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• Lemos, Section 1.4-1.5, 2.1–2.4

• Goldstein, Sections 2.1–2.4

2 Notes

2.1 Geometric Derivation of the Lagrange Equations

A drawback of Newton’s Second Law is that the form of the resulting equations of motion for each
coordinate of a particle are in general not invariant under point transformations between two sets
of independent coordinates,

qi (s1, . . . , sn) → si (q1, . . . , qn) , i = 1, . . . , n . (1)

For instance, the term m~̈r already becomes much more complicated if we switch to curvilinear
coordinates to describe motion in an inertial frame, and in non-inertial frames fictitious terms like
the centrifugal or Coriolis forces appear (see Exercise 2.1). D’Alembert’s principle(

~F −m~̈r
)
· δ~r = 0 , (2)

on the other hand, can be rewritten in a way that makes it form-invariant under point trans-
formations between generalized coordinates (see Exercise 2.2). For simplicity, we will consider a
holonomic system with one generalized coordinate first, and generalize our result afterwards.

2.1.1 The Lagrange Equations for One Degree of Freedom

Let us denote the generalized coordinate describing the single degree of freedom of our system by
q. We start our derivation by considering the force term in d’Alembert’s principle (2):

~F · δ~r = ~F · ∂~r
∂q
δq ≡ Qδq . (3)

Here, we have defined the generalized force Q associated with the coordinate q. Just like a
generalized coordinate need not have the dimensions of a length, Q need not have the dimensions
of a force, but Qδq will always have the dimensions of an energy.
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Exercise 2.1: Newton’s Second Law in Different Coordinate Systems

Consider a mass moving in a two-dimensional plane, In Cartesian coordinates, Newton’s
Second Law yields the following equations of motion:

ẍ =
Fx
m
, (E2.1-1)

ÿ =
Fy
m
. (E2.1-2)

Show that in polar coordinates

x = r cosφ, y = r sinφ , (E2.1-3)

Newton’s Second Law takes the form

r̈ − rφ̇2 =
Fr
m
, (E2.1-4)

2ṙφ̇+ rφ̈ =
Fφ
m
, (E2.1-5)

with Fr = ~F · ~er and Fφ = ~F · ~eφ. Thus, the form of Newton’s Second Law depends on the
choice of coordinates.

Next, we rewrite the inertial term. Using the product rule, we have

m~̈r · ∂~r
∂q

=
d

dt

(
m~̇r · ∂~r

∂q

)
−m~̇r · d

dt

∂~r

∂q
. (4)

Consider the time derivative of ~r, which we can evaluate using the chain rule:

~̇r =
∂~r

∂q
q̇ . (5)

Since we have holonomic constraints, ~r does not depend on q̇, and ~̇r is a function that only depends
on q̇ linearly. If we take the partial derivative with respect to q̇ on both sides of Eq. (5), we obtain

∂~̇r

∂q̇
=
∂~r

∂q
. (6)

This identity is often referred to as a cancellation of dots, but keep in mind that it only applies
under certain circumstances. Now consider the second term on the right-hand side of Eq. (4). The
derivatives commute (even for non-holonomic constraints and explicitly time dependent ~r), so we
have

d

dt

∂~r

∂q
=
∂~̇r

∂q
. (7)

Using identities (6) and (7), we can rewrite Eq. (4) as

m~̈r · ∂~r
∂q

=
d

dt

(
m~̇r · ∂~̇r

∂q̇

)
−m~̇r · ∂~̇r

∂q
. (8)
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If we now introduce the kinetic energy T (q, q̇) = 1
2m~̇r

2, we recognize its partial derivatives with
respect to q and q̇ on the right-hand side:

m~̈r · ∂~r
∂q

=
d

dt

∂

∂q̇

(
1

2
m~̇r2

)
− ∂

∂q̇

(
1

2
m~̇r2

)
=

d

dt

∂T

∂q̇
− ∂T

∂q
. (9)

Putting everything together, we see that d’Alembert’s principle satisfies(
m~̈r − F

