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1 Preparation

• Lemos, Section 1.7

• Goldstein, Sections 3.1–3.3, 3.5–3.7

2 Central-Force Problems

This week, we will start our discussion of central-force problems. An obvious example is the
motion of a mass or particle in a spherically symmetric potential, but the importance of the following
discussion extends far beyond this case. We have seen that the fundamental forces of nature like
gravity or electromagnetism are pairwise interactions between objects that only depend on their
relative distance, due to the fundamental symmetries of spacetime. For this reason, we will first
demonstrate how such pairwise interactions can be reduced to equivalent one-body central-force
problems in relative coordinates before discussing general strategies for analyzing such problems
and the properties of the solutions.

2.1 Reducing Two-Body Problems to Equivalent One-Body Problems

Let us consider a system of two masses m1 and m2 whose positions are given by ~r1 and ~r2, respec-
tively. Their center of mass is given by

~R =
1

M
(m1~r1 +m2~r2) , (1)

where the total mass is M = m1 +m2. In the center-of-mass system, the coordinates of the masses
are given by

~r′i = ~ri − ~R , (2)

and specifically

~r′1 = ~r1 −
(m1

M
~r1 +

m2

M
~r2

)
=
m2

M
(~r1 − ~r2) , (3)

~r′2 = ~r2 −
(m1

M
~r1 +

m2

M
~r2

)
=
m1

M
(~r2 − ~r1) . (4)
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Introducing the relative distance vector

~r ≡ ~r2 − ~r1 , (5)

we see that

~r′2 − ~r′1 =
m1

M
~r − m2

M
(−~r) =

m1 +m2

M
~r = ~r , (6)

i.e., the relative distance of the two masses does not depend on our choice of coordinate system,
which makes sense. We can use ~r to express the coordinates in the center-of-mass system as

~r′1 = −m2

M
~r , ~r′2 =

m1

M
~r . (7)

Now we can express the kinetic energy of the two masses in center-of-mass and relative coordi-
nates. First, we have

T =
1

2
m1~̇r

2
1 +

1

2
m2~̇r

2
2

=
1

2
m1

(
~̇r′1 + ~̇R

)2

+
1

2
m2

(
~̇r′2 + ~̇R

)2

=
1

2
m1

(
~̇r′21 + 2~̇r′1 · ~̇R+ ~̇R2

)
+

1

2
m2

(
~̇r′22 + 2~̇r′2 · ~̇R+ ~̇R2

)
=

1

2
M ~̇R2 +

(
m1~̇r

′
1 +m2~̇r

′
2

)
· ~̇R+

1

2
m1~̇r

′2
1 +

1

2
m2~̇r

′2
2

=
1

2
M ~̇R2 +

(m1m2

M
~̇r − m2m1

M
~̇r
)
· ~̇R+

1

2
m1~̇r

′2
1 +

1

2
m2~̇r

′2
2

=
1

2
M ~̇R2 +

1

2
m1~̇r

′2
1 +

1

2
m2~̇r

′2
2 , (8)

i.e., the kinetic energy is the sum of the center-of-mass kinetic energy and the kinetic energy of the
masses as expressed in the center-of-mass system — the so-called intrinsic kinetic energy. This
result extendes to general N -particle systems. For the two-body system, the intrinsic term can be
rewritten using Eq. (7) as

Tintr =
1

2
m1

m2
2

M2
~̇r2 +

1

2
m2

m2
1

M2
~̇r2 =

1

2
(m1 +m2)

m1m2

M2
~̇r2 ≡ 1

2
µ~̇r2 , (9)

with the reduced mass
µ ≡ m1m2

m1 +m2
=
m1m2

M
. (10)

With a potential that only depends on the relative distance of the two masses, the Lagrangian
now can be written as

L =
1

2
M ~̇R2 +

1

2
µ~̇r2 − V (~r) = Lcom + Lintr (11)

Since L only depends on ~̇R but not on ~R, the center-of-mass motion decouples from the intrinsic
motion, and the Lagrange equations imply

∂L

∂ ~R
= 0 =

d

d

∂L

∂ ~̇R
⇒ M ~̇R = const. . (12)

Thus, the center-of-mass motion is uniform and linear. The intrinsic Lagrangian is equivalent to a
one-body problem in the relative coordinate ~r.

