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• Lemos, Section 1.6

• Goldstein, Sections 1.5

2 Symmetries and Effective Theories

2.1 Effective Theories

If we look back over the history of physics, we will note that again and again the existing theories of
physical phenomena were revealed to be effective theories, i.e., limiting cases of more fundamental
underlying theories. In fact, nature seems to be best grasped through a ”tower” of such effective
theories that will allow us to make progress despite not knowing what the ultimate underlying
theory — perhaps a theory of everything — is going to be.

Classical mechanics is no different in this regard: It is an effective theory of Quantum Mechanics
in the limit where energy can be treated as continuous instead of quantized, which we can formally
express as ~ω

E � 1 (or sometimes as ~ → 0). Furthermore, it is the limit of Special Relativity for
v
c � 1, which is itself a limit of General Relativity for weak gravitational fields.

2.1.1 Example: Effective Theories of Gravity

In fact, the treatment of gravity in Introductory Physics is likely your earliest encounter with an
effective theory. Gravity is first introduced either in force or potential form as

~F = m~g , V = mgh , (3)

where h is the elevation of an object with mass m over the surface of the Earth. Some time later,
this is revealed to be a limit of the more general expression

~F = −Gm1m2

r2
~er , V = −Gm1m2

r
, (4)

where ~r is the distance between the masses m1 and m2. For the case of an object near the surface
of the Earth, we have m1 = m, m2 = ME is the mass of the Earth, and r = RE + h is the distance
of object from the Earth’s center of mass, so that

V = −G mME

RE + h
= −GmME

RE

1

1 + h/RE
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= −GmME

RE

∞∑
n=0

(
h

RE

)n
= −GmME

RE

(
1− h

RE
+O

(
h2

R2
E

))
= −GmME

RE
+G

mME

R2
E

h+O
(
h2

R2
E

)
= V0 +mgh+O

(
h2

R2
E

)
, (5)

where we have introduced g ≡ GME

R2
E

and V0 = −mgRE is the potential at ground level. Thus,

the first form of gravity you learn is the leading-order effective theory of Newtonian gravity, Eq.
(4). For sufficiently high elevation, we may need to take corrections in h

RE
into account, and once

h
RE
≥ 1, the geometric series expansion in Eq. (5) is no longer converging. We say that the effective

theory breaks down at the distance scale RE .

2.1.2 General Strategy for Effective Theories

The general strategy for setting up an effective theory consists of identifying a small expansion
parameter that is usually associated with a separation of scales. In our example, an everyday
elevation h is O(1 m) to O(10 m), which is small compared to the radius of the Earth, RE =
6.371 × 106 m. In nonrelativistic mechanics, v � c. Moreover, we can neglect whatever the
effects of corrections from a hypothetical quantum theory of gravity would be. We then define an
expansion in the small parameter and set up what is called a power-counting scheme, treating
all observables through some order n in the ratio of the small and large scales. We frequently
also use the terms leading-order (LO), next-to-leading order (NLO), next-to-next-to-leading order
(NNLO) etc.

In the example of gravity, we knew the underlying theory and used it to construct the effective
theory for objects near the surface of the Earth. What can we do if the underlying theory is
unknown? If we are able to identify a possible new scale — e.g., by noting where deviations
form the effective theory behavior become noticeable — we can attempt to define the expansion
parameter x as the ratio of our typical distances, momenta, etc. and the identified scale, and make
a power-series ansatz for the theory:

V =

∞∑
k=0

ckx
k . (1)

The expansion coefficients1 ck are then constrained by the symmetries of the theory (see Sec. 2.2),
and we can determine them at some given order of the expansion by fitting them to experimental
data. The LO theory will fix c1 and observables will have an error of order O(x2) from the omitted
terms in the expansion. At NLO, we fix c1 and c2, possibly with slightly different values than at
LO, and the overall error of the theory will be O(x3), and so on. The effective theory can then be
used to make predictions for any observables that were not used to fit the ck.