)
· δ~r =

(
m~̈r − F

)
· ∂~r
∂q
δq

=

(
d

dt

∂T

∂q̇
− ∂T

∂q
−Q

)
δq = 0 . (10)

Since this equation has to hold for arbitrary virtual displacements δq , the expression in the paren-
thesis must vanish, which leads us to the Lagrange equation for a system with one degree of
freedom:

d

dt

∂T

∂q̇
− ∂T

∂q
−Q = 0 . (11)

If the forces acting on the system are conservative, Q can be derived from a potential V (q)

Q = −∂V
∂q

. (12)

In this case, we can define the Lagrangian L of the system,

L(q, q̇) ≡ T (q, q̇)− V (q) , (13)

and rewrite Eq. (10) as

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 . (14)

2.1.2 Lagrange Equations for Multiple Degrees of Freedom

The derivations of the previous section can be readily generalized to systems with multiple degrees
of freedom — that is, multiple particles and/or multiple degrees of freedom per particle — without
going through the math in detail again. In an N -particle system, we obviously have positions and
velocities for each particle, corresponding to 3N coordinates:

~r, ~̇r −→ {~ri, ~̇ri}i=1,...,N . (15)

If the system is subject to k holonomic constraints, the total number of degrees of freedom is
n = 3N − k, and to each of them we associate an an independent generalized coordinate and
velocity:

q, q̇ −→ {qj , q̇j}j=1,...,3N−k . (16)
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In general, each ~ri is a function of all generalized coordinates, because the motion of each particle
could be related to that of all others by the constraint — just think of the case of the rigid body.
As a consequence, differentials and virtual displacements will have the generalization

δ~r =
∂~r

∂q
δq −→ δ~ri =

3N−k∑
j=1

∂~ri
∂qj

δqj , (17)

d~r =
∂~r

∂q
dq +

∂~r

∂t
dt −→ d~ri =

3N−k∑
j=1

∂~ri
∂qj

dqj +
∂~r

∂t
dt . (18)

Using these rules for the coordinates, we can generalize the kinetic and potential energies as

T =
1

2
m~̇r 2 −→ 1

2

∑
i

mi~̇r
2
i (19)

and
V (~r) −→ V (~r1, . . . , ~rN ) , (20)

respectively. Here we have assumed that the potential does not depend on the velocity: This is
the case for most of our applications, although we will discuss an important counter-example later
in the course. Since the particle coordinates depend on the qi, we can also express the potential
energy in terms of the generalized coordinates instead:

V (q) −→ V (q1, . . . , q3N−k) . (21)

The generalized forces are extended via

Q = ~F · ∂~r
∂q

−→ Qj =

N∑
i=1

~Fi ·
∂~ri
∂qj

. (22)

For conservative forces, we have
~Fi = −~∇iV (~r1, . . . , ~rN ) , (23)

where ~∇i acts on the coordinates of particle i. Plugging this into the definition of the generalized
force, we obtain

Qj = −
N∑
i=1

(
~∇iV

)
· ∂~ri
∂qj

= −
N∑
i=1

3∑
k=1

∂V

∂xik

∂xik
∂qj

= −∂V
∂qj

, (24)

where we have written out the scalar product in components, and used the chain rule in the final
step (noting again that V cannot depend on q̇j or t).

Finally, we can state the many-particle version of d’Alembert’s principle,∑
i

(
~Fi − ~̇pi

)
· δ~ri = 0 , (25)

as well as the Lagrange equations for each generalized coordinate:

d

dt

∂T

∂q̇j
− ∂T

∂qj
−Qj = 0 . j = 1, . . . , 3N − k , (26)

d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0 . j = 1, . . . , 3N − k (27)
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Exercise 2.2: Form-Invariance of the Lagrange Equations

Let q1, . . . qn be a set of independent generalized coordinates for a system of n degrees of
freedom, with a Lagrangian L(q, q̇, t). Suppose we transform to another set of independent
coordinates s1, . . . , sn by means of transformation equations

qi = qi(s1, . . . , sn, t) , i = 1, . . . , n . (E2.2-1)

Show that if the Lagrangian is expressed as a function of sj , ṡj , and t through the equations
of transformation, then L satisfies Lagrange’s equations with respect to the s coordinates:

d

dt

( ∂L
∂ṡj

)
− ∂L

∂sj
= 0 . (E2.2-2)

In other words, the form of Lagrange’s equations is invariant.