2



2.2 Trajectories in the Central-Force Problem

2.2.1 General Solution of the Equations of Motion

As we have seen in the previous section, the motion of a particle in a central force field can be
modeled by the Lagrangian

L =
1

2
m~̇r 2 − V (~r) , (13)

where ~r can either indicate the coordinates of a single object of mass m in the external potential
V (~r), or the relative coordinate of a two-body system with reduced mass m = µ.

In general, a central force does not have to be spherically symmetric or conservative, but a
conservative force will always be spherically symmetric. To see this, we first assume that the
central force is conservative, i.e., that it can be written as

~F (~r) = −~∇V (~r) = −
(
~er
∂

∂r
+ ~eθ

1

r

∂

∂θ
+ ~eφ

1

r sin θ

∂

∂φ

)
V (~r) , (14)

where we have used the gradient in spherical coordinates. Since ~F (~r) must be parallel to ~er,
the partial derivatives of V (~r) with respect to the angles θ and φ must vanish, implying that
V (~r) = V (|~r|) = V (r). Conversely, if the force is spherically symmetric, ~F (~r) = f(r)~er, then

~∇× ~F (r) =

(
~er
∂

∂r
+ ~eθ

1

r

∂

∂θ
+ ~eφ

1

r sin θ

∂

∂φ

)
× f(r)

r
~r

= ~er ×
(
f ′(r)r − f(r)

r
~er +

f(r)

r
~er

)
+ ~eθ ×

f(r)

r
~eθ + ~eφ ×

f(r)

r2 sin θ
r sin θ~eφ

= 0 , (15)

where we have used that

∂~r

∂r
= ~er ,

∂~r

∂θ
= r~eθ ,

∂~r

∂φ
= r sin θ~eφ . (16)

Combining the proofs in both directions, we find that a central force is conservative if and only if
it is spherically symmetric.

Assuming a conservative, spherically symmetric central force going forward, we can write the
Lagrangian in spherical coordinates as

L =
1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2

)
− V (r) . (17)

The Lagrangian does not depend on φ, hence

∂L

∂φ
= 0 =

d

dt

∂L

∂φ̇
⇒ ∂L

∂φ̇
= mr2 sin2 θ φ̇ ≡ lz = const. , (18)

where lz denotes the angular momentum around the z axis of our coordinate system. However,
since the Lagrangian is spherically symmetric, we can orient our coordinate system at will, so all
components of the angular momentum vector must be conserved. Since

~l = ~r × ~p = const. , (19)

the motion of the mass(es) will always be confined to a plane that is perpendicular to ~l. Choosing
our coordinate system such that

~l = l~ez , (20)
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we have θ = π
2 in spherical coordinates, and our Lagrangian (17) simplifies to

L =
1

2
m

(
ṙ2 + r2 θ̇2︸︷︷︸

=0

+r2 sin2 θ︸ ︷︷ ︸
=1

φ̇2

)
− V (r) =

1

2
m
(
ṙ2 + r2φ̇2

)
− V (r) . (21)

The Lagrange equations now read

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0 ⇒ mr̈ −mrφ̇2 + V ′(r) = 0 ,

d

dt

∂L

∂φ̇
− ∂L

∂φ
= 0 ⇒ mr2φ̇ = l = const. (22)

Expressing φ̇ by the conserved angular momentum l, and introducing f(r) = −V ′(r), we can write
the radial equation of motion as

mr̈ − l2

mr3
− f(r) = 0 . (23)

Since the force field we consider here is conservative, the total energy of the moving mass
must be conserved. Alternatively, we can note that ∂L

∂t = 0 since L does not explicitly depend on
time, which implies conservation of the total energy (cf. worksheet #4). Starting from the energy
conservation law

E = T + V

=
1

2
m
(
ṙ2 + r2φ̇2

)
+ V (r)

=
1

2
mṙ2 +

l2

2mr2
+ V (r) = const. , (24)

we can solve for ṙ,

ṙ =
dr

dt
= ±

√
2

m

(
E − l2

2mr2
− V (r)

)
, (25)

where the sign depends on the initial or boundary conditions, and must be chosen so that r ≥ 0 at
all times. Separating the variables, we obtain

dt = ± dr√
2
m

(
E − l2

2mr2
− V (r)

