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1 Reading Assignments & Other Preparation

• Lemos, Section 1.1

• Goldstein, Sections 1.1–1.2

• Give the Jupyter tutorial notebook a try if you want to brush up on your Python skills: It
can be found on the course website website either under Projects or Computation\Python

2 Additional Notes on Newtonian Mechanics

2.1 Computing Work Along a Path and Potentials

Generally, we can compute the potential by the same curve integration as the work. For a conserva-
tive force that can be written as ~F (~r) = −~∇V (~r), we can choose a suitable curve γ parameterized
by s that connects the reference point ~r(si) and a general point ~r(sf ), and integrate:

W =

∫
γ
d~r · ~F (~r) =

∫ sf

si

ds
∂~r(s)

∂s
· ~F (~r(s))

= −
∫ sf

si

ds
∂~r(s)

∂s
· ~∇V (~r(s))

= −
∫ sf

s1

ds

(
∂x

∂s

∂

∂x
+
∂y

∂s

∂

∂y
+
∂z

∂s

∂

∂z

)
V (~r(s))

= −
∫ sf

s1

dV (~r(s)) = − (V (~r(sf ))− V (~r(si)) = −Wext . (1)

Going from the second to the third line, we have expanded the scalar product of ∂~r
∂s and ~∇V , and

from the third to the fourth lines, we have used that ds∂~r∂s · ~∇V (~r) is the total differential of V (~r).
If you are unsure about this, consider first the chain rule

d

dx
f(g(x)) =

∂f

∂g

dg

dx
⇒ df =

∂f

∂g
dg . (2)

If we have multiple intermediate functions gi(x) that depend on the same variable x, this generalizes
to

d

dx
f(g1(x), . . . , gn(x)) =

n∑
i=1

∂f

∂gi

dgi
dx

⇒ df =

n∑
i=1

∂f

∂gi
dgi . (3)
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Note that W is the work done by the force, which is the negative potential energy difference (since
the work is taking out of the energy stored in the potential). It is opposite in sign to the external
work that we have to do against the force to move an object.

2.2 Work Along Closed Paths and Stokes’ Theorem

You are likely familiar with Stokes’ theorem in the following form:∮
∂A

~F (~r) · d~r =

∫
A

~∇× ~F (~r) · d ~A . (4)

It relates the integral over a vector field ~F (~r) along a closed loop along the boundary of an area
A, indicated by ∂A, to the integral of the curl of ~F (~r) over the interior of the area. The area itself
is meant to be orientable, so that one can define a vectorial area element d ~A = ~ndA, where ~n is a
unit vector that is normal to the area element dA. Note that ~n can depend on ~r in general, e.g.,
for curved surfaces: An example would be an integral over the surface of a sphere, where ~n = ±~er.

From Eq. (4), it is readily apparent that if everywhere in the area A

~∇× ~F (~r) = 0 , (5)

we will automatically have ∮
∂A

~F (~r) · d~r = 0 . (6)

Potential issues can arise whenever ~F (~r) is not smooth, i.e., when the derivatives may be ill defined.
A concrete example is discussed in homework # 1.

2.3 General Solution of the Equation of Motion for a Single Degree of Freedom

Consider the motion of a mass m in one spatial dimension in the presence of a conservative force
field F (x). Per Newton’s Second Law, the equation of motion is

mẍ = F (x) = −dV
dx

, (7)

with the potential V (x) that corresponds to the force. To solve Eq. (7), we multiply by ẋ, obtaining

mẋẍ = −ẋdV
dx

. (8)

The left and right-hand sides of this equation are the time derivatives of the kinetic energy,

d

dt
T (ẋ(t)) =

1

2

d

dt

(
mẋ2

)
= mẋ · ẍ (9)

and the potential energy,

− d

dt
V (x(t)) = −dV

dx
ẋ , (10)

respectively, where we have used the chain rule. Bringing both terms to the same side, we imme-
diately obtain the conservation theorem for the energy E = T + V ,

d

dt

(
1

2
mẋ2 + V (x)