2.1.3 Examples

Let us now demonstrate the Lagrange formalism in action by working through some examples.

Bead on a Spiral Wire

In our first example, we revisit the problem of a bead on a spiral wire, which we used to derive
D’Alembert’s principle. We will, however, make one small alteration: Instead of starting from
Cartesian coordinates, we will take the symmetries of the system into account and work in cylin-
drical coordinates {r, φ, z} instead (cf. worksheet #2).

With this coordinate choice, the constraints of the motion can be expressed as

ρ− a = 0 , (28)

z − bφ = 0 , (29)

and the polar angle φ is the generalized coordinate. We recall that can let φ perform an arbitrary
amount of revolutions, so that we can cover the full height of the spiral wire, i.e., the range of z
coordinates the spiral wire encompasses.

The trajectory of the bead can be written as

~r = ρ~eρ + z~ez = a~eρ + bφ~ez , (30)

which leads to the following expression for the velocity:

~̇r = a~̇eρ + bφ̇~ez = aφ̇~eφ + bφ̇~ez . (31)

We can easily compute the square of the velocity vector, exploiting the orthonormality of the unit
vectors, (

aφ̇~eφ + bφ̇~ez

)2
= (a2 + b2)φ̇2 . (32)

In this way, we obtain the kinetic energy

T =
1

2
m(a2 + b2)φ̇2 . (33)
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The potential energy is given by
V = mgz = mgbφ , (34)

so our Lagrangian is

L = T − V =
1

2
m(a2 + b2)−mgbφ . (35)

Next, we compute the Lagrangian’s partial derivatives with respect to φ and φ,

∂L

∂φ
= −mgb , (36)

∂L

∂φ̇
= m(a2 + b2)φ̇ , (37)

and plugging these into the Lagrange equation, we obtain

d

dt

∂L

∂φ̇
− ∂L

∂φ
= m(a2 + b2)φ̈+mgb = 0 . (38)

The equation of motion for φ can be rearranged in the form

φ̈ = − gb

a2 + b2
, (39)

which is of course our result from earlier.

Block Sliding on a Gliding Wedge

As a second example, we consider a block of mass
m sliding without friction on a wedge with inclina-
tion α that can itself glide on a frictionless plane
(Fig. 1). We can consider the motion of block and
wedge in two dimensions if neither of them starts
spinning while it moves. The coordinates for the
wedge are X, its distance from the origin in the
horizontal plane, and

Z = const. , (40)

which is defined by our choice of coordinate sys-
tem and acts as a constraint of the motion. The
coordinates of the block are

x = X + s cosα , z = H − s sinα , (41)

where H is the height of the wedge. (We could
have eliminated this constant by shifting the co-
ordinate system in z direction — this will only
give an offset to the potential energy that has no
consequences for the dynamics.)

X

s

α

m

M

x

z

O

Figure 1: A block sliding without friction on
a wedge that can itself glide on a frictionless
plane.

The time derivatives of the coordinates are

ẋ = Ẋ + ṡ cosα , (42)
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ż = −ṡ sinα , (43)

so the kinetic energy is

T =
1

2
MẊ2 +

1

2
m
(
ẋ2 + ż2

)
=

1

2
MẊ2 +

1

2
m
(
Ẋ2 + ṡ2 cos2 α+ 2Ẋṡ cosα+ ṡ2 sin2 α

)
=

1

2
(m+M) Ẋ2 +

1

2
mṡ2 +mẊṡ cosα . (44)

The potential energy is given by
V = mg (h− s sinα) , (45)

so we obtain the Lagrangian

L =
1

2
(m+M) Ẋ2 +

1

2
mṡ2 +mẊṡ cosα−mg (h− s sinα) . (46)

Now let us derive the Lagrange equations. We immediately notice that L does not explicitly
depend on X, so we have

∂L

∂X
= 0 =

d

dt

∂L

∂Ẋ
. (47)

This means that
∂L

∂Ẋ
= (m+M)Ẋ +mṡ cosα (48)

is a conserved quantity. It is easy to see that Eq. (48) is the total momentum in the horizontal
direction, which is conserved because there is no external force acting on the system in x direction.
(The internal forces between the block and the wedge cancel because of Newton’s Third Law.)

