)
q̈i +

(
∂gk

∂q j

)
q̇ j + ∂gk

∂t

]
= 0, (3.11)

where Gks(q,q̇,η,η̇,t) = (∂gk/∂η̇s) are the elements of matrix G = {Gks}, assumed to be positive
definite (invertible) and where q j ( j = 1,2, . . . ,n) represents all coordinates {qi ,ηs}. The solutions
of (3.11) for the dependent accelerations are therefore

η̈s = −G̃sr

[(
∂gr

∂ q̇i

)
q̈i +

(
∂gr

∂q j

)
q̇ j + ∂gr

∂t

]
, (3.12)

where the elements G̃sr of matrix G̃, the inverse of G, satisfy Gks G̃sr = δkr , with (k,r,s = 1,2, . . . ,c).
Although the coordinate function ηs = ηs(q1,q2, . . . ,qm,t) is unknown for nonintegrable (3.1), the
dependent displacements,

δηs =
(

∂ηs

∂qi

)
δqi =

(
∂η̇s

∂ q̇i

)
δqi =

(
∂η̈s

∂q̈i

)
δqi (i = 1,2, . . . ,m), (3.13)

can be now obtained in terms of the independent δqi from (3.12) to give

δηs = −G̃sr

(
∂gr

∂ q̇i

)
δqi . (3.14)

Multiplication by Gks , followed by an s-summation, yields the relation(
∂gk

∂q̇ j

)
δq j ≡

(
∂gk

∂q̇i

)
δqi +

(
∂gk

∂η̇s

)
δηs = 0, (3.15)

where ηs is now replaced by qm+s and where j = 1,2, . . . ,n. The condition (3.10) for possible
displaced states arising from (3.9) therefore yields directly the conditions (3.15) on the displacements
under general velocity constraints (3.1).

On adjoining conditions (3.15) to the d’Alembert–Lagrange principle (2.2), the δq j are regarded
effectively as all free, and we obtain both the EOS,

L j = d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= QN P

j + λk

(
∂gk

∂ q̇ j

)
(nonholonomic EOS) , (3.16)

for nonholonomic systems under general velocity constraints (3.1) and the forces QC
j

= λk(∂gk/∂q̇ j ) of constraint. Conditions (3.15) on δq j confirm that these ideal forces do no com-
bined virtual work QC

j δq j = 0. Both (3.15) and (3.16) cover the previous results, (2.12) and (2.13)
for linear constraints and (3.5) and (3.6) for homogeneous velocity constraints. This EOS (3.16)
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is identical with the EOS (A16) derived in Appendix A by application of the very different Gauss
principle to general velocity constraints (3.1).

Because (3.10) and (3.15) are each zero, the quantity,

δgk − d

dt

[(
∂gk

∂ q̇ j

)
δq j

]
= 0 (k = 1,2, . . . ,c) , (3.17)

is also zero and provides a new transpositional relation established in Sec. IV A.

C. Equations of state for general acceleration constraints

In a similar fashion, use of the time derivative,

ḣk =
(

∂hk

∂ q̈ j

)
q̈ j +

(
∂hk

∂q̇ j

)
q̈ j +

(
∂hk

∂q j

)
q̇ j + ∂hk

∂t
= 0 , (3.18)

of the acceleration constraint (3.2), automatically guarantees possible displaced states, because it
leads directly to

δhk =
(

∂hk

∂ q̈ j

)
δq̈ j +

(
∂hk

∂ q̇ j

)
δq̇ j +

(
∂hk

∂q j

)
δq j = ∇Qhk · δQ = 0 (3.19)

for possible states Q = (q,q̇,q̈). In geometrical terms, ḣk = 0 or its result δhk = 0 is the tangency
condition that the displaced trajectories of the representative point Q must lie on the manifold of
acceleration constraints hk . Denote, as before, the m-independent and c dependent coordinates by
qi and ηs , respectively, so that (3.18) decomposes into

ḣk = Hks η̈s +
[(

∂hk

∂q̈i

)
...
qi +

(
∂hk

∂q̇ j

)
q̈ j +

(
∂hk

∂q j

)
q̇ j + ∂hk

∂t

]
= 0, (3.20)

where Hks(q,q̇,q̈,η,η̇,η̈,t) = (∂hk/∂η̈s) are the elements of matrix H = {Hks}, assumed to be posi-
tive definite (invertible). The solutions

...
ηs of (3.20) are therefore

...
ηs = −H̃sr

[(
∂hr

∂q̈i

)
...
qi +

(
∂hr

∂ q̇ j

)
q̈ j +

(
∂hr

∂q j

)
q̇ j + ∂gk

∂t

]
, (3.21)

where (i = 1,2, . . . ,m) and ( j = 1,2, . . . ,n) and where the elements H̃sr of matrix H̃ , the inverse of
matrix H = {Hks}, satisfy Hks H̃sr = δkr with (k,r,s = 1,2, . . . ,c). Although the coordinate function
ηs = ηs(q,t) is unknown for the nonintegrable (3.2), the dependent displacements,

δηs =
(

∂ηs

∂qi

)
δqi =

(
∂

...
ηs

∂
...
qi

)
δqi , (3.22)

may now be obtained in terms of the independent δqi from (3.21) to give

δηs = −H̃sr

(
∂hr

∂q̈i

)
δqi . (3.23)

Multiplication by Hks , followed by an s-summation, yields the relation(
∂hk

∂ q̈ j

)
δq j ≡

(
∂hk

∂ q̈i

)
δqi +

(
∂hk

∂η̈s

)
δηs = 0, (3.24)

where ηs is now replaced by qm+s and ( j = 1,2, . . . ,n). This is the needed set of linear conditions
on the displacements to be adjoined to the d’Alembert–Lagrange principle (2.2) for nonholonomic
systems under general acceleration constraints (3.2). On adjoining (3.24) to (2.2), the δq j are then
regarded effectively as all free, and we obtain both,

L j = d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= QN P

j + λk

(
∂hk

∂ q̈ j

)
(nonholonomic EOS) , (3.25)
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the EOS for nonholonomic systems under general acceleration constraints (3.2) and the forces of
constraint QC

j = λk(∂hk/∂q̈ j ). The restrictions (3.24) on δq j ensure that the ideal forces do no
combined virtual work QC

j δq j = 0. With the aid of (3.9), the EOS (3.25) covers the previous result
(3.16) for velocity constraints (3.1) and is identical with the EOS (A17), derived in Appendix A
from the Gauss principle.

Because (3.10) and (3.15) are each zero, the quantity,

δhk − d2

dt2

[(
∂hk

∂ q̈ j

)
δq j

]
= 0 , (3.26)

is also zero and provides a new transpositional relation derived in Sec. V.

IV. TRANSPOSITIONAL RELATIONS FOR VELOCITY CONSTRAINTS

The sets (3.15) and (3.24) of linear restrictions on the displacements δq j for nonholonomic
systems under general kinematic constraints (3.1) and (3.2) were derived from the basic premise
that the displaced states were all possible. We will now show that the resulting relations (3.17) and
(3.26), in turn, lead quite naturally to noncommuting transpositional relations for nonholonomic
systems, which are quite different from the usual commutation rule (2.14) traditionally accepted
in Lagrangian dynamics. We must now provide a precise meaning to d(δq)/dt . From the infinity
of possible velocity sets (q̇,q̇ ′,q̇ ′′ . . .) which satisfy the constraint equations (3.1) and (3.2), there
exists only one set q̇ which is realized in the actual motion determined by the EOS. Possible
displacements from state (q,q̇) in interval dt are (dq = q̇dt,dq̇ = q̈dt) and (d ′q = q̇ ′dt,dq̇ =
q̈dt). Virtual displacements from state (q,q̇) are the differences δq = (d ′q − dq) = (q̇ ′ − q̇)dt and
δq̇ = (d ′q̇ − dq̇) = (q̈ ′ − q̈)dt of two possible displacements. Not only are all the displacement
conditions, (2.6), (2.12), (3.15), and (3.24) based on frozen constraints recovered, as expected, but
also the time differentials d(δq)/dt = (q̇ ′ − q̇) and d(δq̇)/dt = (q̈ ′ − q̈) are shown to exist.