)
= 0 ⇒ 1

2
mẋ2 + V (x) = E = const . (11)
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We can now use energy conservation to determine the velocity of the mass, since

dx

dt
= ẋ = ±

√
2

m
(E − V (x)) . (12)

The sign can be fixed by convention, e.g., by agreeing that a positive (negative) sign corresponds to
motion to the right (left). Equation (12) is a first order differential equation that can be integrated
to yield x(t). Let us separate the variables and bring dt and dx to separate sides of the equation:

dt = ± dx√
2
m(E − V (x))

. (13)

Integrating both sides, we have

t− t0 = ±
∫ x

x0

dx′
1√

2
m(E − V (x′))

, (14)

and by evaluating the integral, we obtain x(t) as a function of the parameters t0 and E. The starting
location x0 is not an independent parameter here, since it must be consistent with x(t0) = x0.
Equation (12) requires that E ≥ V (x) for physically relevant solutions; trajectories with E < V (x)
are forbidden1. For V (x) = E, we have ẋ = 0, which corresponds to a turning point of the trajectory:
The velocity changes sign as the particle changes its direction.

2.4 Kinematics in Curvilinear Coordinates

The description of mechanical processes can often be simplified by an appropriate choice of coordi-
nate systen, which may then turn out to rely on curvilinear coordinates. A prominent example is
the motion on a circle with fixed radius in a plane, which is more readily parameterized in terms
of a radius r and an angle φ instead of Cartesian coordinates x and y, especially since the radius
will be constrained to be r = R = const. — this latter point will be one of the primary motivators
for switching from a Newtonian treatment of dynamics to the Lagrangian formulation.

Here, we want to briefly discuss how we would set up the tools for describing motion in cur-
vilinear coordinates, from the basis vectors to derivatives and integration measures. We will use
cylindrical coordinates in three dimensions as an example, and then summarize the procedure for
general coordinates.

2.4.1 Cylindrical Coordinates

Cylindrical coordinates ρ, φ, z in R3 can be introduced implicitly by expressing the Cartesian coor-
dinates x, y, z as

x = ρ cosφ , (15)

y = ρ sinφ , (16)

z = z , (17)

or conversely,

ρ =
√
x2 + y2 , (18)

1Note: This requirement no longer applies in Quantum mechanics!
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φ = arctan
y

x
, (19)

z = z , (20)

Thus, a general position vector can be written as

~r = x~ex + y~ey + z~ez = ρ cosφ~ex + ρ sinφ~ey + z~ez . (21)

Basis Vectors

We can achieve a more compact representation of ~r by introducing basis vectors associated with
the cylindrical coordinates. The key observation is that the basis vectors are tangential to the lines
of the coordinate mesh, which suggests a relationship between the basis vectors and derivatives of
~r with respect to ρ, φ, z. Indeed, we can proceed to define

~eρ =
1

hρ

∂~r

∂ρ
, hρ =

∣∣∣∣∂~r∂ρ
∣∣∣∣ = 1 , (22)

~eφ =
1

hφ

∂~r

∂ρ
, hφ =

∣∣∣∣ ∂~r∂φ
∣∣∣∣ = ρ , (23)

~ez =
1

hz

∂~r

∂z
, hz =

∣∣∣∣ ∂~r∂φ
∣∣∣∣ = 1 , (24)

where hρ,φ,z are simply norms of the coordinate derivatives of ~r. In terms of the original Cartesian
unit vectors, we have

~eρ = cosφ~ex + sinφ~ey , (25)

~eφ = − sinφ~ex + cosφ~ey , (26)

~ez = ~ez , (27)

so the orientation of the basis vectors changes with the coordinate φ, unlike ~ex,y,z, which remain
fixed at all times. Focusing on a coordinate circle around the z axis, ~eρ points radially away from
the circle, and ~eφ is tangential to it (as expected by its definition).