2.2 Deriving Lagrangians from Symmetries

We have seen that the laws of classical mechanics can be cast in the form of d’Alembert’s principle
or (with certain limitations) the form of the principle of least action. However, nothing in these

1Effective theories are frequently used as low-momentum or low-energy approximations to the underlying theory,
hence the expansion parameter is a ratio of momentum or energy scales. In such cases, the expansion coefficients are
referred to as the low-energy constants (LECs), of the effective (field) theory.
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principles enforces a particular shape of the Lagrangian, aside perhaps from the idea that the action
should be minimal in the latter case.

In our discussion of conservation laws, we have found the deep relationships between symmetries
and invariances of the Lagrangian. Moreover, we have seen that we had to impose certain properties
on the potentials appearing in the Lagrangian to produce a desired invariance — or, in other
words, to make the potentials compatible with the fundamental symmetries of space. This is a very
powerful idea that we want to explore in a bit more, and connect to the idea of effective theories
laid out in the previous section.

Lagrangian of a Free Particle

Consider the Lagrangian governing the dynamics of a free particle, which should be a function of
the particle’s position, velocity, and possibly time,

L = L(~r, ~̇r, t) . (2)

First, we make use of the homogeneity of space, which implies that the dynamics of a particle
cannot depend on the choice of coordinate system that we use to describe its motion. In fact, his
means that L cannot explicitly depend on ~r at all. Likewise, time is homogeneous if we do not
have external forces, so the free particle’s dynamics cannot depend explicitly on the time we make
an observation either. Thus, we must have

L = L(~̇r) . (3)

Next, we use the isotropy of space, which means that there is no preferred direction and
the dynamics of the particle cannot depend on the orientation of the coordinate system we use to
describe it. Thus, the Lagrangian can only be a function of the magnitude of the velocity vector,

~̇r · ~̇r = |~̇r|2 = v2 , (4)

and we can write
L = L(v2) . (5)

Finally, we consider the principle of (Newtonian) relativity, which implies the invariance of the
Lagrangian under Galiliean boosts, so that observers in different inertial systems will derive the
same equations of motion for the particle. If the particle is observed from a coordinate system that
is moving with a small relative velocity ~u with respect to ours, the Lagrangian will be

L′ = L((~v + ~u)2) = L(v2) + 2~u · ~v ∂L
∂v2

+O(~u2) (6)

Since the equations of motion for L′ must be identical to those for L, the additional term must be
a total time derivative. We can rewrite it as

2

(
d~r

dt

)
· ~u ∂L
∂v2

=
d

dt

(
2~r · ~u ∂L

∂v2

)
− 2~r · ~u

(
d

dt

∂L

∂v2

)
. (7)

The first term on the right-hand side is our total time derivative, so the second term must vanish.
The direction of ~u is arbitrary, so the scalar product ~r · ~u is not vanishing in general, and we must
have

d

dt

∂L

∂v2
= 0 ⇒ ∂L

∂v2
= const. (8)
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This actually means that the Lagrangian must be a scalar multiple of the square of the velocity,
i.e.,

L(v2) = Cv2 , (9)

and the boosted Lagrangian would be

L′
0(v

2) = C(v2 + 2~v · ~u+ u2) = Cv2 + C
d

dt

(
2~r · ~u+ u2t

)
. (10)

The unknown constant C could now be determined by fitting observables like the momentum or
the (kinetic) energy of the particle to experimental data.

Enter Relativity

If we extract C from experimental measurements of objects that move with low velocities, we will
find that with very high accuracy C = m/2, as expected. As we try to test the universality of
this determination for objects with increasing speed (or with increasing accuracy), we will notice
meaningful deviations between C and m/2, which will force us to revisit the assumptions we made
in our derivation of the free Lagrangian.