A. Nonintegrable velocity constraints

The change in the constraint at the displaced state due to a perturbation of the physical state by
a virtual displacement δq under frozen constraints is

δgk = gk(q + δq,q̇ + δq̇,t) − gk(q̇,q,t),

which reduces, under infinitesimal displacements, to

δgk =
(

∂gk

∂q̇ j

)
δq̇ j +

(
∂gk

∂q j

)
δq j ( j = 1,2, . . . ,n), (4.1)

where the free and constrained velocity displacements δq̇ j are yet to be defined in terms of the δq j .
In terms of the Lagrangian derivative,

gk j
def≡

[
d

dt

(
∂gk

∂ q̇ j

)
− ∂gk

∂q j

]
, (4.2)

of the constraint equation (3.1), then (4.1) provides the primary transpositional relation,

δgk − d

dt

[(
∂gk

∂q̇ j

)
δq j

]
=

(
∂gk

∂ q̇ j

)[
δq̇ j − d

dt

(
δq j

)] − gk jδq j , (4.3)

derived without any assumptions. We now explore how the constrained velocity displacements δq̇ j

can be obtained from δq j in order that the property δgk = 0 of possible displaced states can be
fulfilled.
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Option 1: The first option is to invoke the traditional commutation rule (2.14) for all coordinates
so that (4.3) reduces to

δgk − d

dt

[(
∂gk

∂ q̇ j

)
δq j

]
= −gk jδq j . (4.4)

Because (3.5) holds for linear and homogeneous velocity constraints, without requiring possible
displaced states, (4.4) reduces to δgk = −gkiδqi , so that the desired property of possible displaced
states can never be fulfilled for nonintegrable constraints. For integrable constraints, then gkiδqi

= 0 (Sec. IV A 2) and (4.4) then reduces to (2.6). When the commutation rule (2.14) is assumed for
nonholonomic systems, the resulting (4.4) cannot be further utilized so that6 “general nonholonomic
constraints are completely outside the scope of even the most fundamental principle (2.2).” Also
Hamilton’s principle of least action will not hold6 for nonintegrable systems. Apart from these
deductions, the result (4.4) inhibits further advance, making exploration of other options necessary.
Option 1 is defined by (2.14) and (4.4). For linear-velocity constraints only, (2.12) holds for the
displacement δθk , so that (4.4) takes the form,

δθ̇k − d

dt
(δθk) = −gk jδq j , (k = 1,2, . . . ,c) , (4.5)

of a noncommuting transpositional relation in the restricted θ -space, which is equivalent to (2.14)
in q-space.

Option 2: We have already shown for nonholonomic systems under velocity constraints (3.1)
that the desired property δgk = 0 of possible displaced states leads directly to the set (3.15) of linear
restrictions on the δq j , and that (3.17) holds. Consequently, the basic relation (4.3) under (3.17)
reduces to the set of c transpositional relations(

∂gk

∂q̇ j

) [
δq̇ j − d

dt
(δq j )

]
= gk jδqk (k = 1,2, . . . ,c) , (4.6)

which therefore define the velocity displacements δq̇ j in terms of the δq j -variations in q-space. Note
that (4.6) also follows from using (4.1) in (3.17). For integrable constraints, gkiδqi = 0 and (4.6)
reduces to the commutation rule (2.14). In physical terms, the additional dependence of δq̇ j on the
constraint gk via gkiδqi in (4.6) acknowledges the fact that (3.1) restricts directly the velocities of
the possible states and consequently the configuration, while (2.3) for holonomic systems restricts
the possible configurations and subsequently the velocities. The sum gkiδqi will vanish only for
integrable velocity constraints so that the commutation relation (2.14) is then recovered from (4.6).
Option 2 is defined by (3.17) and (4.6).

(a) For linear-velocity constraints, (4.3) becomes

δθ̇k − d

dt
(δθk) =

(
∂g(1)

k

∂ q̇ j

) [
δq̇ j − d

dt

(
δq j

)] − g(1)
k δq j , (4.7)

where the Lagrangian derivative of (2.11) is (2.16). The displacement condition (2.12) is δθk = 0
and the condition for possible displaced states is δθ̇k = 0 so that the commutation rule,

δθ̇k − d

dt
(δθk) = 0, (k = 1,2, . . . ,c), (4.8)

in the restricted θ -space is equivalent to the noncommuting relation (4.6) in q-space, which may
also be verified by the following calculation. Solve (2.11) for the c (= n − m) dependent velocities
η̇k in terms of the m-independent velocities q̇i and all the n independent and dependent coordinates
(qi ,ηk) to give

θ̇k = Gk(q,η,q̇,η̇,t) = Cki (q,η,t)q̇i + Dk(q,η,t) − η̇k = 0, (i = 1,2, . . . ,m) , (4.9)

δθk = Cki (q,η,t)δqi − δηk = 0. (4.10)
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Direct calculation of δη̇k − d(δηk)/dt leads to a cumbersome result which may be written concisely
as, (

∂Gk

∂q̇ j

) [
δq̇ j − d

dt
(δq j )

]
= Gk jδq j , ( j = 1,2, . . . ,n), (4.11)

in agreement with (4.6), where Gkj is the Lagrangian derivative of (4.9).
(b) Application of (3.5) and (4.1) to the nonintegrable homogeneous constraint (3.8) yields(

∂gk

∂q̇ j

)
δq j = ẏ2δx1 + ẋ1δy2 − ẏ1δx2 − ẋ2δy1 = 0 ,

δg1 = ẏ2δ ẋ1 + ẋ1δ ẏ2 − ẏ1δ ẋ2 − ẋ2δ ẏ1 .

On setting δg1 = 0, results in agreement with those calculated from the (4.6) are also obtained.
The two options above are further examined and illustrated in Appendix B for the case of the

nonholonomic penny rolling and turning on an inclined plane.

1. Subrules

Because (4.6) is a set of only c = (n − m) equations for the n = (m + c) unknown δq̇ j , we are
therefore at liberty to specify that the commutation relation (2.14) is obeyed by the m-independent
velocity displacements δq̇r . Then (4.6) is reduced to the set of c equations,

Gks

[
δq̇s − d

dt
(δqs)

]
= gk jδq j , Gks =

(
∂gk

∂ q̇s

)
, (s = m + 1,m + 2, . . . ,n), (4.12)

for the c dependent velocity displacements. The solution of (4.12) is

δq̇r − d

dt
(δqr ) = 0, (r = 1,2, . . . ,m),

δq̇s − d

dt
(δqs) = G̃sk gk jδq j , (s = m + 1,m + 2, . . . ,n),

(4.13)

where the elements G̃sk of the (c × c) inverse matrix G̃ satisfy G̃sk Gk j = δs j . The subrules (4.13),
based on (4.6), show how to evaluate the independent and dependent velocity displacements from
δq j .

2. Integrable velocity constraints

When the linear-velocity constraint (2.11) is exactly integrable then,

g(E)
k (q,q̇,t) = ḟk(q,t) =

(
∂ fk

∂q j

)
q̇ j + ∂ fk

∂t
, (4.14)

integrates (without the need of an integrating factor) to holonomic form (2.3). With the aid of the
identities,

∂ ḟk

∂ q̇ j
= ∂ fk

∂q j
, (4.15)

∂ ḟk

∂q j
= d

dt

(
∂ fk

∂q j

)
, (4.16)

easily proven from (4.14) on treating all the q j ’s as independent, the Lagrangian derivatives,

g(E)
k j = ḟk j =

[
d

dt

(
∂ ḟk

∂ q̇ j

)
− ∂ ḟk

∂q j

]
=

[
d

dt

(
∂ fk

∂q j

)
− ∂ ḟk

∂q j

]
= 0, (4.17)

of (4.14) always vanish. Otherwise, the explicit Lagrangian derivative (2.16) vanishes when

∂ Ak j

∂qi
= ∂ Aki

∂q j
;

∂ Ak j

∂t
= ∂ Bk

∂q j
(i, j = 1,2, . . . ,n), (4.18)
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which are the precise conditions deduced6, 16, 17 from (4.14), that the linear constraint (2.11) is exactly
integrable (without the need of an integrating factor) to the holonomic form (2.3). The primary
relation (4.3) then covers the transpositional rule (2.20) for fk(q,t). As an aside, note that the
zero Lagrangian derivative (4.17) is the essential reason why the extended Lagrangian L̃ = L + ḟk

also satisfies Lagranges’ equations because then L̃ j = L j = QN P
j . Sometimes the linear-velocity

constraint (2.11) with Bk = 0 can be rendered in exact form via the integrating factor,

�k(qi ) = exp

[∫ (
∂ Aki

∂q j
− ∂ Ak j

∂qi

)
dqi

Ak j

]
, (4.19)

provided the integrand is a function only of a specific coordinate qi . For constraints requiring an
integrating factor for integration, the sum gk jδq j in (4.6) will vanish. The Lagrangian derivatives of
constraints written exactly as g(E)

k = �k gk = ḟk(q,t) separately vanish.
Example 2: For example, consider the (scleronomic) linear-velocity constraint

g1 = (4q1 + 3q2
2 )q̇1 + (2q1q2)q̇2 = 0 (4.20)

so that the displacements are related by

(4q1 + 3q2
2 )δq1 + (2q1q2)δq2 = 0 . (4.21)

With the use of δg1 = 0 for possible states, direct calculation yields

(4q1 + 3q2
2 )

[
δq̇1 − d

dt
(δq1)

]
+ (2q1q2)

[
δq̇2 − d

dt
(δq2)

]
= 4q2 (q̇2δq1 − q̇1δq2) , (4.22)

which is identical with that obtained from the general relation (4.6). With the aid of (4.20) and
(4.21), the RHS of (4.22) reduces to zero. The dependent and independent velocity displacements
then obey the commutation relations (2.19). The underlying reason is that (4.20) is integrable via
the integrating factor �1 = q2

1 obtained from (4.19). The exact form of (4.20) is then

θ̇1 = g(E)
1 = (4q3

1 + 3q2
1 q2

2 )q̇1 + (2q3
1 q2)q̇2 = 0, (4.23)

which integrates exactly to θ1(q1,q2) = q2
1 (q2

1 + q1q2
2 ) + c1(constant). For exact constraints (4.23),

the individual Lagrange derivatives g(E)
k j separately vanish so that (4.6) reduces to the commutation

relation (2.19) for holonomic constraints. For integrable constraints (4.20), the sum gk jδq j , the RHS
of (4.22), vanishes.

