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1 Preparation

e Lemos, Chapter 3
e Goldstein, Section 3.12, Chapter 4 (skip 4.5)

2 Orbital Dynamics

In the following we want to discuss two important orbital maneuvers based on our solutions for
the Kepler problem: The transfer of a spacecraft between two Kepler orbits, and the gravitational
assist or slingshot.

2.1 Transfer Orbits

An important problem in orbital dynamics is the determination of optimal ways to send a spacecraft
to another planet. Since craft can only carry limited fuel, this usually means to find a so-called
minimum-energy transfer orbit, or Hohmann transfer orbit, named for its discoverer. Such
an orbit is shown schematically in Fig. 1.

A spacecraft that is starting from a circular low-Earth orbit burns fuel to achieve a velocity
boost A¥ at the right time to lift it out of Earth’s gravity well and place it on an elliptical orbit
around the sun. Eventually, it will reach the orbit of the destination planet around the sun, and
a second boost Av will “insert” the craft in a circular orbit in that planet’s gravity well. It is
clear that such a transfer orbit will crucially depend on the locations of the planets’ relative to
each other, which defines the so-called launch window: The destination planet better be near the
rendezvous point when the spacecraft arrives on its transfer orbit. Figure 1 also suggests that the
timing matters for the velocities: The transfer will be most efficient if the spacecraft is launched
from its Earth orbit with a velocity U, that has the same direction as Earths velocity around the
Sun, because then the velocity of the spacecraft in the Sun’s reference frame will have its largest
possible magnitude, vg + vs. Likewise, the rendezvous should be timed such that the relative
velocity of the craft and the destination planet is small, to allow a controlled orbital insertion.

Before we discuss the necessary steps of the transfer maneuver, we can determine how long it
will take the spacecraft to reach its destination using Kepler’s Third Law (cf. worksheet #8). We
recall that
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Figure 1: A Hohmann transfer orbit between low-eccentricity orbits with radii 1 and rs.

where the potential strength and reduced mass refer to the system consisting of the sun and the
object in question. Expressing the period of the craft’s transfer orbit in terms of the Earth’s orbital
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Figure 1 also indicates that the semi-major axis of the transfer orbit is

period Ty, we have
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as a consequence of the optimal launch window discussed before. Thus, the orbital period of the

transfer orbit is 3/2
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and the craft’s travel time is At = T'/2, since it will only travel the outgoing leg of the orbit.

The orbital transfer now proceeds in the following steps:

e The spacecraft is lifted into a parking orbit with radius Ry and a speed vg = G%E (cf. prob-

lem G21).

e At the appropriate time, the craft receives a boost A¢ in the same direction as 7y and the
Earth’s velocity U in order to allow an efficient escape from the Earth’s gravity well. Energy
conservation implies that
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where pug ~ m is the reduced mass of the spacecraft and the Earth. Therefore,

2G M
Voo = \/(vo + Av)? — 7/LEREom ~ \/(Uo + Av)? — 202, (6)

The craft is now traveling on a hyperbolic relative to the Earth, but is still close to Earth’s
orbit around the sun.

e Assuming we timed the launch properly, the spacecraft’s velocity in the reference frame of
the sun will now be
V=V + VR, (7)

and it is moving under the influence of the sun’s gravity alone. As indicated in Fig. 1, we
consider the craft to be at the perihelion of the transfer orbit now. This implies
1 5  GMgm GMgm
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where we have used that ;

a=—5r (9)

for Kepler ellipses (cf. worksheet #8). We can once again approximate the reduced mass of
spacecraft and sun, pg &~ m. Solving for v, we obtain

v2:GMS<2—1)=2GMS<1— ! ) (10)
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and we can put everything together. Equation (7) yields
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and combining this with Eq. (6), we have

Av? 4+ 209Av = GMg <2 — Cll) — 2vE\/GMs (2 - i) + U;%; + 0(2)7 (12)
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whose solutions determine the required Awv.

2.2 Gravitational Assist

The second example we want to discuss is a simplified version of the gravitational assist or grav-
itational slingshot, which is used in interplanetary travel to increase the velocity of a spacecraft
relative to the Sun, without burning fuel. Our particular example is inspired by the trajectory of
the Voyager probes: We will consider a small spacecraft that is scattered by Jupiter’s gravitational
potential to boost its speed and take it from one heliocentric orbit to another.

The first step is to set the spacecraft on a transfer orbit whose perihelion is near Earth, and
whose aphelion is just beyond Jupiter’s orbit around the sun. The scattering process will occur in
a sufficiently short time and spatial region to allow us to model it as an elastic scattering event in
an inertial reference frame that is moving with Jupiters orbital velocity.
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Figure 2: Gravitational scattering of a spacecraft with incoming velocity ¢y, off Jupiter’s potential.