The homogenity of space and time and the isotropy of space are such fundamental properties
that it is natural to question the final element we used in our derivation of L, which is the invariance
under Galilean boosts. Giving up this requirement, we allow L to be a more general function of
v2; however, our experimental observations imply that in the low-velocity limit, we should have
L ≈ 1

2mv
2. Next, we realize that low velocity implies the question Low compared to what? Applying

the effective theory strategy, we would conclude that we should compare v to a velocity scale c which
controls when we will start seeing deviations from the low-velocity limit, i.e., the LO effective theory,
and we can make the ansatz

L(v2) =
∞∑
k=0

Ck

(v
c

)2k
, (11)

where we have allowed for the presence of a constant term that has no impact on the dynamics of
our particle.

From Eq. (11) and L ≈ 1
2mv

2 for v/c � 1, we can conclude that c is finite, and C1 ∼ c2. If c
were infinite, then we would either have L = C0, in contradiction to our experimental observations,
or we must demand Ck ∼ c2k to cancel out the scale factors in the expansion, which would make c
meaningless. Armed with this knowledge, we can fit the expansion coefficients at increasing orders
of the effective theory to high-precision data, which allows us to pin down c with increasing accuracy
and ultimately makes it possible to identify the underlying relativistic Lagrangian

L =
√

(~pc)2 +m2c4 . (12)

The existence of the finite maximum speed c will then allow us to replace Galilean boosts by
Lorentz boosts, and “restore” the ability to make coordinate transformations between arbitrary
inertial frames.

Adding Interactions

In our discussion of the fundamental spacetime symmetries and the associated conservation laws
we made note of the conditions we had to impose on the interaction terms in the Lagrangian to
make the derivation of conserved quantities possible. We impose these conditions — as well as any
additional conditions that might derive from additional, non-spacetime symmetries of our system,
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like electric charge conservation — on the general ansatz for an effective theory that is given in
Sec. (2.1.2). By doing so, we will usually restrict the form of the allowed interaction terms and
expansion coefficients. For instance, we might have considered an expansion of the form

V ∼
∑
klm

Cklma
krl(~a · ~r)m , ~a = const. (13)

but rotational invariance requires that we only allow terms with m = 0, because otherwise the
direction of ~a would be preferred.

3 Velocity-Dependent Potentials

When we derived the Lagrange equations from d’Alembert’s principle, we first obtained them in
the form

d

dt

∂T

∂q̇j
− ∂T

∂qj
= Qj . (14)

Assuming that the generalized forces can be written as the gradients of a potential V (q),

Qj =
∂V

∂qj
, (15)

we moved them to the left-hand side, using that ∂V
∂q̇j

= 0:

d

dt

∂(T − V )

∂q̇j
− ∂(T − V )

∂qj
= 0 . (16)

It is easy to see that the Lagrange equations (i.e., d’Alembert’s principle) would also be satisfied
for more general forces of the form

Qj = −∂U
∂qj

+
d

dt

∂U

∂q̇j
, (17)

where U(q, q̇) is a velocity-dependent potential. The definition of the Lagrangian simply becomes

L ≡ T − U , (18)

since V (q) would be a special case of U(q, q̇).

Example: Particle Moving in an Electromagnetic Field

Let us consider a particle with mass m and charge q that moves in an external electromagnetic
field. We not impose any constraints, hence we can work in Cartesian coordinates:

(q1, q2, q3) = (x1, x2, x3) = (x, y, z) . (19)

The Lagrangian of this particle is given by

L(~r, ~̇r, t) =
1

2
m~̇r2 − qφ(~r, t) + q ~A(~r, t) · ~̇r , (20)
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with the explicitly velocity-dependent potential

U(~r, ~̇r) = qφ− q ~A · ~̇x . (21)

In this case, we have
∂L

∂ẋi
= mẋi + qAi(~r, t) , (22)

and
d

dt

∂L

∂ẋi
= mẍi + q

(
3∑

k=1

∂Ai
∂xk

ẋk +
∂Ai
∂t

)
. (23)