Example 3: The (rheonomic) linear-velocity constraint

g2 = (q2q̇1 + q1q̇2)C(t) − q1q2

(
dC

dt

)
= 0, (4.24)

where C(t) is any general function of t , is integrable, as confirmed by the satisfaction of g2 jδq j = 0.
The constraint g(E)

2 = q−2
1 q−2

2 g2 is exactly integrable, as confirmed by g(E)
2 j = 0 or by the explicit

conditions (4.18).
For integrable constraints, the general relations (4.13) reduce to the commutation rule (2.14).

B. Transpositional form of the d’Alembert–Lagrange principle

On replacing gk by L in (4.3), the d’Alembert–Lagrange principle (2.2) can be expressed in its
basic transpositional form as

L jδq j = d

dt

[(
∂L

∂q̇ j

)
δq j

]
− δL +

(
∂L

∂ q̇ j

) [
δq̇ j − d

dt

(
δq j

)] = QN P
j δq j , (4.25)

where the displacement δq changes the Lagrangian L by

δL = L(q + δq,q̇ + δq̇,t) − L(q,q̇,t),

=
(

∂L

∂ q̇ j

)
δq̇ j +

(
∂L

∂q j

)
δq j , (4.26)
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FIG. 1. Physical states A(t) and B(t + dt) are perturbed to C and D′ under nonintegrable constraints. (a) Commutation rule
(2.14) implies a continuous path C D of nonpossible displaced states C and D. (b) Noncommutation rule (4.6) implies two
possible displaced states C and D′, but C D′ is discontinuous. The vector from D′ to D is δ(dq) − d(δq) in the nq-space. For
integrable constraints, D → D′ and DC AB D′ closes at D′ to give continuous possible displaced states.

which will depend on transpositional rule adopted.

C. The δ(dq)−d(δq)-relation

Although it is not required for the derivation of the EOS for holonomic and linear-velocity sys-
tems, the commutation rule (2.14) is traditionally assumed in the further development of constrained
principles from (4.25), on the basis that “the variations are contemporaneous,”15 so that the d and δ

operations are assumed to commute for all kinds of constraints. In a strict sense, however, contem-
poraneous means only that d(δt) = δ(dt) = 0, and not that d(δq j ) = δ(dq j ) necessarily holds true
in constrained velocity space. The difference between the rules (2.14) and (4.6) for calculation of
velocity displacements can be illustrated geometrically in n dimensional q-space, in a manner similar
to Greenwood.16 In Fig. 1, AB is a real displacement dq = q̇dt along the actual physical continuous
path during time interval (t,t + dt). A virtual displacement δq(t) to state A(q,q̇) produces state
C(q + δq,q̇ + δq̇). After interval dt , this state C evolves with initial velocity (q̇ + δq̇) to state D at
time t + dt , along the varied path of length C D = (q̇ + δq̇)dt = dq + δ(dq). A virtual displacement
δq(t + dt) = δq + d(δq) at B perturbs state B(q(t + dt),q̇(t + dt)) to a state D′ which is different
from D. The difference in the configurations [q + δq + dq + δ(dq)] and [q + dq + δq + d(δq)]
of states D and D′, which respectively originate from virtual displacements acting at A and B, is
the length DD′ = δ(dq) − d(δq). This difference varies with time at the rate of (DD′)/dt , which
is therefore δq̇ − d(δq)/dt , as determined by (4.13). By considering accelerations, it can be shown,
in a similar way, that the difference in the velocities at D and D′ is δ(dq̇) − d(δq̇), which increases
at the rate of δq̈ − d(δq̇)/dt , as determined by the transpositional relation (4.31) to be derived in
Sec. IV D.

The commutation rule (2.14) for nonintegrable systems therefore implies coincident D and
D′ so that the quadrilateral DC AB D′ closes at D = D′ for all time. The δq(t) displacement at
A therefore generates a single continuous displaced path C D which is not possible, because the
nonintegrable constraints are not satisfied along C D. The different transpositional rule (4.6) implies
that the quadrilateral remains open at different end-points D and D′ which vary with t . Although
possible displaced states exist at C and at D′, C D′ is not a continuous path. The two rules (2.14)
and (4.6) therefore imply that the paths are either continuous and impossible or discontinuous and
possible, respectively, but not both, with the result that integral variational principles (as Hamilton’s)
which rely on continuous possible paths do not then pertain. Under the subrules (4.13) consistent with
(4.6), the quadrilateral, although closed in m-dimensional q-space of the independent coordinates,
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remains open in the (n − m)-dimensional q-space of the dependent coordinates. It is only for
integrable velocity constraints that the quadrilateral becomes closed over the full n-dimensional
q-space when D → D′ so that C D′ now becomes a continuous possible path.

D. Higher-order transpositional relations

The linear acceleration function,

ġk =
(

∂gk

∂ q̇ j

)
q̈ j +

(
∂gk

∂q j

)
q̇ j + ∂gk

∂t
, (4.27)

integrates exactly to the general velocity constraint (3.1). Construct δġk from (4.27) and d(δgk)dt
from either (4.1) or (4.3). With the aid of the identities(

∂ ġk

∂ q̈ j

)
=

(
∂gk

∂ q̇ j

)
, (4.28)

(
∂ ġk

∂q̇ j

)
= d

dt

(
∂gk

∂ q̇ j

)
+ ∂gk

∂q j
, (4.29)

(
∂ ġk

∂q j

)
= d

dt

(
∂gk

∂q j

)
, (4.30)

proven easily from (4.27), the transpositional relation,

δġk − d

dt
(δgk) =

(
∂gk

∂q j

) [
δq̇ j − d

dt
(δq j )

]
+

(
∂gk

∂ q̇ j

) [
δq̈ j − d

dt
(δq̇ j )

]
, (4.31)

is then obtained for kinematic constraints (3.1), and is analogous to (2.20) for holonomic systems.
With the aid of the primary relation (4.3), (4.31) may be alternatively expressed as

δġk − d2

dt2

[(
∂gk

∂q̇ j

)
δq j

]
=

(
∂ ġk

∂ q̇ j

) (
δq̇ j − d

dt
(δq j )

)
+

(
∂gk

∂ q̇ j

)[
δq̈ j − d2

dt2
(δq j )

]
− d

dt
(gk jδq j ) ,

(4.32)
which is a higher-order version of (4.3). For exactly integrable constraints, gk = ḟk . Then both (4.31)
and (4.32) reduce to

δ f̈k − d

dt
(δ ḟk) =

(
∂ ḟk

∂q j

) [
δq̇ j − d

dt

(
δq j

)] +
(

∂ fk

∂q j

) [
δq̈ j − d

dt

(
δq̇ j

)]
, (4.33)

δ f̈k − d2

dt2
(δ fk) = 2

(
∂ ḟk

∂q j

) [
δq̇ j − d

dt

(
δq j

)] +
(

∂ fk

∂q j

) [
δq̈ j − d2

dt2

(
δq j

)]
, (4.34)

which are the higher-order versions of (2.20). Two distinct families, (A) with members (4.3), (4.32),
and (4.34) and (B) with members (2.20), (4.31), and (4.33), of transpositional relations have now
been established. When (4.27) is set to zero and used instead of (3.1), then possible states (δgk = 0)
are automatically implied.