Figure 2.2 show the process in the Sun’s reference frame. The incoming trajectory of the
spacecraft — tangential to the Hohmann transfer orbit that took it to Jupiter — will intersect
Jupiter’s orbit around the sun with an angle «, at some distance d from the planet itself. Using
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(cf. homework H12), we can determine « from
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Next, we need to find the impact parameter b and the scattering angle 6 in Jupiter’s reference
frame (cf. Fig. 2.2. We can change frames by subtracting ¥; from all velocities in the problem
(cf. worksheet #8), which immediately yields

Uy = Uin — UJ . (15)
Referring to the inset in Fig. 2.2, we see that
v? = vl — 2upuysina 4+ 7, (16)

and that the angle between ¥; and the axis defined by Jupiter’s orbit is given by

Ujn COS (¥

tanf = ————. (17)
Vj — Vip SIn
This allows us to determine the impact parameter using
b=dsinf. (18)

With this impact parameter b, we can determine the scattering angle in Jupiter’s reference
frame from

0 bv?
COt§ = 260, (19)
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Figure 3: Gravitational scattering of the spacecraft with incoming velocity #; in Jupiter’s reference
frame.

where we have used v, = v; and M is the mass of Jupiter (cf. worksheet #8). Since the scattering
process is elastic, we know that the outgoing speed will be identical to the incoming speed, v, = v;,
but as we can see from Fig. 2.2 the angle the velocity vector makes with Jupiter’s orbit changes
from 8 to 4+ 5. This change in angle leads to an increase of Uiyt in the Sun’s reference frame: This
is already indicated by the figure, but we can explicitly derive the change between vy, and voyt via

Vot = Vi = (o + )" — (T + 1)

= 2vvy (cos (m — (6 + B)) — cos (m — 7))

= 2u;vy (—cos (0 + ) + cos B) = 2v;vy (cos B — cos (6 + B)) > 0. (20)
Here, we have used that v, = v; and that the cosine decreases monotonically from 0 to 7.

In general, the expressions for U,y are rather complicated and not particularly insightful, so we
will just summarize the steps of the general calculation:

1. Determine @i, from the properties of the transfer orbit, and transform it to the “target”
planet’s reference frame to obtain ;.

2. Find « using Eq. (14), where r is the radius of the target planet’s orbit.
3. Determine § from a.

4. Calculate b from S and the distance d at which the spacecraft intersects the planet’s orbit
(Eq. (18)).

5. Compute the gravitational scattering angle 6.

6. Compute the outgoing velocity v, and transform it back to the Sun’s reference frame.



Verify Egs. (14), (16), (17).

Figure 4: Three-body problem in the center-of-mass system.

3 Three-Body Systems

While we have extensively discussed the exact solutions of the gravitational two-body problem in
recent weeks, the addition of an additional mass will, in general, prevent analytic solutions. Here,
we still want to discuss general aspects of the problem, as well as some special cases in which an

analytic treatment is possible.

3.1 The General Case

Figure 4 shows a system of three masses in their center-of-mass system. The equations of motion

read
- T_"l — 7 771 - 7?3
mity = —Gmimeio——= — Gmaimg———-3,
|7 — 7% |7 — 73]
- Ty — 71 T — 773
mary = —Gmami =——=— — Gmamg ———3,
|7 — 71| |7 — 73]
- 773 — 771 ry3 — 772
mgry = —Gmgmi o———= — Gmgme———-5 .
|75 — 71| |73 — T3]
Now we introduce the relative vectors
S| =173 —Ty, Sy=71—1T3, 8§3=70y—T]

Noting that
S1+8 +53=0,

and using
MR = mq7 + moty +mgr3 =0,

we see that they are related to the 7; by
1 1
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Using the §;, we can rewrite the equations of motion as

—
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Let us now discuss some of the special solutions to these equations.

Euler’s Collinear Solutions

Euler discovered a class of solutions in which the masses are collinear and their distances are in a
fixed ratio. Assuming that mo lies between the other masses for specificity, we have

S1=AS3, So=—(14+)\)S3. (30)
From the equation of motion for 3, we have
- 1 /. 3.
G=— <§3 + GM5§> : (31)
which we can use to eliminate G in the remaining equations of motion:
§1+GMSL,1))IW<§’3+GMS§>, (32)
S1 ms3 S3
S+am2 =2 <§5 + GMS§> . (33)
S5 ms3 S3