) (26)

which can be integrated to give

t− t0 = ±
∫ r(t)

r0

dr′√
2
m

(
E − l2

2mr′2 − V (r′)
) . (27)

Analogously, we can separate the variables in the angular momentum conservation law (22) and
integrate to obtain

φ− φ0 =

∫ t

t0

l

mr(t′)2
dt′ . (28)

Together, Eqs. (27) and (28) constitute the general solution of any central force problem. As
we might guess, these equations can be solved analytically only under very special circumstances.
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However, we can continue the discussion of the general solutions qualitatively if we introduce the
effective potential

Veff(r) =
l2

2mr2
+ V (r) (29)

and write Eq. (27) as

t− t0 = ±
∫ r(t)

r0

dr′√
2
m (E − Veff(r′))

. (30)

In this form, the integral equation is equivalent to the general solution for one-dimensional motion
of an object in the effective potential Veff - here, this is one-dimensional radial motion. The object
is performing angular motion around the center of the potential due to the angular-momentum
dependent term in Veff.

Figure (1) shows the effective potential for the Kepler problem,

V (r) = −κ
r
, κ > 0 , (31)

as well as the main types of radial trajectories as a function of the energy E. We can distinguish
the following cases:

• E = Veff(rmin): According to the figure, the potential has a global minimum at r = rmin, and
for a trajectory with E = Veff(rmin), the entire energy resides in the potential term. Thus,
the radial kinetic energy vanishes, which implies that there is no radial motion and the radius
of the trajectory stays fixed at all times:

Tr =
1

2
mṙ2 = 0 ⇒ r = rmin = const. (32)

This means that the trajectory of the object is a circle around the center of the potential.

We also note that trajectories with E < V (rmin) are physically forbidden because they would
require a negative kinetic energy.

• V (rmin) < E < 0: In this case, the trajectory is bounded radially, and the distance of the
mass from the origin of the potential varies periodically between the turning points of the
motion, which are defined by the conditions E = Veff(rp) = Veff(ra). Borrowing terminology
that was originally introduced specifically for the Kepler problem, we refer to the turning point
at the minimum distances as the periapsis (from Greek peri-, “near”, and apsis, “orbit”)
and apoapsis (apo-, “away from”). At any point rp < r < ra, the difference between E and
Veff(r) corresponds to the radial kinetic energy of the motion,

1

2
mṙ2

∣∣∣∣
r

= E − Veff(r) . (33)

• E ≥ 0: The trajectories are unbounded in radially direction, i.e., the object approaches the
potential center up to some closest distance rp that can be determined from E = Veff(rp),
but will then move to r → ∞ and outside of the potential’s influence, in general. Thus,
the motion corresponds to a potential scattering process . The shape of the scattering
trajectory depends on the potential, and may be distinct for E = 0 and E > 0. For the
Kepler potential, a trajectory with E = 0 is a parabola, while trajectories with E > 0 are
hyperbolas (cf. homework problem H12). .
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Figure 1: Effective potential as a function of r and trajectories with fixed energy E.

It is understood that the nature of the radial trajectories depends on the form of the effective
potential, and not all types of orbits need to be possible for each Veff. Figure 2 shows additional
examples of (more or less) physical radial potentials. Figure 2a is an isotropic oscillator, which only
has bounded solutions, while Fig. 2b is an inverted parabolic potential which leads to an effective
potential that only admits scattering solutions. Highly singular inverse power law potentials like the
one shown in Fig. 2c appear in effective theories of the strong interaction, and inverse power laws
with alternating signs (Fig. 2d) are used to model molecular interactions. The latter two examples
are particularly interesting because whether a trajectory with a given energy E is a bound or
scattering solution depends on the region of the potential an object is located.

2.3 Geometry of Central-Force Trajectories

The general solutions (30) and (28) allow us to determine the trajectories of objects in central force
fields as functions of time by determining r(t) from (30) and plugging it into Eq. (28) to find φ(t).
Very often, however, we are only interested in determining the geometry of trajectories for a given
force field— or, conversely, in finding what type of force generates a particular observed trajectory.
For central forces, a unique relationship between the force law and the shape of a trajectory exists,
which we want to derive now.