V. TRANSPOSITIONAL RELATIONS FOR ACCELERATION CONSTRAINTS

A. Primary transpositional rule

The change in the acceleration constraints,

hk(q̈,q̇,q,t) = 0 (k = 1,2, . . . ,c), (5.1)
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due to the δq-displacement is

δhk =
(

∂hk

∂q̈ j

)
δq̈ j +

(
∂hk

∂ q̇ j

)
δq̇ j +

(
∂hk

∂q j

)
δq j . (5.2)

Denote the first- and second-time derivatives by (. . .)′ and (. . .)′′, respectively. Then

δhk −
(

∂hk

∂ q̈ j
δq j

)′′
= δhk −

[(
∂hk

∂ q̈ j

) (
δq j

)′′ + 2

(
∂hk

∂q̈ j

)′
(δq j )

′ +
(

∂hk

∂ q̈ j

)′′
δq j

]
,

which with the aid of (5.2), produces the primary transpositional relation

δhk −
(

∂hk

∂q̈ j
δq j

)′′
=

(
∂hk

∂ q̇ j

) [
δq̇ j − (δq j )′

] +
(

∂hk

∂ q̈ j

) [
δq̈ j − (δq j )′′

] − 	hk (5.3)

for acceleration constraints, where the end term is

	hk =
[

2

(
∂hk

∂ q̈ j

)′
−

(
∂hk

∂q̇ j

)]
(δq j )′ +

[(
∂hk

∂q̈ j

)′′
−

(
∂hk

∂q j

)]
δq j . (5.4)

The physical meaning of (5.3) is made apparent for exact constraints hk = ġk . With the aid of the
identities (4.28)–(4.30), 	hk simply reduces to (gk jδq j )′ and (5.3) then reproduces the higher-order
transpositional relation (4.32) previously derived for velocity constraints. We can also show that (5.3)
with hk = ġk minus the time derivative of (4.3) reproduces (4.31). When the acceleration constraints
are exactly integrable to holonomic constraints, then

hk = f̈k =
(

∂ fk

∂q j

)
q̈ j +

(
∂2 fk

∂qi∂q j

)
q̇i q̇ j + 2

(
∂2 fk

∂t∂q j

)
q̇ j + ∂2 fk

∂t2

so that 	hk = 0, via use of the identities

∂ f̈k

∂q̈ j
= ∂ fk

∂q j
;

∂ f̈k

∂ q̇ j
= 2

∂ ḟk

∂q j
,

(
∂ f̈k

∂q̈ j

)′
= ∂ ḟk

∂q j
;

(
∂ f̈k

∂q̈ j

)′′
= ∂ f̈k

∂q j
.

For acceleration constraints exactly integrable to holonomic form (5.3) reduces to the previous rule
(4.34). Relation (5.3) adds another member to the A-family, (4.3), (4.32), and (4.34), of transposi-
tional relations.

1. Subrules

In Sec. III C, it was shown that (3.26) holds for acceleration constraints. As a result, the primary
rule (5.3) then reduces to the transpositional relation(

∂hk

∂q̇ j

) [
δq̇ j − (δq j )

′] +
(

∂hk

∂q̈ j

) [
δq̈ j − (δq j )

′′] = 	hk (k = 1,2, . . . ,c). (5.5)

This set of c equations (5.5) can only be solved for the c dependent acceleration displacements δq̈ j

provided the commutation relations,

δq̈ j = d

dt
(δq̇ j ) ( j = 1,2, . . . ,m),

δq̇ j = d

dt
(δq j ) ( j = 1,2, . . . ,n),

(5.6)

are obeyed by the m-independent acceleration displacements and all n velocity displacements. The
dependent acceleration displacements then satisfy

δq̈ j − (
δq j

)′′ = H̃ jk	hk ; Hki =
(

∂hk

∂ q̈i

)
( j = m + 1,m + 2, . . . ,n), (5.7)

where H̃ jk Hki = δ j i is satisfied by elements of the (c × c) matrix H̃ , the inverse of H .
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B. Higher-order transpositional relations

On constructing δḣk from (3.2) and (δhk)′ from (5.2), then, with aid of the identities,(
∂ ḣk

∂ q̈ j

)
=

(
∂hk

∂ q̈ j

)
;

(
∂ ḣk

∂ q̈ j

)
=

(
∂hk

∂q̈ j

)′
+ ∂hk

∂q̇ j
,

(
∂ ḣk

∂q j

)
=

(
∂hk

∂q j

)′
;

(
∂ ḣk

∂ q̇ j

)
=

(
∂hk

∂q̇ j

)′
+ ∂hk

∂q j
,

proven from (5.1), the higher-order transpositional rule,

δḣk −(δhk)′ =
(

∂hk

∂q j

) [
δq̇ j −(δq j )′

]+(
∂hk

∂q̇ j

) [
δq̈ j −(δq̇ j )′

]+(
∂hk

∂ q̈ j

) [
δ˙q̈ j − (δq̈ j )′

]
, (5.8)

is obtained for acceleration constraints (3.2). When the acceleration constraints are given by (4.27),
they are linear and exactly integrable to general velocity constraints gk . Application of (5.8) provides
the relation,

δg̈k −(δġk)′ =
(

∂gk

∂q j

)′[
δq̇ j −

(
δq j

)′]+
[(

∂gk

∂ q̇ j

)′
+ ∂gk

∂q j

][
δq̈ j −

(
δq̇ j

)′]+
(

∂gk

∂ q̇ j

)[
δ˙q̈ j −

(
δq̈ j

)′]
,

(5.9)
for δg̈k , the fifth member of the B-family of transpositional relations, (2.20), (4.31), (4.33), and (5.8).
All of the higher-order transpositional relations in the (A,B) hierarchies reduce, in the appropriate
limit, to the ones below them.

VI. CONSTRAINED PRINCIPLES

A. Constrained Hamilton’s Principle

Hamilton’s principle is valid provided the chosen varied paths q(t) + δq(t) are continuous and
possible, being compatible with the constraints by satisfying δgk = gk(q + δq,q̇ + δq̇,t) = 0 at all
times. Because the traditional commutation relation (2.19) implies δgk �= 0, the principle does not
hold6, 15–17 for nonintegrable constraints. In the light that the present transpositional rule (4.6) for
nonholonomic systems accommodates possible states, let us therefore re-examine the validity of
Hamilton’s principle for general velocity constraints (3.1).

Integrate (4.25) over time and assume, as is customary for integral principles, that the displace-
ments (surface terms) vanish at both fixed end points t1,2, then∫ t2

t1

δL dt =
∫ t2

t1

(
∂L

∂ q̇ j

) [
δq̇ j − d

dt
(δq j )

]
dt −

∫ t2

t1

QN P
j δq j dt (6.1)

in general. Under the sub-rules (4.13) for velocity constraints (3.1), the integrated version of (4.25)
provides,∫ t2

t1

[
δL −

(
∂L

∂q̇s

)
G̃sk(gk jδq j ) + QN P

j δq j

]
dt = 0, (s = m + 1,m + 2, . . . ,n),( j = 1,2, . . . ,n),

(6.2)
which is the present version of Hamilton’s integrated principle under the transpositional rule (4.13).
As a test, adjoin the constraint conditions δgk = 0 under the present transpositional rule (4.6) by
subtracting,

μk(t)δgk = μk

(
∂gk

∂q̇ j
δq j

)′
=

(
μk

∂gk

∂ q̇ j
δq j

)′
− μ̇k

(
∂gk

∂ q̇ j

)
δq j = 0, (6.3)

from the integrand of (6.2). Then,∫ t2

t1

[
L j − μ̇k

(
∂gk

∂ q̇ j

)
− QN P

j

]
δq j (t)dt = 0, (6.4)
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where δq j can be regarded as independent. The correct EOS (3.16) then emerges from (6.4) and
(6.2) is verified.

The traditional form of Hamilton’s integrated principle,∫ t2

t1

δL dt = 0 (Hamilton’s integrated principle), (6.5)

now follows from (6.2) on assuming integrable constraints when gk jδq j = 0 and workless non-
potential forces when QN P

j δq j = 0. The virtual-displacement operator δ commutes with time t and
(6.5) then becomes a real variational principle,

δS = δ

∫ t2

t1

L dt = 0 (Hamilton’s principle), (6.6)

based on finding stationary values of the action S. Constraints are acknowledged either by imposing
on (6.5) the side conditions (6.3) on the displacements δq or by imposing on (6.6) the actual constraint
equations gk = 0 as side conditions. The varied states q(t,α),q̇(t,α) selected in (6.6) must then all
be possible for all variational parameters α. Non-integrable constraints are automatically excluded
in (6.6) because the transpositional relation (4.13) prevents passage from (6.2) to (6.5). A basic
theorem in the calculus of variations states that the extremum to the functional S = ∫

L dt subject
to auxiliary conditions (3.1) for possible displaced paths can be determined by,

δ S̃ = δ

∫ t2

t1

(L − μk g(I )
k ) dt = 0, (Hamilton’s constrained principle), (6.7)

which is the free variation of the constrained action S̃ without any side conditions imposed. With
the aid of (6.3) and gk jδq j = 0 for integrable constraints, the correct EOS, L j = μ̇k(∂g(I )

k )/∂q̇ j ), is
recovered from (6.7). Note that it is not necessary to write g(I )

k in exact form to maintain validity of
(6.7) for integrable constraints.