The second Lagrange equation is obtained from

∂L

∂s
= mg sinα , (49)

∂L

∂ṡ
= mṡ+mẊ cosα , (50)

which yields
s̈+ Ẍ cosα = g sinα (51)

(s increases as the block slides down the slope). The conservation law (48) can be used to eliminate
Ẍ:

(m+M)Ẍ = −ms̈ cosα ⇒ Ẍ = − m

m+M
s̈ cosα , (52)

so
s̈− m

m+M
s̈ cos2 α = g sinα . (53)

Rearranging, we obtain the equation of motion

s̈ =
(m+M) sinα

m sin2 α+M
g . (54)
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Box 2.1: Recipe for Solving Problems in Lagrangian Mechanics

As we have seen from our discussion of the examples in Sec. 2.1.3, the general procedure for
solving problems in Lagrangian mechanics consists of the following steps:

1. Choose convenient coordinates for your problem, e.g., by exploiting symmetries.

2. Formulate the constraints.

3. Construct the Lagrangian.

4. Use the Lagrange equations to derive the equations of motion and identify con-
served quantities.

5. Solve the equations of motion, and analyze your solutions.

2.2 The Principle of Least Action

2.2.1 Elements of Variational Calculus

Varying the Functional of a Curve

The calculus of variations aims to determine the function y(x) for which the integral

I[y] ≡
∫ x2

x1

dx f
(
x, y(x), y′(x)

)
(55)

becomes stationary, δI = 0. The integral I[y] is also referred to as a functional on the space of
curves y(x) that are compatible with the boundary conditions, i.e., that have the same values at
x1 and x2.

Let us assume we already know the solution. We can define variations of this curve in the
vicinity of the solution by defining

y(x, ε) = y(x, 0) + εη(x), ε� 1, (56)

where we choose an auxiliary function η(x) that is twice continuously derivable, to avoid singularities
and general pathological behavior. We also demand that

η(x1) = η(x2) = 0 , (57)

so that the boundary conditions are automatically satisfied.
In this way, I[y] becomes a function of ε,

I(ε) =

∫ x2

x1

dxf
(
x, y(x, ε), y′(x, ε)

)
, (58)

and since y(x, 0) is supposed to make the functional stationary, we can perform a Taylor expansion
around ε = 0:

I(ε) =

∫ x2

x1

dx

(
f(x, y(x, 0), y′(x, 0)) + ε

∂f

∂y

∣∣∣∣
ε=0

η(x) + ε
∂f

∂y′

∣∣∣∣
ε=0

η′(x) +O(ε2)

)
. (59)
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scleronomic

f(q) = 0

rheonomic

f(q, t) = 0

X1

X2

q(t)@
@

@@

q(t) + δq
@
@
@
@
@

f(q) = 0
�
�
��

X1

X2

f(q, t2) = 0

A
AA

f(q, t1) = 0
�
�
�

f(q, t′) = 0
�
�
�

q(t) + δq

�
��

q(t)HH
H
HH

Figure 2: Variation of trajectories with fixed endpoints in configuration manifolds defined by holo-
nomic constrains. We continue to use the notation q = (q1, . . . , qn), δq = (δq1, . . . , δqn) for points
(not vectors!) in the configuraiton manifold.
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The stationarity condition δI = 0 implies that

0 =
dI(ε)

dε
=

∫ x2

x1

dx

(
∂f

∂y

∣∣∣∣
ε=0

η(x) +
∂f

∂y′

∣∣∣∣
ε=0

η′(x)