Plugging in the relations (30) and rearranging, we obtain

. m3 53
1+ A =-GM — | = 34
(m2 +m3(1+ X)) 53 <m2+(1+)\>2> 3 (34)
(’I?’Ll — mg)\) :3_33 =-GM <m1 — @) S% . (35)
X2/ s3
Thus,
m:
my+ms(1+X) _ M2t @y (36)
mi — m3)\ N mi — %
and we find
P()\) = (m1 + mg))\5 + (3m1 + 2m2)/\4 + (3m1 + mg))\?’
- (m2 + 3m3))\2 — (2m2 + 3m3))\ — (mg + mg) =0. (37)
We can use Descartes’ sign rule for polynomials to determine that P(\), whose coefficients have
the signature (4, +, +, —, —, —), has at most one positive real root. We also note that
P(0) <0, lim P(\) =400, (38)
A—+00

so a positive root must exist. This implies the existence of a unique solution A\ for a given mass
ratios my : mo : mz. We can then plug this solution either into Eq. (34) or (35) to determine §5(t),
and from this the 75(¢). A (schematic) solution is shown in Fig. 5. Additional solutions can be
found by swapping the mass in the center.



Figure 5: Euler’s collinear solution for the three-body problem.

Lagrange’s Triangular Solutions

Equation (28) implies that the equations of motion decouple if G= 0, which turns the three-body
problem in to a set of three separate gravitational problems which we can solve with the usual
techniques. Lagrange proved that this condition can be met if the interacting objects form an
equilateral triangle at all times, regardless of their masses. The size and orientation of the triangle
will change during the objects’ motion, as illustrated in Fig. 6. We will work out these solutions in
more detail in problem G22.

3.2 The Restricted Three-Body Problem
3.2.1 The Synodic Frame

The restricted three-body problem refers to the case where one of the masses is much smaller
than the other two, m < Mj, My. Common examples are spacecraft that move within the gravita-
tional fields of two primary bodies, e.g., the Sun and a planet, or the Earth and the Moon, as well
as objects in the asteroid belt that are subject to the gravity of the Sun and Jupiter. To describe
the motion of the mass m, we introduce the so-called synodic coordinate system shown in Fig. 7.
Its origin lies in the center of mass of the two heavy masses, which is essentially the center of mass
of the three-body system as well, and we assume that it rotates with the vector connecting the
primary masses, which is §3 in the conventions from before. Let us define

My Mo
A=——m— <1, 1=A=—"—"—, 39
My + Mo My + M, (39)

and choose the x-axis to coincide with with direction of 55. Then
1= (A—1)s3€y, 7o = As3€y, (40)

and the distances between M; and Ms are given by
s1=vV(@—A—1)s3)2 +92, s2=+/(z— \s3)2 +32, (41)

where = and y are the coordinates of the mass m. The three masses span the xy plane of the
coordinate system, which we assume to be the plane of the ecliptic of the Solar system. Thus,
[ =lé,, as in the one- and two-body Kepler problems.
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Figure 6: Lagrange’s triangular solutions for the three-body problem: The masses m; form equi-
lateral triangles of different sizes and orientations at all times.

Assuming that the orbit is nearly circular, which is an excellent approximation for most plan-
ets in the Solar system, the angular velocity with which the coordinate system rotates can be
determined using Kepler’s Third Law: The period T of the revolution is

/ a3 s3
T=2 —_— =2 S E— 42
T G(M1 —|—M2) T G(Ml —|—M2) ( )

(cf. worksheet #8), hence the angular velocity is

o |G(M; + M)
w=—= 43
T s3

. (43)
(For an ellipse, this is only the average angular velocity, because ¢ must change to compensate the
changing distance between the mass and the center of the gravitational potential in order to keep
[ constant). For a circular trajectory, & || [, i.e., J = wé.

3.2.2 Lagrangian in a Rotating Frame

Let us now construct the Lagrangian and the Lagrange equations in the synodic coordinate system,
as parameterized by the coordinates i and velocities 7. For comparison, we will also need an inertial
frame, in which the position and velocity of mare given by 7, .

The potential is the same in both frames since it only depends on the distances of the masses,
which are invariant under a rotation. For the velocity, we have the relation

P =@ X T, (44)
hence the kinetic energy is given by
1 . 1 . 2 1 . . 1
T:§mf"2:§m<F+Qxf> = Smi i (@ % )+ 5m (@ x PP (45)
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Figure 7: The synodic coordinate system for the restricted three-body problem.