When the commutation relation (2.14) is used in (6.1), then the integral principle (6.5) is
satisfied6, 15 even for non-integrable constraints gk . The subsequent advance from (6.5) for non-
integrable constraints to the variational principle (6.7) is however prevented by the fact that the side
conditions gk = 0 cannot be realized for the varied states because the commutation relation implies
that the variational path is composed of non-possible states with δgk �= 0. In contrast to (2.14), the
transpositional relation (4.13) implies that (6.5) is valid only for integrable constraints which, in
turn, imply possible states which provide the continuous variational path required for the validity
of (6.7). Under either rule, (2.14) or (4.13) however, the conclusion remains the same in that the
physical state of a nonholonomic system does not result from a stationary value of the constrained
action.

B. Axiomatic constrained principles

To illustrate directly the failure of Hamilton’s constrained principle (6.7) for non-integrable
constraints, simply replace the integrable constraint g(I )

k in (6.7) by the nonintegrable constraint gk .
(a) Then (6.7), with the aid of the commutation rule (2.14) in (6.1) and the condition

μk(t)δgk =
(

μk
∂gk

∂ q̇ j
δq j

)′
− [μk gk] jδq j �= 0, (6.8)

yields L j = (μk gk) j , the Lagrangian derivative of μk gk which gives,

L j = μ̇k

(
∂gk

∂ q̇ j

)
+ μk gk j , (6.9)

the n-equations of state to be solved in conjunction with (3.1). The end-term (μk gk j ) however
prevents agreement with the correct result (3.16). Equations (6.9), first proposed in 1966 by Ray39

and then retracted,39 were later re-discovered40, 41 in 1983 and termed the vakonomic equations.
Because of the appearance of both μ̇k and μk in (6.9), knowledge of the 2n initial values of (q,q̇),



032705-19 Nonholonomic analytical dynamics J. Math. Phys. 52, 032705 (2011)

must somehow be supplemented by specifying the c-Lagrangian multipliers, μk at t = 0 i.e., the
forces of constraint at t = 0 must be known in order to determine full solution of (6.9). Under an
appropriate choice of these initial conditions, it may be possible to reproduce correct results for a
particular system. It has recently been shown4 that the vakonomic solutions, although coinciding in
some cases for certain initial data, differs, in most cases, from the DLP dynamics of nonholonomic
systems. Arnold et al.41 have also remarked on the conflicting (paradoxical) solutions obtained
for the “vakonomic” and “nonholonomic” ice-skaters on an inclined plane. More doubt has been
raised42 on the overall effectiveness of vakonomic mechanics for velocity constraints. In general,
(6.9) fails to reproduce the traditional formula (2.13) for linear-velocity constraints (2.11) for which
the conditions (2.12) were already known. Comparison of (6.9) with the correct result (3.16) reveals
that axiom will, in general be valid only for integrable velocity constraints when gk jδq j intrinsic to
calculation of (6.7) disappears.

(b) Under the present transpositional rule (4.6), (6.1) yields∫ t2

t1

δL dt = −
∫ t2

t1

L j δq j dt +
∫ t2

t1

(
∂L

∂ q̇s

)
G̃sk(gk jδq j )dt, (6.10)

so that (6.7) with (6.3) provides the equations of state,

L j = μ̇k

(
∂gk

∂ q̇ j

)
+

(
∂L

∂ q̇s

)
G̃sk gk j , (6.11)

where, in contrast to (6.9) only μ̇k now enters. However, the end-term still prevents agreement with
the correct result (3.16). This is because (6.3) should be adjoined to the integrand of (6.2) rather than
to δL of (6.10). Hamilton’s constrained principle for general gk does not work unless the constraints
are integrable when gk jδq j = 0, as already proven in Sect. VI A.

VII. TRANSPOSITIONAL RELATIONS FOR QUASIVELOCITIES IN LINEAR-VELOCITY
CONSTRAINTS

The present work on transpositional relations is geared towards fulfilling the property of possible
states for general nonholonomic systems. Previous work16, 22, 38, 39 dealt with transpositional relations
between true and quasivelocities in order to provide an alternative derivation of the Boltzmann–
Hamel equation,14 in which the linear-velocity constraints are embedded and therefore free of
Lagrange multipliers. Instead of the m-independent velocities q̇ j , the m nonzero quasivelocities,

θ̇i = Ai j (q,t)q̇ j + Bi (q,t) (i, j = 1,2, . . . ,n) , (7.1)

can be adopted as independent velocities, together with c linear-velocity constraints,

θ̇s = Asj (q,t)q̇ j + Bs(q,t) = 0, (s = m + 1,m + 2, . . . ,n), (7.2)

which can be taken to be the remaining c dependent quasivelocities which are now zero. Because
(7.1) are linear in q̇ and, in general, are nonintegrable, θi = θi (q,t) are unknown coordinate functions
and therefore unusable as true generalized coordinates. But θi have known nonzero displacements

δθi =
(

∂θi

∂q j

)
δq j =

(
∂θ̇i

∂ q̇ j

)
δq j = Ai j (q,t)δq j . (7.3)

Solutions of (7.1)–(7.3) are

q̇ j = Ã ji (q,t)
[
θ̇i − Bi (q,t)

]
, (7.4)

δq j = Ã ji (q,t)δθi (i, j = 1,2, . . . ,n), (7.5)

where Ã jr Ari = δ j i is satisfied by elements of the (n × n) inverse matrix Ã. The transpositional re-
lation (4.7) for the c-constraints (2.11) can then be extended to cover the independent quasivelocities
in (7.1) to give the primary rule

Ai j

[
δq̇ j − d

dt

(
δq j

)] −
[
δθ̇i − d

dt
(δθi )

]
= θ̇i j Ã jrδθr (i, j,r = 1,2, . . . ,n) , (7.6)
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where θ̇i j represent the Lagrangian derivatives (2.16) with respect to (q,q̇) of the m-independent
quasivelocities (7.1) and the c-constraints (2.11). Relation (7.6) agrees with that previously
derived16, 49, 50 in terms of Hamel coefficients (Sec. VI B). In previous work16, 49, it was then nec-
essary, for further advance, to choose either of the q- or θ -commutation rules for all coordinates in
(7.6). The present work is based on possible displaced states so that the independent and dependent
velocity-displacements δq̇ j are governed by additional transpositional relations (4.13) which can be
used in (7.6) to provide the further relations,

δθ̇r − d

dt
(δθr ) = −θ̇ri Ãikδθk, (i,k,r = 1,2, . . . ,m),

δθ̇s − d

dt
(δθs) = 0, (s = m + 1,m + 2, . . . ,n),

(7.7)

for the quasi-velocity displacements δθ̇ j . It is worth noting that the present work partitions the
independent and dependent velocity displacements and that commutation for the independent δq̇r

implies non-commutation for the independent δθ̇r , and vice-versa for the corresponding dependent
velocity displacements. The combination of (4.13) and (7.7) also reveals that it is not necessary to
choose16, 49 either of the q- or θ -commutation rules for all coordinates. Rather, the q-commutation
rule now holds for independent velocities while the θ -commutation rule holds for the dependent
quasi-velocities, thereby guaranteeing all possible states. Because of the new transpositional relations
(4.13), generalization of the previous work16, 49, 50 to cover possible states is now possible.

A. Transpositional form of DLP in quasivelocities

The Lagrangian is expressed in terms of the state set (q,θ̇ ) as

L
[
q,q̇(θ̇ ,q,t),t

] = L̃(q,θ̇ (q̇,q,t),t) . (7.8)

With the aid of the general identities,(
∂L

∂q̇ j

)
q

=
(

∂ L̃

∂θ̇i

)
q

(
∂θ̇i

∂ q̇ j

)
(i, j = 1,2, . . . ,n),

(
∂L

∂q j

)
q̇

=
(

∂ L̃

∂q j

)
θ̇

+
(

∂ L̃

∂θ̇i

)
q

(
∂θ̇i

∂q j

)
,

δθ̇i =
(

∂θ̇i

∂q̇ j

)
δq̇ j +

(
∂θ̇i

∂q j

)
δq j ,

then

δL(q,q̇,t) = δ L̃(q,θ̇ ,t) =
(

∂ L̃

∂q j

)
δq j +

(
∂ L̃

∂θ̇i

)
δθ̇i (7.9)

is invariant to any general (q,q̇) ⇔ (q,θ̇ )-transformation. With the aid of (7.3)(
∂L

∂q̇ j

)
q

δq j =
(

∂ L̃

∂θ̇i

)
q

(
∂θ̇i

∂ q̇ j

)
q

δq j =
(

∂ L̃

∂θ̇i

)
θ

δθi (7.10)

is also invariant, but only for the particular linear transformation (7.1), where θi = θi (q,t). The
replacement, (

∂ L̃

∂q j

)
θ̇

δq j =
(

∂ L̃

∂θi

)
θ̇

(
∂θi (q,t)

∂q j

)
δq j =

(
∂ L̃

∂θi

)
θ̇

δθi ,

can be made in (7.9), provided (∂ L̃/∂θi ) is identified as,(
∂ L̃

∂θi

)
θ̇

de f≡
(

∂ L̃(q,θ̇ ,t)

∂q j

)
θ̇

Ã ji , (7.11)
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obtained from (7.5). The transpositional form (4.25) of L can then be expressed in terms of L̃ as

L jδq j = d

dt

[(
∂ L̃

∂θ̇i

)
δθi

]
− δ L̃ +

(
∂ L̃

∂θ̇i

)
Ai j

[
δq̇ j − d

dt

(
δq j

)] = QN P
j δq j . (7.12)

On subtracting (7.12) from the result,

L̃ i (θ,θ̇ ,t)δθi = d

dt

[(
∂ L̃

∂θ̇i

)
δθi

]
− δ L̃ +

(
∂ L̃

∂θ̇i

)[
δθ̇i − d

dt
(δθi )

]
, (7.13)

of (4.25) applied to L̃(θ,θ̇ ,t), then the transpositional form of the d’Alembert–Lagrange principle
(2.2) in quasivelocities is obtained as

(
L̃r − Q̃N P

r

)
δθr +

(
∂ L̃

∂θ̇i

) {
Ai j

[
δq̇ j − d

dt

(
δq j

)]−
[
δθ̇i − d

dt
(δθi )

]}
=0 (i, j,r = 1,2, . . . ,n) .