)
. (60)

The second term in the integrand can be rewritten using integration by parts, leading to

0 =
∂f

∂y′
η(x)

∣∣∣∣x2
x1

−
∫ x2

x1

dx

(
∂f

∂y
+

d

dx

∂f

∂y′

)
η(x)

=

∫ x2

x1

dx

(
d

dx

∂f

∂y′
− ∂f

∂y

)
η(x) , (61)

where we have used that the first term (sometimes referred to as the boundary term) vanishes at
the boundaries, i.e., the starting and end points of the curve, because of the condition (57). Since
Eq. (61) must hold for arbitrary η(x), the expression in the parenthesis must vanish1, and we obtain
the Euler-Lagrange equation

d

dx

∂f

∂y′
− ∂f

∂y
= 0 , (62)

This is both a necessary and sufficient condition that a curve y(x) must satify in order to make
I[y] stationary. The left-hand side of the Euler-Lagrange equation can also be used to define the
functional derivative

δI
δy
≡ d

dx

∂f

∂y
− ∂f

∂y
. (63)

Euler-Lagrange Equations for Multiple Degrees of Freedom and Variables

The extension of the Euler-Lagrange equations to multiple variables — i.e., multiple particles and
degrees of freedom — is straightforward. A general curve will be characterized by the values of all
coordinates y(x) = (y1(x), . . . , yn(x)) as a function of the variable x that is used to parameterize
it, and the functional generalizes to

I[y] =

∫ 2

1
dx f(x, y1, . . . , yn, y

′
1, . . . , y

′
n) . (64)

Variations of a curve that makes I stationary are written as

yi(x, εi) = yi(x) + εiηi(x) ≡ yi(x, 0) + δyi(x, ε) , (65)

The δyi must vanish at the start and end points of the curves, i.e.,

δyi(x1) = δyi(x2) = 0 . (66)

The stationarity condition can be expressed for independent (but infinitesimal) variations by
introducing ~epsilon = (ε1, . . . , εn)T , and we obtain

0 = δI = ∇I(~ε) · ~ε =

∫ x2

x1

n∑
i=1

(
∂f

∂yi
δyi +

∂f

∂y′i
δy′i

)
, (67)

1This is properly proven in the so-called fundamental lemma of the calculus of variations.
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where δy′i = εiη
′
i. Partially integrating as in the one-dimensional case, we get

0 =

∫ x2

x1

dx
n∑
i=1

(
d

dx

∂f

∂y′i
− ∂f

∂yi

)
δyi , (68)

and since the δyi are independent, all parentheses must vanish separately, leading to the Euler-
Lagrange equations

∂f

∂yi
− d

dx

∂f

∂y′i
= 0 , i = 1, . . . , n . (69)

2.2.2 Examples

Brachistochrone

We parameterize the trajectory using the arc length s, which is the variable of choice if we are
interested in the shape of a curve. Since ds = vdt, the time required to move from the start to the
end of the curve is given by the functional

T =

∫ t2

t1

dt =

∫ 2

1
ds

1

v
. (70)

Energy conservation implies

E =
mv2

2
+mgy = mgy1 , (71)

so we can solve for v and obtain
v =

√
2g(y1 − y) . (72)

The differential can be rewritten as

ds =
√
dx2 + dy2 = dx

√
1 + y′(x)2, y′ ≡ dy

dx
, (73)

and plugging in our expression for the velocity, the functional T becomes

T =

∫ 2

1
ds

1

v
=

∫ x2

x1

dx

√
1 + y′(x)2)√

2g(y1 − y(x))
. (74)

We need to find the trajectory that minimizes this integral, so we set

f(x, y, y′) =

√
1 + y′2

2g(y1 − y)
. (75)

First, we note that f does not explicitly depend on x, which implies the so-called Beltrami
identity:

f − ∂f

∂y′
y′ = const. . (76)

The proof is straightforward:

d

dx

(
f − ∂f

∂y′
y′
)

=
∂f

∂y
y′ +

∂f

∂y′
y′′ − ∂f

∂y′
y′′ − d

dx

(
∂f

∂y′

)
y′
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0 π a 2 π a 3 π a 4 π a

-2 a

-a

0
y
(x

)

x

Figure 3: The cycloid defined by Eqs. (80), (81).