First, consider the time derivatives of the radial coordinate. Using the chain rule, we can write

ṙ =
dr

dφ

dφ

dt
=
dr

dφ
φ̇ , (34)
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Figure 2: Different types of effective potentials.

r̈ =
d2r

dt2
=
d2r

dφ2
φ̇2 +

dr

dφ
φ̈ . (35)

From angular momentum conservation (Eq. (22)), we obtain

d

dt
mr2φ̇ = 2mrṙφ̇+mr2φ̈ = 0 ⇒ φ̈ = −2

r
ṙφ̇ = −2

r

dr

dφ
φ̇2 , (36)

and plugging this into Eq. (35), we have

r̈ =
d2r

dφ2
φ̇2 − 2

r

(
dr

dφ

)2

φ̇2 . (37)

The angular momentum conservation law (22) also allows us to express φ̇ in terms of l,

φ̇2 =
l2

m2r4
(38)

and plugging both this relation and Eq. (37) into the radial equation of motion, we find

f(r) = mr̈ − l2

mr3
= m

(
d2r

dφ2
− 2

r

(
dr

dφ

)2
)

l2

mr4
− l2

mr3
(39)

and after minor rearrangement
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f(r) =

(
d2r

dφ2
− 2

r

(
dr

dφ

)2

− r

)
l2

mr4
. (40)

For a given orbit r(φ), Eq. (40) immediately yields the underlying force law.
To determine the geometry of the orbit for a given force or potential, we can derive an integral

equation by noting that dr
dφ is related to the ratio of the energy and angular momentum conservation

laws:

dr

dφ
=
ṙ

φ̇
=
±
√

2
m (E − Veff(r))

l/mr2
= ±r2

√
2m

l

√
E − Veff(r) . (41)

Separating the variables, we have

dφ = ± l dr

r2
√

2m (E − Veff(r))
, (42)

and integrating, we obtain

φ− φ0 = ±
∫ r(φ)

r(φ0)
dr′

l

r′2
√

2m (E − Veff(r′))
(43)

2.3.1 Stability of Circular Orbits

As discussed in Sec. 2.2.1, a circular orbit is obtained at an extremum of the effective potential

Veff(r) =
l2

2mr2
+ V (r) . (44)

Thus, the radius R of the circular orbit is obtained by solving

V ′eff(R) = − l2

mR3
+ V ′(R) = 0 . (45)

Whether the extremum is a minimum, maximum, or saddle point can be determined by considering
the second derivative, which is given by

V ′′eff(R) =
3l2

mR4
+ V ′′(R) =

3

R
V ′(R) + V ′′(R) . (46)

Comparing with the radial equation of motion (cf. Eq. (23))

mr̈ =
l2

mr3
− V ′(r) , (47)

we see that the extremum of the effective potential corresponds to a radial equilibrium position,
since

mR̈ = 0 . (48)

Naturally, we can only have a circular trajectory with fixed radius R if there is no acceleration in
radial direction.
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Let us now consider a perturbation of the circular orbit,

r(t) = R+ ε(t) , (49)

and plug it into Eq. (23). We obtain

0 = mε̈− l2

m(R+ ε)3
− f(R+ ε)

= mε̈− l2

mR3

(
1− 3

ε

R
+O

(
ε2

R2

))
−
(
f(R) + f ′(R)ε+O(ε2)

)
= 0

≈ mε̈− l2

mR3
− f(R)︸ ︷︷ ︸

=0

+

(
3l2

mR4
− f ′(R)

)
ε = 0 . (50)

This is the equation of motion of a harmonic oscillator if

ω2 ≡ 1

m

(
3l2

mR4
− f ′(R)

)
=

1

m

(
3l2

mR4
+ V ′′(R)

)
> 0 . (51)

or

ω2 =
1

m
V ′′eff(R) > 0 . (52)

Thus, an orbit with radius R will be stable if Veff has a minimum at R. For V (r), the condition
(51) implies that we must have

3l2

mR4
+ V ′′(R) =

3

R
V ′(R) + V ′′(R) > 0 , (53)

where we have used Eq. (48). In terms of the forces, the inequality reads

3

R
f(R) + f ′(R) < 0 . (54)

Example: Power-Law Potentials

As an example, we consider power-law potentials of the form

V (r) = Arn , n ∈ N . (55)

Thus, the radial force field and its derivative are

f(r) = −nArn−1 , f ′(r) = −n(n− 1)Arn−2 . (56)

Plugging these functions into Eq. (54), we find that n has to satisfy

3

R
nARn−1 + n(n− 1)ARn−2 > 0 , (57)

i.e.,
3n+ n(n− 1) > 0 ⇒ n > −2 . (58)

Thus, only power-law potentials with n > −2 can support stable circular orbits.
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2.3.2 Closed Orbits and Bertrand’s Theorem

Let us now discuss the conditions under which an orbit is closed, which will lead us to Bertrand’s
theorem. It states that the Kepler and isotropic oscillator potentials are the only potentials for
which all orbits are closed, regardless of the initial conditions — i.e., regardless of the specific
values of E and l.