(7.14)

The relation QN P
j δq j = (QN P

j Ã ji ) δθi ≡ Q̃N P
i δθi determines the transformed generalized force

Q̃N P
i to be QN P

j Ã ji . With the aid of the primary rule (7.6), the quasi-velocity form of DLP is[
L̃r − Q̃N P

r +
(

∂ L̃

∂θ̇i

)
θ̇i j Ã jr

]
δθr = 0 (i, j,r = 1,2, . . . ,n) . (7.15)

When the quasivelocities and constraints are integrable, θ̇i jδq j = θ̇i j Ã jr δθr = 0, the coordinates
are true and (7.14), with the aid of (7.5), reduces, as expected, to the original d’Alembert–Lagrange
equation (2.2). The solution (7.4) for q̇ j is used to express L , Asj and θ̇i j , the Lagrangian derivatives
(2.16) of (7.1), in terms of (q,θ̇ ).

The only other direct derivation49 of (7.15) from transpositional relations assumed from the
beginning that all (dependent and independent) velocity displacements obeyed the traditional com-
mutation rule (2.14) for δq̇ j to give,

(
L̃r − Q̃N P

r

)
δθr −

(
∂ L̃

∂θ̇i

) [
δθ̇i − d

dt
(δθi )

]
= 0, (i,r = 1,2, . . . ,n). (7.16)

Then (7.16), with the aid of (2.14) in (7.6), yields (7.15). The more general relation (7.6) however
reduces (7.15) to (7.14) so that assumption (2.14) which precludes possible displaced states for
i = m,m + 1, . . . ,n is not required.

B. Boltzmann–Hamel equation for linear-velocity constraints

Under constraints, the first m displacements δθr are then all independent and the remaining c
displacements δθs are all zero, so that (7.15) yields the minimum number m of equations of state

L̃r +
(

∂ L̃

∂θ̇i

)
θ̇i j Ã jr = Q̃N P

r (r = 1,2, . . . ,m) (i, j = 1,2, . . . ,n) , (7.17)

where the linear-velocity constraints (2.11) are embedded. It is therefore free from Lagrange’s
multipliers and involves the unconstrained Lagrangian until completion of the θ̇i -differentiation for
i > m of L̃(q; θ̇1,θ̇2, . . . ,θ̇r , . . . ,θ̇n,t) in (7.17), L̃r remaining unaffected when the constrained L̃
is used. The θ̇i j are the Lagrangian derivatives (2.16) of all the quasivelocities (7.1), including the
constraints. On using (2.16) for θ̇i j , (7.17) reproduces the standard form1, 14, 16, 49 of the Boltzmann–
Hamel equation

L̃r +
(

∂ L̃

∂θ̇i

) [
γ i

rs θ̇s + γ i
r

] = Q̃N P
r (r,s = 1,2, . . . ,m) (i = 1,2, . . . ,n), (7.18)

where index r labels each of the m equations written in terms of the Hamel coefficients,14

γ i
rs =

(
∂ Ai j

∂qk
− ∂ Aik

∂q j

)
Ã jr Ãks = −γ i

sr (i, j,k,l = 1,2, . . . ,n), (7.19)
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γ i
r = −

(
∂ Ai j

∂qk
− ∂ Aik

∂q j

)
Ã jr ( Ãkl Bl) +

(
∂ Ai j

∂t
− ∂ Bi

∂q j

)
Ã jr , (7.20)

which involve double and treble summations over ( j,k) and ( j,k,l), respectively. In the absence
of constraints, (7.17) reduces to the pure quasivelocity form (7.18), where the indices are now
(r,s = 1,2, . . . ,n). Beginning with (7.18), Greenwood16 assumed the commutation rule for δθ̇ j and
obtained,

(
L̃r − Q̃N P

r

)
δθr +

(
∂ L̃

∂θ̇i

)
Ai j

[
δq̇ j − d

dt

(
δq j

)] = 0, (i, j,r = 1,2, . . . ,n) . (7.21)

Our present development has shown that the transpositional form of the Boltzmann-Hamel equation
(7.18) is (7.14), which is more general than the previous forms (7.16) and (7.21).

VIII. SUMMARY AND CONCLUSION

We have shown from basic principles how the d’Alembert–Lagrange principle (2.2) can be
implemented for general nonholonomic systems to provide, in a quite natural fashion, equations of
state (3.16) and (3.25) for general velocity and acceleration constraints (3.1) and (3.2), respectively.
These equations are correct because they agree with the EOS (A15) and (A16) derived in Appendix
A from the quite different principle of Gauss. From the property of possible displaced states,
implementation of DLP was effected by establishing sets (3.15) and (3.24) of linear conditions
which restrict the displacements δq j . These sets facilitated construction of new transpositional
relations for nonholonomic systems. For velocity constraints (3.1), the set (3.15) implies

δgk − d

dt

[(
∂gk

∂ q̇ j

)
δq j

]
= 0 (k = 1,2, . . . ,c) , (8.1)

which, when inserted into the basic transpositional relation (4.3) provides the new transpositional
relation, (

∂gk

∂q̇ j

)[
δq̇ j − d

dt
(δq j )

]
= gk jδq j ( j = 1,2, . . . ,n) , (8.2)

from which the velocity displacements can be determined from the configuration displacements. It
is noted that the q-space commutation rule (2.14) traditionally accepted in Lagrangian dynamics
for dependent and independent q precludes possible nonholonomic displaced states and prohibits
any further advance of nonholonomic theory. For integrable systems, gk jδq j = 0 and (8.2) reduces
to the traditional commutation rule (2.14). On taking the independent coordinates to satisfy (2.14),
(8.2) was solved to provide subrules (4.13).

Analogous sets of relations (3.26), (5.3), and (5.5) were also established for nonholonomic
systems under acceleration constraints (3.2). Various hierarchies of higher-order transpositional
relations were then constructed for nonholonomic systems. They reproduce the lower-order results
in the appropriate limits and elucidate various interconnections. The reverse procedure of invoking
these commutation relations (8.2) and (5.3) to furnish the EOS (3.16) and (3.25) is also viable.

The present work shows that (7.13) is the most general transpositional form of the Boltzmann–
Hamel equation. Also shown is that (8.2) does not affect the transpositional derivation of the
Boltzmann–Hamel equation. It affects, however, Hamilton’s integral principle (6.3) which does
not now hold for nonintegrable systems, in contrast to previous conclusions6, 15 based on (2.14).
Hamilton’s principle (6.5) of least action maintains its validity only for integrable constraints,
irrespective of either transpositional relation, (8.2) or (2.14). Vakonomic mechanics was also placed
in context of the present work and provides results which agree with those of DLP only for integrable
velocity constraints. In the course of this work, the Chetaev rule,37 which had been previously left
unjustified from basic principles, was examined as an aside in Appendix A. The rule is apparently
validated by the present proof of (3.15) and (3.24).