=

(
∂f

∂y
− d

dx

∂f

∂y′

)
y′ = 0 . (77)

Using the relation (76), we have

const. =
√

2g

(
f − ∂f

∂y′
y′
)

=

√
1 + y′2

y1 − y
− y′2

√
y1 − y

√
1 + y′2

=
1

√
y1 − y

√
1 + y′2

(
1 + y′

2 − y′2
)

︸ ︷︷ ︸
=1

(78)

Squaring both sides, the equation can be rearranged as

(y1 − y)
(
1 + y′2

)
= const. (79)

This differential equation is solved by the following cycloid trajectory (see Fig. 3):

x = a(t− sin t) (80)

y = a(cos t− 1) . (81)

We can show that the cycloid satisfies Eq. (79) by plugging in Eqs. (80) and (81):

y′ =
dy

dx
=
dy

dt

dt

dx
=
ẏ

ẋ
=
−a sin t

a(1− cos t)
, (82)

hence

1 + y′
2

= 1 +
a2 sin2 t

a2(1− cos t)2
=
a2(1− 2 cos t+ cos2 t+ sin2 t)

y2
(83)

=
2a2

y2
(1− cos t) = −2a

y
. (84)

Noting that y1 = 0 , Eq. (79) now reads

(y1 − y)
(

1 + y′
2
)

= (−y)

(
−2a

y

)
= 2a = const. , (85)

as required.
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Shortest Line Connecting Two Points

We again start from the line element ds =
√
dx2 + dy2 = dx

√
1 + y′2 , which defines

f =
√

1 + y′2 . (86)

Plugging this into the Euler-Lagrange equation (62) yields

d

dx

∂f

∂y′
− ∂f

∂y
=

d

dx

y′√
1 + y′2

= 0 =⇒ y′√
1 + y′2

= c . (87)

We square both sides and rearrange the equation, obtaining

y′2 =
c2

1− c2
⇒ y′ =

√
c2

1− c2
= const. (88)

This implies
y(x) = ax+ b , (89)

where a = c/
√

1− c2 and b is a constant obtained upon integration of the differential equation.
Thus, the shortest trajectory connecting two points in a plane is a line. The same procedure can
be used to compute the shortest connections — the so-called geodesics — between two points in
arbitray smooth manifolds.

2.2.3 The Principle of Least Action for Mechanical Systems

We can now apply the variational discussed in the previous sections to the action functional

S =

∫ t2

t1

dtL(q, q̇, t) , (90)

where q = (q1, . . . , qn), q̇ = (q̇1, . . . , q̇n), as usual. The extrema of the action functional are deter-
mined by finding the zeroes of the functional derivatives,

δS

δqi
=

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 . (91)

In practice, we are interested in the solutions that minimize the action, which gives rise to Hamil-
ton’s principle, which is a way of stating the Principle of Least Action, or more accurately,
the Principle of Stationary Action. For holonomic systems, it provides us with a formulation
of dynamical laws of motion that is equivalent to D’Alembert’s principle. However, as stated above,
the latter is more general because it can accommodate generalized forces associated with dissipation
or nonholonomic constraints. In recent years, there has been renewed interest to extend Hamilton’s
principle to such forces, in part driven by the needs of modern robotics research2 [1, 2, 3, 4, 5].

From the principle of least action we immediately see that the dynamics of a holonomic me-
chanical system remain invariant under the addition of a total time derivative to the Lagrangian:
If we introduce

L̃(q, q̇, t) = L(q, q̇, t) +
dF (q, t)

dt
, (92)

the corresponding action functional reads

S̃ = S +

∫ t2

t1

dt
dF (q, t)

dt
= S + F2 − F1 , (93)

2These research papers can be found on the coruse website and in the course repository.
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where F1, F2 are constants. Thus, the variation of the action S̃ is identical to that of the original
action S:

δS̃ = δS + δ (F2 − F1)︸ ︷︷ ︸
=0

. (94)

This means that the Lagrange equations of a holonomic system will remain invariant as well3.
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3 Group Exercises

Problem G6 – Lagrangian Treatment of an Atwood Machine

[cf. Lemos, example 1.15] Consider an Atwood ma-
chine consisting of masses m1 and m2, as shown in the
figure.