We can readily verify that the basis vectors are orthonormal, i.e.,

~eρ · ~eφ = ~eρ · ~ez = ~eφ · ~ez = 0 , (28)

and
~eρ · ~eρ = ~eφ · ~eφ = ~ez · ~ez = 1 . (29)

We also note that the basis vectors form a right-handed coordinate system if we arrange them in
the order {~eρ, ~eφ, ~ez}:

~eρ × ~eφ = ~ez, ~eφ × ~ez = ~eρ, ~ez × ~eρ = ~eφ . (30)

Inverting the system of equations (25)–(27), we can express an arbitray coordinate vector as

~r = ρ~eρ + z~ez . (31)

When we are computing time (or other) derivatives of ~r, it is now important to keep in mind that
the basis vectors are coordinate dependent as well, and we need to apply the product and chain
rules as needed (see homework #1).
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Exercise 2.1: Basis Vectors in Spherical Coordinates

Show that the basis vectors for a spherical coordinate system r, θ, φ, defined through

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ , (32)

are given by

~er = sin θ cosφ~ex + sin θ sinφ~ey + cos θ~ez , (33)

~eθ = cos θ cosφ~ex + cos θ sinφ~ey − sin θ~ez , (34)

~eφ = − sinφ~ex + cosφ~ey . (35)

Prove that the vectors are orthonormal, and that {~er, ~eθ, ~eφ} is a right-handed coordinate
system.

Derivatives and Differentials

We will frequently need the gradient operator, which is given in Cartesian coordinates by

~∇ ≡ ~ex
∂

∂x
+ ~ey

∂

∂y
+ ~ez

∂

∂z
. (36)

Using the chain rule, we have
∂

∂x
=
∂ρ

∂x

∂

∂ρ
+
∂φ

∂x

∂

∂φ
, (37)

and

∂ρ

∂x
=

∂

∂x

√
x2 + y2 =

x√
x2 + y2

=
ρ cosφ

ρ
= cosφ , (38)

∂φ

∂x
=

∂

∂x
arctan

y

x
=

1

1 +
( y
x

)2 −yx2 = − 1

1 + tan2 φ

sinφ

ρ cos2 φ
= − cos2 φ

sinφ

ρ cos2 φ
= −1

ρ
sinφ . (39)

Analogously, we find

∂ρ

∂y
=

y√
x2 + y2

=
ρ sinφ

ρ
= sinφ , (40)

∂φ

∂y
=

∂

∂y
arctan

y

x
=

1

1 +
( y
x

)2 1

x
= cos2 φ

1

ρ cosφ
=

1

ρ
cosφ . (41)

Using these partial derivatives and the definition of the cylindrical-basis vectors, we obtain

~∇ = ~ex

(
cosφ

∂

∂ρ
− 1

ρ
sinφ

∂

∂φ

)
+ ~ey

(
sinφ

∂

∂ρ
+

1

ρ
cosφ

∂

∂φ

)
+ ~ez

∂

∂z

= ~eρ
∂

∂ρ
+ ~eφ

(
1

ρ

∂

∂φ

)
+ ~ez

∂

∂z
. (42)

Note that this can also be written as

~∇ = ~eρ

(
1

hρ

∂

∂ρ

)
+ ~eφ

(
1

hφ

∂

∂φ

)
+ ~ez

(
1

hz

∂

∂z

)
. (43)

Using this representation of ~∇ in the cylindrical coordinates and basis vectors, we can readily
evaluate other vectorial derivatives like the divergence and the curl.
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Exercise 2.2: Divergence and Curl in Cylindrical Coordinates

Show that the divergence and curl of a vector field ~A(ρ, φ, z) in cylindrical coordinates are
given by

~∇ · ~A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aφ
∂φ

+
∂Az
∂z

, (44)

~∇× ~A =
1

ρ
(∂φAz − ρ∂zAφ)~eρ + (∂zAρ − ∂ρAz)~eφ +

1

ρ
(∂ρ(ρAφ)− ∂φAρ)~ez . (45)