In conclusion, the long-standing problem on the implementation of the d’Alembert–Lagrange
principle to dynamical systems under nonlinear kinematic constraints has been solved and the correct
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equations of state (3.16) and (3.25) have been derived from (2.2). Useful transpositional relations
for nonholonomic systems have also been established.
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APPENDIX A: NONHOLONOMIC EQUATIONS OF STATE DERIVED FROM THE GAUSS
PRINCIPLE

Because textbooks have provided no comprehensive account or common source, we present a
unified derivation of the equations of state for nonholonomic systems under general velocity and
acceleration constraints from the Gauss variational principle, a principle quite different from the
d’Alembert–Lagrange principle. The derivation, based on the work of Gibbs,23 Appell,26, 27 and
Ray,28 yields results which confirm the correctness of our present EOS (3.16) and (3.25) obtained
from DLP. The Gauss “constraint,”

C(r̈|ṙ,r,t) = 1

2
mi

(
FC

i

mi

)2

=
(

1

2mi

)
(mi r̈i − Fi )

2 , (A1)

is the “kinetic energy of acceleration” due to the constraint forces FC
i alone. It also provides the

difference (C/2mi )1/2	t2 between the final constrained and constraint-less configurations of the
system evolving after time interval 	t from the common fixed initial state {r(t),ṙ(t)}. Let 	2r̈i be
a finite variation only to the acceleration r̈i , keeping the physical state (ri ,ṙi ) of all particles with
mass mi fixed at time t . The external force Fi (r,ṙ,t) on each particle i is therefore unaffected by this
type of variation. The finite change in C is exactly

	2C = FC
i .	2r̈i + 1

2
mi (	2r̈i )

2 . (A2)

For infinitesimal displacements, 	2 → δ2 so that the first-order infinitesimal change is

δ2C = FC
i .δ2r̈i = ∇r̈i

(
1

2
mi r̈2

i − Fi .r̈i

)
.δ2r̈i . (A3)

On assuming that the unknown constraint forces obey FC
i .δ2r̈i = 0, then C is a minimum, because

the second-order change in C is the positive quadratic term δ2C = 1
2 mi (δ2r̈i )2 ≥ 0. The Gauss

principle14, 15, 20, 21 (∇r̈i C
)
.δ2r̈i = 0 (Gauss principle) (A4)

is then obtained. C is stationary with respect to virtual infinitesimal variations to the acceleration
alone. For particles free from constraints, C decreases to its absolute minimum of zero where
Newton’s second law is recovered for each particle. In general, the motion is such that C due to
constraints is least. In contrast to the original d’Alembert–Lagrange differential-variational principle
(2.2), (A4) is a true minimum principle. It is on a par with Hamilton’s variational principle of least
action for holonomic constraints, but with the additional and powerful advantage that it can also be
applied to general nonholonomic constraints.

Both classes (3.1) and (3.2) of kinematic constraints can now be treated by the generalized-
coordinate version of (A4). Here, the Newtonian variation δ2r̈i is (∂ r̈i/∂q̈ j )δ2q̈ j = (∂ri/∂q j )δ2q̈ j ,
in terms of the variation δ2q̈ j only to acceleration q̈ j associated with the fixed physical state {q,q̇}
of the system. The generalized-coordinate version of (A4) is then the variation,

δ2 R =
(

∂ R

∂ q̈ j

)
δ2q̈ j = 0 (Gauss principle) , (A5)

of

R(q̈|q̇,q,t)
def≡ 1

2
mi r̈2

i (q̈|q̇,q,t) − Q j (q,q̇,t)q̈ j (A6)
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with respect to q̈ alone, where 1
2 mi r̈2

i is the Gibbs’ function or full “kinetic energy of accelera-
tion.” For a constraint-free system, δ2q̈ j are independent so that (A5) provides the Gibbs–Appell
equations14–16, 23, 26–29

∂

∂q̈ j

(
1

2
mi r̈2

i

)
= Q j ( j = 1,2, . . . n) . (A7)

An important note is that (A7), with the identity (A15) given below, reduces to Lagrange’s equations
(2.4). When quasivelocities (7.1) are adopted for linear-velocity systems, the form of (A7) remains
invariant14, 15 and reduces to the minimal set of m equations, free from Lagrange’s multipliers.
Lagrange’s equations, on the other hand, transform to the much more awkward form14, 16 of the
Boltzmann–Hamel equation (7.19).

Under general acceleration constraints (3.2), a finite virtual acceleration displacement 	2q̈ to
the actual acceleration q̈ of a physical state (q,q̇) to a new displaced “state” (q,q̇,q̈ + 	2q̈) at time
t is kinetically possible provided the constraint equations

hk(q̈ + 	2q̈|q̇,q,t) =
(

∂hk

∂ q̈i

)
	2q̈i + 1

2!

(
∂2hk

∂ q̈i∂ q̈ j

)
(	2q̈i )(	2q̈ j ) + ..... = 0

are satisfied at the displaced state. For linear acceleration constraints (4.27), only the first RHS-term
remains so that

	2h(1)
k = h(1)

k (q̈ + 	2q̈|q̇,q,t) =
(

∂gk

∂ q̇ j

)
	2q̈ j = 0, (A8)

where 	2q̈ j can remain finite. For general acceleration constraints (3.2), we must now take the
displacements as the infinitesimal quantities δ2q̈i because they will then provide the set

δ2hk = hk(q̈ + δ2q̈|q̇,q,t) =
(

∂hk

∂ q̈ j

)
δ2q̈ j = 0 (A9)

of linear conditions which can be adjoined to (A5) to give the constrained Gauss principle27

∂ R̃

∂q̈ j
= 0 (constrained Gauss′ principle), (A10)

where the constrained function R̃ is (R − λkhk) and where the δ2q̈ j are now all regarded as inde-
pendent. The equations of state are therefore

∂ R

∂q̈ j
= λk

∂hk

∂q̈ j
( j = 1,2, . . . ,n) (A11)

or equivalently

∂

∂q̈ j

(
1

2
mi r̈2

i

)
= Q j + λk

∂hk

∂ q̈ j
( j = 1,2, . . . n) . (A12)

These equations, first given by Appell,27 extend the standard Gibbs–Appell equations (A7) to non-
linear velocity and acceleration constraints. Calculation of the Gibbs acceleration function ( 1

2 mi r̈2
i )

and then its q̈ j -derivatives are however more complicated than the much simpler Lagrangian deriva-
tive L j . Direct application of the Gibbs–Appell equation (A13) then becomes more labor intensive
than (3.16) and (3.25), which involve only the (simpler-to-calculate) Lagrangian. However, the
transformation between Lagrangian and Newtonian formulations is facilitated by the useful identity

L j − QN P
j = (mi r̈i − Fi ).

[(
∂ri

∂q j

)
=

(
∂ ṙi

∂ q̇ j

)
=

(
∂ r̈i

∂ q̈ j

)]
, (A13)

where the generalized force Q j = Fi .(∂ri/∂q j ) is the sum of a potential part, absorbed within the
Lagrangian derivative L j , and a nonpotential part QN P

j . The Lagrangian form of (A12) is then

L j − QN P
j = ∂

∂q̈ j

[
1

2
mi r̈2

i (q̈|q̇,q,t) − Q j (q,q̇,t)q̈ j

]
= λk

∂hk

∂ q̈ j
( j = 1,2, . . . n) . (A14)
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Identity (A13) illustrates that (L j − QN P
j ) δq j is the sum of all projections of Newton’s equations,

without constraints, onto the surfaces ri (q,t) for all particles i . Ideal constraints, defined as QC
j δq j

= FC
i .δri = 0, are therefore normal to these surfaces. Then (A14) provides the (simpler-to-apply)

Lagrangian forms

d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= QN P

j + λk

(
∂gk

∂ q̇ j

)
( j = 1,2, . . . ,n) (A15)

and

d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= QN P

j + λk

(
∂hk

∂q̈ j

)
( j = 1,2, . . . ,n) (A16)

of (A12) for the equations of state for nonholonomic systems under general velocity and acceleration
constraints (3.1) and (3.2), respectively. These are in exact agreement with the EOS (3.16) and (3.25)
derived in the text from the d’Alembert–Lagrange principle (2.2). An important consequence of
(A15) is that the Gauss principle (A5) can now be expressed in Lagrangian form as(

L j − QN P
j

)
δ2q̈ j = 0 (Lagrangian form of Gauss principle) , (A17)

solved subject to auxiliary conditions (A8) and (A9) which ensure that the displaced states are all
possible. The form (A17) was first noted by Gibbs23 for systems under holonomic constraints.

Until the present analysis, (A15) and (A16) have eluded direct derivation from the d’Alembert–
Lagrange principle (2.2). Their basis (A17) is however analogous to (2.2), where the configuration
displacement δq j is replaced by the acceleration displacement δ2q̈ j for velocity constraints and
nonlinear acceleration displacements, to be solved subject to conditions (A8) and (A9) on the
displacements. This analogy therefore raises the following correspondence.