1. Formulate the constraint that links the coordinates
x1 and x2

Hint: It is useful to start from a nonholonomic
form that relates the changes in the coordinates,
and integrate it to obtain a holonomic constraint
that can be used to eliminate one of them.

2. Construct the Lagrangian.

3. Derive the Lagrange equations.

4. State the general solutions of the equations of mo-
tion for x1 and x2.

16 Lagrangian Dynamics

x1

x2

m2

m1

Fig. 1.5 Atwood’s machine.

Solution
The pulley in Fig. 1.5 is assumed massless and mounted on a frictionless axle. We also
assume that the string does not slip on the pulley. With the coordinate system shown in
the figure, we have r1 = x1 x̂, r2 = x2 x̂ and the holonomic constraint is

x1 + x2 = l , (1.60)

where the constant l is determined by the radius of the pulley and the length of the
string, assumed massless and inextensible. Clearly, the virtual displacements δx1 and
δx2 compatible with the constraint (1.60) are related by

δx1 + δx2 = 0 !⇒ δx2 = −δx1 . (1.61)

In words, if one of the masses goes down, the other goes up the same distance, and vice
versa. In virtue of the last equations, we have δr1 = δx1 x̂ and δr2 = δx2 x̂ = −δx1

x̂ = −δr1 . Noting that r̈1 = ẍ1 x̂, r̈2 = ẍ2 x̂ and also taking into account that ẍ2 = −ẍ1 ,
which follows at once from (1.60), d’Alembert’s principle

m1 r̈1 · δr1 + m2 r̈2 · δr2 = F(a)
1 · δr1 + F(a)

2 · δr2 = m1 gx̂ · δr1 + m2 gx̂ · δr2 (1.62)

reduces to
m1 ẍ1 δx1 + (−m2 ẍ1 )(−δx1 ) = m1 gδx1 + m2 g(−δx1 ) , (1.63)

whence
(m1 + m2 )ẍ1 δx1 = (m1 − m2 )gδx1 . (1.64)

In view of the arbitrariness of δx1 , the equation of motion for mass m1 follows:

(m1 + m2 )ẍ1 = (m1 − m2 )g . (1.65)

Figure 4: An Atwood machine.

Problem G7 – Geodesics on a Cylinder

Use variational calculus to show that the geodesics on a cylinder of radius R, i.e., the shortest paths
between points P1 = (φ1, z1) and P2(φ2, z2) are helices (spiral trajectories with constant radius) of
the form

z(φ) = aφ+ b , (95)

where the constants a, b are determined by the boundary conditions (i.e., the starting and end
points of the curve).

Problem G8 – Geodesics on a Sphere

Determine the geodesics on a sphere of constant radius R.

1. Show that the geodesic on the sphere is given by the equation

cos(φ− φ0) = k cot θ , (96)

where the constants k and φ0 are determined by the boundary conditions, i.e., the points we
are connecting.

Hint: Use θ as the curve parameter in your functional (Why?), and derive a first-order differ-
ential equation for φ(θ) from the Euler-Lagrange equation. To integrate it, you will find the
substitution u = a cot θ useful. What does this substitution imply for sin θ?

−
∫
dx

1√
b2 − x2

= arccos
x

b
+ c (97)
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2. Show that Eq. (96) defines an arc on a great circle on the sphere.

Hint: Great circles are the intersections of the sphere with a plane through the sphere’s origin,
parameterized by

Ax+By + Cz = 0 . (98)

You will find the ansätze

cosφ0 =
A√

A2 +B2
, sinφ0 =

B√
A2 +B2

, (99)

useful.
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