We also have
∂L

∂xi
= −q ∂φ

∂xi
+ q

3∑
k=1

∂Ak
∂xi

ẋk . (24)

Combining the derivatives and switching to a vectorial form, we obtain the Lagrange equation

m~̈r + q

(
(~̇r · ~∇) ~A+

∂ ~A

∂t

)
= −q~∇φ+ q~∇( ~A · ~̇r) . (25)

It is left as an exercise (see homework #4) to show that this equation reduces to the usual equation
of motion under the influence of the Lorentz force,

m~̈r = q( ~E + ~̇r × ~B) , (26)

where the electric and magnetic fields are defined as

~E = −~∇φ− ∂A

∂t
(27)

and

~B = ~∇× ~A . (28)

Thus, the Lorentz force can indeed be derived from the velocity-dependent potential (21)

Fi = q( ~E + ~̇r × ~B)i = −∂U
∂xi

+
d

dt

∂U

∂ẋi
. (29)

We conclude our discussion by computing the Jacobi integral h(~r, ~̇r):

h(~r, ~̇r, t) =
(
m~̇r + q ~A(~r, t)

)
· ~̇r − 1

2
m~̇r2 + q

(
φ(~r, t)− ~̇r · ~A(~r, t)

)
=

1

2
m~̇r2 + qφ(~r, t) . (30)

Since the fields can be time dependent, h is generally not conserved, although it does represent the
total energy of the particle, but not the system consisting of the particle and the fields. Changes of
the external fields φ(~r, t), ~A(~r, t) require some form of work from the source that generates them,
so energy is added to or removed from our system.
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4 Dissipation

4.1 The Dissipation Function

In realistic mechanical systems, dissipative forces like dry or viscous friction will resist the relative
motion of extended solids, surfaces, or fluid layers, causing a loss of mechanical energy. While the
details of frictional mechanisms are usually microscopic in nature and beyond the scope of Classical
Mechanics, a wide class of frictional phenomena can be modeled by forces of the form [1, 2]

~FD = −µ(v)
~v

v
, (31)

pointing in the opposite direction of the relative velocity ~v between the moving object and the
environment. Here, µ(v) is a positive function that could also depend on the coordinates. If the
environment is static, we can identify

~v = ~̇r. (32)

Since friction forces are nonconservative — i.e., the work done against these forces depends on
the trajectory — they must be treated explicitly as generalized forces in the Lagrange equations:

d

dt

∂L

∂q̇j
− ∂L

∂qj
= QDj , (33)

where we assumed that all conservative forces are included in the Lagrangian. The generalized
dissipative forces are obtained from

QDj =
N∑
i=1

~FDi ·
∂~ri
∂qj

=
N∑
i=1

~FDi ·
∂~vi
∂q̇j

= −
N∑
i=1

µi(vi)
~vi
vi
· ∂~vi
∂q̇j

, (34)

where we have used the “cancellation of dots”,

∂~vi
∂q̇j

=
∂~ri
∂qj

. (35)

Noticing that

~vi ·
∂~vi
∂q̇j

=
1

2

∂

∂q̇j
(~vi · ~vi) =

1

2

∂v2i
∂q̇j

= vi
∂vi
∂q̇j

, (36)

we obtain

QDj = −
N∑
i=1

µi(vi)
∂vi
∂q̇j

. (37)

We can rewrite this expression further: First, we note that

µi(vi) =
∂

∂vi

(∫ vi

0
µi(v

′) dv′
)
, (38)

so the chain rule implies

µi(vi)
∂vi
∂q̇j

=
∂vi
∂q̇j

µi(vi) =
∂

∂q̇j

(∫ vi

0
µi(v

′) dv′
)
, (39)

i.e.,

QDj = − ∂

∂q̇j

N∑
i=1

∫ vi

0
µi(v

′) dv′ . (40)
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We see that instead of treating friction using the multi-component generalized forces QDj , we can
introduce a scalar dissipation function D(q, q̇),

D =
N∑
i=1

∫ vi

0
µi(v

′) dv′ , (41)

and write the QDj as its derivatives with respect to q̇j . The Lagrange equations with the generalized
friction forces now become

d

d

∂L

∂q̇j
− ∂L

∂qj
= −∂D

∂q̇j
, (42)

and we can apply them to systems with friction by specifying L and D.