We start from the integral equation (43) for the trajectory. For a full period of the motion, the
orbiting mass moves from the the periapsis rp to the apoapsis ra and back, advancing by the angle

∆φ = ±2

∫ ra

rp

dr
l

r2
√

2m (E − Veff(r))
. (59)

Thus, an orbit will only be closed if

m∆φ = n · 2π , m, n ∈ N . (60)

To solve the integral, we substitute

u =
1

r
, du = − 1

r2
dr, (61)

obtaining

∆φ = 2

∫ ua

up

du
l√

2m (E −W (u))
, (62)

with

W (u) ≡ l2u2

2m
+ V

(
1

u

)
. (63)

We focus on the positive branch for simplicity (the sign only matters if we need to know whether
the angular motion is clockwise or counter-clockwise).

Now consider a circular orbit, which occurs at an extremum of the effective potential, as dis-
cussed in the Sec. 2.3.1. To describe the near-circular orbit, we write it as a circular orbit with an
added perturbation (U = 1/R):

u(φ) = U + ε(φ) . (64)

Note that ε(φ) is an inverse length here. Next, we expand the energy difference in the square root
denominator. Denoting the energy of the circular orbit by Ec, we have

E −W (u) = Ec + ∆E −
(
W (U) +W ′(U)ε+

1

2
W ′′(U)ε2

)
= ∆E − 1

2
W ′′(U)ε2 , (65)

where we have used that
Ec = W (U) , W ′(U) = 0 . (66)

In terms of u, the relations for the first and second derivatives of the effective potential for circular
orbits read

W ′(U) =
l2

m
U − 1

U2
V ′
(

1

U

)
=

1

R

(
l2

m
−R3V ′(R)

)
= 0 (67)

and

W ′′(U) =
l2

m
+

2

U3
V ′
(

1

U

)
+

1

U4
V ′′
(

1

U

)
= 3R3V ′(R) +R4V ′′(R) = R4V ′′eff(R) , (68)

(recall that derivatives of W (u) are with respect to u, those of Veff(r) with respect to r).
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The integral can now be written as

∆φ =
2l√

mW ′′(U)

∫ ua

up

du
1√

2∆E
W ′′(U) − ε2

. (69)

The perturbation is going to cause oscillatory motion around the circular trajectory which can be
parameterized as a function of the polar angle φ that characterizes the circular trajectory instead
of time. For each angle φ on the circular trajectory, the near-circular orbit will be

u(φ) = U + ε(φ) = U − ε0 cos (φ) , (70)

where we have made the assumption that

up = U − ε0 , ua = U + ε0 . (71)

From energy conservation for the perturbed orbit at the periapsis, we have

E −W (U)︸ ︷︷ ︸
=0

+∆E −W ′(U)︸ ︷︷ ︸
=0

(−ε0)− 1

2
W ′′(U)ε20 = 0 , (72)

which means that

ε20 =
2∆E

W ′′(U)
. (73)

Plugging everything into the integral and changing the integration variable from u to the angle,

du

dφ′
= ε0 sinφ′ (74)

we have

∆φ =
2l√

mW ′′(U)

∫ π

0
dφ′

ε0 sinφ′√
ε20 (1− cos2 φ′)

= ± 2l√
mW ′′(U)

∫ π

0
dφ′ = ± 2πl√

mW ′′(U)
. (75)

Using Eq. (68), we obtain

∆φ = ± 2πl

R2
√
mV ′′eff(R)

= ±2π

√
V ′(R)

3V ′(R) +RV ′′(R)
. (76)

We see that ∆φ diverges for a saddle point, or becomes complex for a maximum (V ′′eff(R) < 0)
— as discussed in the previous section, the circular orbit would be unstable in these cases, any
perturbation would grow exponentially and prevent a closed orbit.

