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1 Plan for the Week

• Midterm #1 on Oct 9.

• Finish discussion of dissipation (cf. worksheet #5).

• Odds and ends: The worksheet contains some notes on nonstandard Lagrangians and the
inverse problem of variational calculus, for education.

• Recap and Q&A.

2 Nonstandard Lagrangians

In our applications of variational calculus, we have constructed a Lagrangian and derived equations
of motion that yield the extrema of the associated functional, action or otherwise. The so-called
inverse problem of variational calculus aims to reverse-engineer a Lagrangian that will repro-
duce a given set of known equations of motion (see, e.g., J. Douglas, Solution of the inverse problem
in the calculus of variations, Trans. Amer. Math. Soc. 50 (1941), 71-128). You can find several
examples in the textbook exercises.

Example: Dissipative Systems

Using inverse-problem techniques, various authors have constructed nonstandard Lagrangians for
dissipative systems. Here we want to consider projectile motion under a linear drag force (cf. work-
sheet #5), using a combination of a standard Lagrangian and a dissipation force,

L =
1

2
m
(
ẋ2 + ẏ2

)
+mgy , D =

1

2
β
(
ẋ2 + ẏ2

)
, (1)

and the nonstandard Lagrangian

L′ = eβt/m
[

1

2
m
(
ẋ2 + ẏ2

)
+mgy

]
. (2)

For the combination of L and D, we obtain

d

dt

∂L

∂ẋ
− ∂L

∂x
= −∂D

∂ẋ
⇒ mẍ = −βẋ , (3)
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d

dt

∂L

∂ẏ
− ∂L

∂y
= −∂D

∂ẏ
⇒ mÿ −mg = −βẏ . (4)

Starting from the nonstandard Lagrangian, we have

d

dt

∂L′

∂ẋ
− ∂L′

∂x
=

d

dt

(
eβt/mmẋ

)
= eβt/m

β

m
mẋ+ eβt/mmẍ

= eβt/m (mẍ+ βẋ) = 0 , (5)

d

dt

∂L′

∂ẏ
− ∂L′

∂y
=

d

dt

(
eβt/mmẏ

)
− eβt/mmg

= eβt/m (mÿ + βẏ −mg) = 0 , (6)

so we obtain the same equations of motion. Note that Eq. (5) implies that the canonical momen-
tum px = eβt/mmẋ is conserved. Clearly, this is not the mechanical momentum — we leave its
interpretation as an exercise.

Exercise 2.1: Conserved Quantities in a Dissipative System

Equation (5) implies that px = eβt/mmẋ is a conserved quantity, which is obviously different
from the mechanical momentum mẋ of the projectile. Solve the equation of motion for x(t)
and use your solution to interpret this quantity.

3 Group Exercises

Problem G14 – The Cycloidal Pendulum

An ideal cycloidal pendulum consists of a mass that oscillates under gravity along a frictionless
cycloidal track that is parameterized by the following expressions:

x = R(θ − sin θ) , y = R(1− cos θ) , (7)

where the vertical y-axis points downward.

1. Show that the Lagrangian for this system is given by

L = 2mR2θ̇2 sin2

(
θ

2

)
+mgR(1− cos θ) . (8)

Hint:
cos(α+ β) = cosα cosβ − sinα sinβ

2. Make a point transformation to the new generalized coordinate u = cos
(
θ
2

)
and derive the

Lagrangian in u.
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3. Derive the Lagrange equations and show that the period of oscillation is

T = 4π

√
R

g
, (9)

independent of the amplitude. C. Huygens recognized this property of the cycloid in 1659 in
his attempt to come up with an improved design for a pendulum clock.

A Jupyter notebook (w06 cycloidal pendulum.ipynb) that visualizes the oscillations of a cycloidal
pendulum as a function of the amplitude has been posted to the repository and the course website.

Problem G15 – Solving the Dynamics Using Constants of the Motion

[cf. Lemos, problem 2.23] The Lagrangian for a one-dimensional mechanical system is

L =
1

2
ẋ2 − g

x2
, (10)

where g is a constant.

1. Show that the action is invariant under the finite transformations

x′(t′) = eαx(t) , t′ = e2αt , (11)

where α is a constant. Use Noether’s theorem to conclude that

I = xẋ− 2Et (12)

is a constant of the motion, where E is the total energy.

2. Show that the action is quasi-invariant (i.e., invariant up to the addition of a total time
derivative Ḟ to the Lagrangian) under the infinitesimal transformation

x′(t′) = x(t)− εtx(t) , t′ = t+ εt2 . (13)

Use the equation of motion to prove that

F =
1

2
x2 − 2txẋ , (14)

and conclude that

K = Et2 − txẋ+
1

2
x2 (15)

is a constant of the motion.

3. Combine your previous results to find the solution x(t) by purely algebraic means (i.e., without
solving differential or integral equations).
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