Interpretation of the Dissipation Function

To understand the physical meaning of D, we consider the rate of change of the total energy (T+V ):

d

dt
(T + V ) =

s∑
j=1

(
∂T

∂qj
q̇j +

∂T

∂q̇j
q̈j

)
+
dV

dt
. (43)

The second term can be rewritten with the usual trick,

n∑
j=1

∂T

∂q̇j
q̈j =

d

dt

 n∑
j=1

∂T

∂q̇j
q̇j

− n∑
j=1

q̇j
d

dt

∂T

∂q̇j
. (44)

If we assume scleronomic constraints for simplicity, the kinetic energy T is a homogeneous function
of degree 2 in the generalized velocities, and the parenthesis simply gives us 2T (see worksheet #4).

We can use this result along with the first version of the Lagrange equations (cf. worksheet
#3) and (42) to rewrite Eq. (43):

d

dt
(T + V ) =

n∑
j=1

(
∂T

∂qj
− d

dt

∂T

∂q̇j

)
q̇j +

d

dt
(2T ) +

dV

dt

=

n∑
j=1

(
∂T

∂qj
− ∂T

∂qj
+
∂V

∂qj
+
∂D

∂q̇j

)
q̇j +

d

dt
(2T ) +

dV

dt

=
n∑
j=1

∂V

∂qj
q̇j +

d

dt
(2T + V ) +

n∑
j=1

∂D

∂q̇j
q̇j

= 2
d

dt
(T + V ) +

n∑
j=1

∂D

∂q̇j
q̇j , (45)

and rearranging, we have

d

dt
(T + V ) = −

n∑
j=1

∂D

∂q̇j
q̇j . (46)
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The work that a dynamical system of N particles must do against the frictional forces under
an infinitesimal displacement along the generalized coordinates is

dWD =

N∑
i=1

~FDi · d~ri =
∑
j

QDj dqj = −
∑
j

∂D

∂q̇j
dqj (47)

and therefore
dWD

dt
= −

∑
j

∂D

∂q̇j
q̇j , (48)

so we can also write

d

dt
(T + V ) =

d

dt
WD . (49)

Thus, the change in the systems total energy is equal to the work it does against dissipative
forces. Since we restricted ourselves to scleronomic constraints above, the total energy is identical
to the Jacobi integral h(q, q̇), and we also have

d

dt
h(q, q̇) = −

n∑
j=1

∂D

∂q̇j
q̇j . (50)

4.2 Viscuous Friction and Rayleigh’s Dissipation Function

Rayleigh considered the special case where the friction forces acting on a particle i are linear in
the velocities, i.e., µ(v) = bv. Assuming that the friction force is identical for all particles in the
system, but possibly dependent on the direction in which they are moving, the force on particle i
can be written as

~Fi = −B~̇ri , (51)

where B is a symmetric 3× 3 matrix, or in components

F (i)
r = −

3∑
s=1

Brsẋ
(i)
s , r, s = 1, 2, 3 , (52)

with Brs = Bsr. Switching to generalized velocities and forces, we obtain

QDj =

N∑
i=1

~Fi ·
∂~ri
∂qj

= −
N∑
i=1

n∑
k=1

B
∂~ri
∂qk

q̇k ·
∂~ri
∂qj

= −
n∑
k=1

βjkq̇k , (53)

where we have defined the symmetric dissipation matrix in generalized coordinates,

βjk ≡
N∑
i=1

B
∂~ri
∂qj
· ∂~ri
∂qk

=

3∑
r,s=1

∂x
(i)
s

∂qj
Brs

∂x
(i)
r

∂qk
(54)

We can use βjk to write the quadratic dissipation function — also referred to as Rayleigh’s
dissipation function — in a compact form:

D =
1

2

n∑
j,k=1

βjkq̇j q̇k . (55)

9



Since βjk does not depend on the generalized velocities, we readily obtain Eq. (53) when we evaluate
QDj = ∂D

∂q̇j
.