According to the closed-orbit condition (60), we must have

∆φ = ±2π

√
V ′(R)

3V ′(R) +RV ′′(R)
=

n

m
· 2π . (77)

Squaring and inverting the equation, we have

V ′(R)

3V ′(R) +RV ′′(R)
=

n2

m2
. (78)
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Switching to forces and rearranging, we obtain

R

f(R)
f ′(R) =

m2

n2
− 3 ≡ β2 − 3 . (79)

Since we can vary R smoothly by varying the angular momentum l (cf. Eq. (45)) this equation
should hold for general r, so we obtain the differential equation

r

f(r)
f ′(r) =

r

f

df

dr
= β2 − 3 . (80)

Separating the variables, we have
1

f
df =

(
β2 − 3

) 1

r
dr , (81)

and integrating, we obtain

ln f(r)− ln f(r0) =
(
β2 − 3

)
(ln r − ln r0) . (82)

We can rewrite this as

ln
f(r)

f(r0)
=
(
β2 − 3

)
ln

r

r0
= ln

(
r

r0

)β2−3

(83)

and exponentiate, which yields

f(r)

f(r0)
=

(
r

r0

)β2−3

. (84)

Thus, only power-law forces of the form

f(r) = Arβ
2−3 (85)

will satisfy the conditions for closed orbits. This means that the potential either has a power-law
form as well,

Vα(r) ≡ −A
α
rα ≡ − A

β2 − 2
rβ

2−2 , (86)

or it is logarithmic

V0(r) ≡ A ln
r

r0
(87)

where we have ignored irrelevant constants. Note that for the power-law potentials, we have α > −2
for a stable near-circular orbit, which agrees with our result from Sec. 2.3.1.

Plugging the logarithmic potential into Eq. (76), we obtain

∆φ = ±2π

√
A/R

3A/R−RA/R2
= ±2π

1√
2
, (88)

which is not rational and will therefore not yield a closed orbit. For the power-law potentials, we
find

∆φ = ±2π

√
−ARα−1

−3ARα−1 − (α− 1)ARα−1
= ±2π

√
1

2 + α
. (89)

[Finish argument.]
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3 Group Exercises

Problem G16 – Kepler’s Second Law

Kepler’s Second Law states that a line segment joining the sun and a planet in the solar system
sweeps out equal areas dA during equal amounts of time dt, implying dA ∼ dt. In fact, this is a
property of general central-force problems if we consider the line segment from the center of the
potential to the moving object.

Show that the law can be stated in differntial form as

dA

dt
=

l

2m
, (90)

where m and l are the object’s mass and angular momentum, respectively. What does this imply
for the connection between Kepler’s Second Law and angular momentum conservation?

Problem G17 – Stability of Orbits

[10 Points] A particle of mass m is moving in the central force field

~F (~r) =

(
− α
r2
− β

r3

)
~er , α, β > 0 . (91)

1. Compute the potential V (r), choosing any integration constants such that the potential vanishes
for r → ∞. Sketch V (r) and indicate which term dominates at short and long distances,
respectively.

2. Now consider the effective potential. How must Veff(r) behave at short distances to support
stable orbits, i.e., orbit that do not reach the origin or infinity? What is the critical angular
momentum lc that an object must have to move in a stable orbit? Sketch Veff(r) for l < lc and
l > lc.

3. For l > lc, determine the radius and energy of circular orbits.

4. For what range of energies E will an orbit with l ≥ lc be bound? Determine the turning points
rmin and rmax of such bound orbits as a function of α, β,E and l.

Problem G18 – The Laplace-Runge-Lenz Vector

A general trajectory in the potential V (r) = −κ
r is given by the conic section with focal parameter

p and eccentricity ε:

r(φ) =
p

1 + ε cosφ
. (92)

For such trajectories, there is an additional conserved quantity besides the angular momentum ~l
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and energy E, the so-called Laplace-Runge-Lenz vector

~A =
~p×~l
mκ

− ~er. (93)

1. Show that ~̇A = 0.

2. Show that | ~A| is the eccentricity ε of the trajectory (92). To achieve this, start by computing
~l · ~A and ~r · ~A, and parameterize the trajectory by defining the angular variable as φ ≡ ^(~r, ~A).
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