Exercise 2.3: Vector Derivatives in Spherical Coordinates

Show that the gradient operator and the divergence and curl of a vector field ~A(r, θ, φ) in
spherical coordinates are given by

~∇ = ~er
∂

∂r
+ ~eθ

(
1

r

∂

∂θ

)
+ ~eφ

(
1

r sin θ

∂

∂φ

)
, (46)

~∇ · ~A =
1

r2
∂

∂ρ

(
r2Ar

)
+

1

r sin θ

∂

∂θ
(Aθ sin θ) +

1

r sin θ

∂Aφ
∂φ

, (47)

~∇× ~A =
1

r sin θ

(
∂

∂θ
(Aφ sin θ)− ∂Aθ

∂φ

)
~er +

1

r

(
1

sin θ

∂Ar
∂φ
− ∂

∂r
(rAφ)

)
~eθ

+
1

r

(
∂

∂r
(rAθ)−

∂Ar
∂θ

)
~eφ . (48)
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3 Group Exercises

Problem G1 – Conservative Forces

Let ~F = C
(
k1xy, x

2 + k2z
2, yz

)T
be a force field, with C > 0 having the units of a force, and

k1, k2 being initially unspecified parameters.

1. For which values of the constants k1 and k2 does the force have a potential?

Use these values k1 and k2 that result in a conservative force ~F in the following.

2. Compute the work required to move a point mass m from the origin of the coordinate system
to ~a = (ax, ay, az)

T . Under which conditions does this transport require and generate energy,
respectively?

3. Determine the potential and check that it indeed yields the correct expression for the force
field.

Problem G2 – Motion in a One-Dimensional Potential

A point mass m is moving in the one-dimensional harmonic oscillator potential

V (x) =
1

2
mω2x2. (49)

1. What are the physically allowed energies for this potential? For which values of E is the
trajectory of the mass bounded?

2. Determine the turning points x± of the bounded trajectories.

3. Integrate Eq. (14) to determine the trajectory x(t) with initial conditions, x(0) = x+ and
ẋ(0) = 0, i.e., for a mass that is released from rest at the positive turning point.

Hint: ∫
dx

1√
a2 − x2

= arctan
x√

a2 − x2
+ c , for a > 0 . (50)

4. Solve the equation of motion for the mass m with the same initial conditions as in the previous
part, and show that the two solutions are consistent.

Problem G3 – Properties of the Two-Body Problem

Two particles with masses m1 and m2 interact with each other and are also subject to external

forces. We denote the interparticle force ~F12 = −~F21, and the external forces ~F
(e)
1,2 . Assume that we

describe the dynamics of the particles from an inertial frame.
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1. Use the equations of motion for the individual masses to show that the equation of motion for
the center of mass is

d~P

dt
= M

d2 ~R

dt2
= ~F

(e)
1 + ~F

(e)
2 , (51)

where M = m1 +m2.

2. Analogously, show that the equation of motion for the relative degree of freedom is

d~p

dt
= µ

d2~r

dt2
= ~F12 + µ

(
~F

(e)
1

m1
−
~F

(e)
2

m2

)
, (52)

where
~r ≡ ~r1 − ~r2 , µ ≡ m1m2

m1 +m2
. (53)

3. Show that the total kinetic energy and total angular momentum of the two-particle system can
be expressed as

T =
1

2
M ~̇R2 +

1

2
µ~̇r2 (54)

and
~L = M ~R× ~̇R+ µ~r × ~̇r . (55)

4. Assume that the interparticle force is central, i.e., ~F12 = F12(r)~er with r = |~r|. Show that

d~L

dt
= ~N (e) , (56)

where ~L is the total angular momentum and ~N (e) is the torque exerted on the particles by the
external forces:

~N (e) ≡ ~r1 × ~F
(e)
1 + ~r2 × ~F

(e)
2 . (57)
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