1. The Chetaev rule

On comparing (A17) with (2.2), it is tempting to suggest that (A15) and (A16) could well be
obtained more easily, without all the details involved in the above application of the Gauss principle
(A4), simply by asserting, without proof, that the δq j displacements in the d’Alembert–Lagrange
principle (2.2) should obey the prescriptions,37(

∂gk

∂ q̇ j

)
δq j = 0, (A18)

for velocity constraints and44 (
∂hk

∂q̈ j

)
δq j = 0 (A19)

for acceleration constraints. These are the ad hoc rules proposed37, 38, 44 for kinematic constraints
(3.1) or (3.2). Although the Chetaev rule (A18) is the DLP-condition (2.12) for linear constraints
(2.11) and agrees with the present result (3.5) for homogeneous velocity constraints, it has remained
without theoretical validation for general gk . Correspondence with the result (A15) of the different
Gauss principle also suggests its acceptance. Although the solutions (A15) of L jδ2q̈ j = 0 subject to
(A8) and of L jδq j = 0 subject to (A18) both coincide, the restrictions (A8) and (A18) imposed on
their respective displacements are however quite different—δ2q̈ j keeps the state (q,q̇) fixed, whereas
δq j changes the state. Similarly, the solution (A16) is based on condition (A9), which is quite different
from (A19). Although generally accepted as an axiom in nonholonomic dynamics, (A18) has never
been theoretically justified or proven directly from DLP which is based on displacements δq j to the
configuration, which in turn cause displacements in all q, q̇, and q̈ . Although many attempts28, 38, 43–46

have been made to reconcile (A18) with DLP, mainly by seeking suitable forms for gk which satisfy
(A18), as, for example, homogeneous velocity constraints, the rule has been generally accepted
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FIG. 2. The penny rolls upright while turning on an inclined plane of angle α. Directions of space-fixed axes are Î , Ĵ, and K̂ ,
as indicated. Disk rolls along the plane with angular velocity ψ̇ ĵ about symmetry axis ĵ(t) which turns with constant angular
velocity φ̇k̂ about fixed figure axis k̂. The C M has velocity v(t) = [Rψ̇(t)]î(t) and the point of contact P is instantaneously
at rest.

into the methodology of analytical dynamics. Because there was apparently no way to derive (A18)
directly from (3.1), (A18) has remained unjustified and therefore a contentious issue.9

This long-standing enigma has now been resolved in the text by analysis based on possible
displaced states which provides the sets (3.15) and (3.24) of linear conditions on the displacements
δq j required for the successful implementation of the d’Alembert–Lagrange principle to nonholo-
nomic systems under general kinematic constraints. The procedure also leads, in a natural fashion,
to a set of transpositional relations, which may, in turn, be invoked ab initio to rederive the EOS. A
consequence of the present development is that the axioms (A18) and (A19), previously unjustified,
are now validated by the explicit proofs of the identical conditions (3.15) and (3.24) presented in the
text.

APPENDIX B: THE TWO TRANSPOSITIONAL RELATIONS

Options 1 and 2 of Sec. IV A are based on transpositional relations (2.14) and (4.6), respectively.
The disadvantage of option 1 is that displaced states are not possible for nonintegrable constraints
and any theoretical advance beyond (4.4) is inhibited. The advantage of (4.6) over (2.14) is that
the δq displacement causes transition to a possible state, and in doing so provides the set (3.15)
of linear restrictions on the δq j required for implementation of DLP. The sum gkiδqi will vanish
only for integrable velocity constraints (Sec. IV A 2), so that the traditional commutation relation
(2.14) is recovered, in this limit, from (4.6). Both options can be exercised for only holonomic and
linear-velocity constraints. Option 2 provides the only viable method for general nonholonomic
constraints.

1. Example of nonintegrable linear-velocity constraints: The nonholonomic penny

Example 4: The two different approaches based on (2.14) and on (4.6) or (4.8) are now illus-
trated via a specific example of nonintegrable linear-velocity constraints. The familiar nonintegrable
constraints for the nonholonomic upright penny of radius R, rolling with speed Rψ̇ and turning with
angular speed φ̇ on the inclined plane of Fig. 2, are,

θ̇1 = G1 = ẋ − Rψ̇ cos φ = 0, (B1)

θ̇2 = G2 = ẏ − Rψ̇ sin φ = 0, (B2)

the Cartesian components of vP , where (x,y) are the Cartesian coordinates of the point of contact
P with the plane, and where φ is the angle between the x axis and the penny’s velocity along the
tangent to the curve x(t),y(t). Let ẋ,ẏ be the dependent velocities. The coordinate functions θk(q,t)
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are unknown for nonintegrable constraints, but the displacements obey the conditions

δθ1 = δx − (R cos φ)δψ = 0, (B3)

δθ2 = δy − (R sin φ)δψ = 0, (B4)

which follow directly from (B1) and (B2), or equivalently from the general formula (2.12) for
linear-velocity constraints. At the displaced state, the constraints change from (B1) and (B2) to

δθ̇1 = δG1 = δ ẋ − (R cos φ)δψ̇ + (R sin φ)ψ̇δφ, (B5)

δθ̇2 = δG2 = δ ẏ − (R sin φ)δψ̇ − (R cos φ)ψ̇δφ . (B6)

Method 1: This is characterized by the commutation rule (2.14) and the general relation (4.4)
which takes the form (4.5) for the linear-velocity constraints (B1) and (B2). Displaced states are not
possible. Application of (2.14) on (B3) and (B4) yields

d

dt
(δθ1) = δ ẋ − (R cos φ)δψ̇ + (R sin φ)φ̇δψ = 0, (B7)

d

dt
(δθ2) = δ ẏ − (R sin φ)δψ̇ − (R cos φ)φ̇δψ = 0 . (B8)

The differences

δθ̇1 − d

dt
(δθ1) = δG1 = −R sin φ

(
φ̇δψ − ψ̇δφ

)
(B9)

δθ̇2 − d

dt
(δθ2) = δG2 = R cos φ

(
φ̇δψ − ψ̇δφ

)
(B10)

are then obtained from (B5)–(B8). The only nonzero Lagrangian derivatives calculated from (4.2)
are G1ψ = Rφ̇ sin φ, G1φ = −Rψ̇ sin φ, G2ψ = −Rφ̇ cos φ, and G2φ = Rψ̇ cos φ. Application of
formula (4.5) then provides results identical with (B9) and (B10).

Method 2: This is characterized by (4.6), which, for linear-velocity constraints, has the commu-
tation form (4.8) in θ -space. On using (B3)–(B6) and the condition δθ̇1,2 = δG1,2 = 0 for possible
states, the commutation relation (4.8) then provides two transpositional relations[

δ ẋ − d

dt
(δx)

]
− R cos φ

[
δψ̇ − d

dt
(δψ)

]
= +R sin φ

(
φ̇δψ − ψ̇δφ

)
, (B11)

[
δ ẏ − d

dt
(δy)

]
− R sin φ

[
δψ̇ − d

dt
(δψ)

]
= −R cos φ

(
φ̇δψ − ψ̇δφ

)
, (B12)

which link the two (dependent) velocity displacements δẋ and δ ẏ to the free arbitrary displacements
and which highlight the fact that δ ẋ and δ ẏ cannot satisfy commutation (2.14). Application of
formula (4.6) yields results identical with (B11) and (B12), whose RHSs are simply Gk jδq j . The
displaced states are possible in method 2.

Four equations are required to specify the transpositional rules for the four coordinates
(x,y,φ,ψ). We may therefore allow the two independent and arbitrary coordinates (ψ,φ) in (B11)
and (B12) to satisfy commutation rule (2.14). The dependent velocity displacements then obey the
transpositional relations [

δ ẋ − d

dt
(δx)

]
= R sin φ

(
φ̇δψ − ψ̇δφ

)
(B13)

[
δ ẏ − d

dt
(δy)

]
= R cos φ

(
ψ̇δφ − φ̇δψ

)
(B14)
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in agreement with the established subrules (4.13). When the constraints are rewritten in the equivalent
form

g1 = ẋ cos φ + ẏ sin φ − Rψ̇ = 0, (B15)

g2 = ẋ sin φ − ẏ cos φ = 0, (B16)

the tangential and normal components of vP , the rule (4.6) yields[
δ ẋ − d

dt
(δx)

]
cos φ +

[
δ ẏ − d

dt
(δy)

]
sin φ − R

[
δψ̇ − d

dt
(δψ)

]
= 0, (B17)

[
δ ẋ − d

dt
(δx)

]
sin φ −

[
δ ẏ − d

dt
(δy)

]
cos φ = R

(
φ̇δψ − ψ̇δφ

)
, (B18)

which are simple linear combinations of the set (B11) and (B12). Thus application of (4.6) to
constraints, written in different equivalent forms, (B1) and (B2) or (B15) and (B16), produce
equivalent results. The full solution x(t),y(t),φ(t),ψ(t) of (3.16) and the interesting geometrical
paths obtained for the nonholonomic penny are provided elsewhere.52

In summary, method 1 is based on commutation relation (2.14) in q-space and the resulting
relation (4.4) which implies that the displaced states violate the constraints. Method 2 is based on
the noncommuting relation (4.6) which allows possible displaced states for kinematic constraints.
Although derivation of EOS for homogeneous velocity constraints in Sec. III A does not rely on
either method, method 2 possesses a clear advantage for general kinematic constraints, because it is
open to the property that displaced states are possible, thereby allowing the condition (3.15) to be
extracted for the implementation of DLP to obtain the correct EOS (3.16).
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