We note that Rayleigh’s dissipation function is a homogeneous function of degree 2, so the
change in the total energy (and the Hamiltonian) is given by

dE

dt
=

d

dt
h(q, q̇) = −2D (56)

(see Eqs. (46), (50)).

Example: Stokes’s Law

As an example, we consider a sphere of mass m that is moving through a liquid at slow velocity,
experiencing a drag force due to the fluid’s laminar flow around its surface. The drag force is2

~FD = −6πηR~v ≡ −β~v , (57)

where η is the viscosity of the fluid and R the radius of the sphere. Considering the motion in one
dimension, with z increasing in downward direction, the Lagrangian becomes

L = T − V =
m

2
ż2 +mgz , (58)

and the drag can be modeled by the dissipation function

D =
1

2
βv2 =

1

2
βż2 . (59)

Thus, we obtain the Lagrange equation

mz̈ −mg = −βż . (60)

We can write
d

dt
ż = g − β

m
ż ⇒ dt = − dż

β
m ż − g

, (61)

and integrate:

t− t0 = −m
β

ln
βż +mg

βv0 −mg
. (62)

With the initial conditions t0 = 0, v0 = 0, we can exponential to obtain

exp

(
− β
m
t

)
=
βż −mg
−mg

(63)

⇔ ż =
mg

β

[
1− exp

(
− β
m
t

)]
. (64)

Thus, we see that the velocity remains finite for large t, and approaches the terminal velocity

v∞ =
mg

β
. (65)

2The form of this drag force was first derived in 1851 by G. Stokes, who computed the friction between a viscous
fluid and a solid sphere at the sphere’s surface using fluid dynamics. Thus, such drag forces are referred to as Stokes’s
drag or Stokes’s friction in the literature.
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4.3 Drag Due to Turbulent Flow

If the flow of a fluid or gas around an object is turbulent instead of laminar, e.g., due to the
object’s high velocity, the drag force is no longer linear as in Stokes’s law, but quadratic:

~FD = −1

2
CDρAv

2~v

v
≡ −1

2
βv2

~v

v
, (66)

where ρ is the density of the fluid, A the cross-section area of the object orthogonal to its direction
of motion, v the relative velocity of object and fluid flow, and CD the so-called drag coefficient. We
will discuss the trajectory of a skydiver as a concrete example in the group exercises.

4.4 Coulomb or Dry Friction

The simple models for static and kinetic friction forces that are discussed in introductory mechanics
classes are examples of dry or Coulomb friction. Coulomb modeled the frictional forces between
dry surfaces with the ansatz

~Fs,k = −µs,kN
~v

v
, (67)

where µs and µk are the (constant) static and kinetic friction coefficients that are tabulated for a
variety of materials and surface types, and N is the absolute value of the normal force pressing the
surfaces together. We recall that static friction is only considered for masses at rest, to define a a
critical force that is required to set objects in motion. Once the static friction force is overcome,
the model switches from the static to the kinetic friction coefficient.

In the framework described in this section, we can obtain the kinetic friction force by setting

µ(v) = µkN = const. (68)

and the dissipation function becomes
D = µkNv . (69)

In principle, we can also model the transition from static to kinetic friction with a steep but still
smooth change in the friction function µ(v) at small velocities (see next example.)

Overall, Coulomb’s model is a significant simplification of the underlying microscopic effects
that nevertheless proves to be not only versatile, but adequate for many physical systems.

Example: Wooden Block on a Conveyor Belt

Consider a block of mass m that is sitting on a conveyor belt. At t = 0, a worker pushes is with
the force ~F = (Fx, Fy)

T . We describe the block’s motion from the rest frame of the worker, assign
coordinates x, y to it. The absolute value of the relative velocity between block and conveyor belt
is given by

vr =
√

(ẋ− v0)2 + ẏ2 , (70)

where v0 is the speed of the belt.
We use the dry friction force

~Ff = −µ(v)
~v

v
, (71)

The friction function for wood on belt rubber is given by [2]

µ(v) =

(
µ0 − µ∞
1 + av

+ µ∞

)
N =

(
µ0 − µ∞
1 + av

+ µ∞

)
mg , (72)
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where µ0, µ∞, v0 and a are positive constants, and we have plugged in the magnitude of the normal
force, | ~N | = mg. Note that

µ(v) −→
v→∞

µ∞N , µ(v) −→
v→0

µ0N , (73)

so µ0 essentially corresponds to the coefficient of static friction in a Coulomb model, as discussed
above.

According to Eq. (41), the dissipation function is now given by

D = mg

∫ vr

0
µ(u) du = mg

(
µ0 − µ∞

a
ln
(

1 + a
√

(ẋ− v0)2 + ẏ2
)

+ µ∞
√

(ẋ− v0)2 + ẏ2
)
, (74)

and its derivatives are

∂D

∂ẋ
= mg

(
µ0 − µ∞

a

1

1 + a
√

(ẋ− v0)2 + ẏ2
+ µ∞

)
ẋ− v0√

(ẋ− v0)2 + ẏ2
,

∂D

∂ẏ
= mg

(
µ0 − µ∞

a

1

1 + a
√

(ẋ− v0)2 + ẏ2
+ µ∞

)
ẏ√

(ẋ− v0)2 + ẏ2
. (75)

Thus, the equations of motion for the block read

mẍ = Fx −mg

(
µ0 − µ∞

a

1

1 + a
√

(ẋ− v0)2 + ẏ2
+ µ∞

)
ẋ− v0√

(ẋ− v0)2 + ẏ2
, (76)

mÿ = Fy −mg

(
µ0 − µ∞

a

1

1 + a
√

(ẋ− v0)2 + ẏ2
+ µ∞

)
ẏ√

(ẋ− v0)2 + ẏ2
. (77)
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5 Group Exercises

Problem G12 – Particle in a Magnetic Field

[cf. Lemos, problem 2.18] A particle of mass m and electric charge q moves in a constant
magnetic field ~B = B~ez. The Lagrangian is given by (cf. homework problem H10)

L =
1

2
m~̇r2 + q~̇r · ~A(~r) , ~A =

1

2
~B × ~r . (78)

1. Show explicitly that the vector potential ~A produces the magnetic field ~B.

2. Derive the Lagrange equations in Cartesian coordinates, and show that they are equivalent to

~̇v = −~ω × ~v . (79)

Determine the frequency ω in terms of B.

3. Express the Lagrangian in cylindrical coordinates ρ, φ, z. Show that although φ is a cyclic
coordinate, the angular momentum lz = mρ2φ̇ is not conserved. Discuss.

Problem G13 – Aerodynamic Drag

A skydiver is falling under the influence of gravity while also being subject to aerodynamic drag of
the form

~FD = −βv2~ev . (80)

1. Identify ~v appropriately, and construct the dissipation function in terms of the skydiver’s
coordinates.

2. Derive the Lagrange equations.

3. Determine the skydiver’s terminal velocity vf from the dynamical equilibrium condition, and
use replace β in the equation of motion. Solve the equations of motion and show that v(t)→ vf
for t→∞.

Integrals: ∫
dz

1− z2
= artanh z =

1

2
log

1 + z

1− h
, |z| < 1 (81)∫

tanh z dz = log cosh z (82)
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