Thus, the Lagrangian in the noninertial frame is given by

1 . . 1 1 . .
L:EmFQ—kmF-(&><F)+§m(07><f’)2—V(F’)E§mf2—U(F,f'), (46)
where we have introduced the velocity-dependent potential
. . 1
U(F,F):V(f‘)—mF-(cDxF)—ﬁ(*fo. (47)

The associated generalized force is

Gg—dou U
Cdt ¢ OF

d 1

1

——mwxr—mwxr—kma_,((rxd)')-F—|—2(w2r2—(a} 1:‘)2))_68‘;

) ) ) 1 oV
:—mQXF—m@'><77+m77><o7—|—§m(2w2r—2(@' f')w)—ﬁ

ER o Y.L OV
:—mwxr—mexr—i—mwx(rxw)—%
:—m@’xf—2m&x?—m@'x(&xr—%. (48)

We can identify the following contributions, which are the usual pseudoforces or fictitious forces
associated with a rotating frame:

1. the Euler force
FEE—m'u'JXF, (49)

which is caused by any variation of &,

10



2. the Coriolis force .
Fo=—-2md x 7, (50)

3. and the centrifugal force

—

Fop=—m@x (@x7). (51)

For the circular restricted three-body problem under consideration, w = const. and & L 7, hence

—

Fr =0 and the centrifugal term simplifies to

—

Fop = —m<w277— (&-7) (IJ’> = —mw?T. (52)
——

The Lagrange equations for the Lagrangian (46) read
ov.

mF +mi X 7+ 2m@ X 7+ md x (& x 7) 57 =0 (53)
T
and with the aforementioned simplifications,
. ) oV
mr + 2md X 7+ mw*f — — =0. (54)

or
3.2.3 Jacobi Integral and Roche Potential

Since the Lagrangian (46) does not depend explicitly on time, we know that the Jacobi integral
will be conserved:

. I .
h(F,F)zaa;-FL
7
(; R W B Lo - 2
=m T+wxr>-r—§mr —mr - (JX7)—=m(d x7)* 4+ V(F)
1 1
= imFQ — 2m<w2r2 — (@ - F)Z> + V(¥) = const. (55)

Dividing by m and introducing the Roche potential

V(7 1
() = 7,(;) - 50027"2, (56)
we can rewrite the conservation law as
1.
h = ifg + &(7) = const. (57)

This is, in fact, the original Jacobi integral that gave all others its name. It was derived (with an
opposite sign) in Jacobi’s original work on the restricted three-body problem.
Using Eq. (43), we can rewrite the Roche potential as

GM, GMs M;+ M
O(7) = — 1 2 1+3 2.2
s1 S9 2s3
o GMI GM2 Ml +M2 x2 +y2 (58)
V=AM =1s3)2+ 142 /(z — \s3)2 + 12 2 55
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Figure 8: Roche potential and Lagrange points Li;—Ls for My/M; = 40. Equipotential lines are
shown in black.

A contour plot for Ms/M; = 40 is shown in Fig. 8. Equipotential lines are shown in black. At large
distances, the third term dominates and the potential is approximately rotationally symmetric. In
the vicinity of the primary masses M; and My, the potential is dominated by the first and second
terms in Eq. (58), respectively. The equipotential lines are initially disjointed and nearly circular,
but as ® grows, they become distorted into teardrop shapes that eventually touch in the point
L1, which will be discussed below. The regions enclosed by the critical equipotential line that
goes through L; are the so-called Roche lobes: A mass orbiting within either of them will be
gravitationally bound to the respective primary mass M; or Ms. Since My > M, its Roche lobe
is significantly bigger than that of Mj.

3.2.4 Lagrange Points

Let us now try and determine whether the equation of motion (58) admits any equilibrium solutions,
which would indicate points at which our mass m would remain at rest relative to the primary
masses M; and M. Rewriting Eq. (54) in terms of the Roche potential, we have

0P

P2 X T o =
T

0. (59)

Assuming static equilibrium (in the synodic frame), we have F=i= 0, and the equation of motion
turns into

0
— =0. 60
57 (60)
The solutions are the extrema of the Roche potential. Evaluating the gradient, we have
) Miy(x—(A—1 My(x — A
0=08___GM-O—Dsy) __GMaa—dsy) | o (61)

0~ (= O =D+ )7 (@ Asg) + )
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Figure 9: Cut of the Roche potential ®(x,0). The Lagrange points L1, Lo and L3 are highlighted
in red.

0= 87(1) _ GMly _ GMQy n w2
S0y (= (A—=1)s3)2+12)3/2  ((& — As3)2 +y2)3/2 Yy
GM G M.
2 1 2
- - - 62
/ (w (= (A—=1)s3)2 +92)3/2  ((z— As3)? + y2)3/2> (62)

From the second equation, we immediately obtain a class of solutions with y = 0, which implies
that the extrema are collinear. We could plug this into the first equation and attempt to solve it,
but the analytic expressions are lengthy and they don’t offer particularly useful insights. Instead,
we consider ®(x,y) along the cut defined by y = 0, which is shown in Fig. 9 for the same parameters
that were used in Fig. 8. We see that the extrema are local mazima of ®(x,0) and saddle points
of the full Roche potential ®(x,y). Adopting the usual naming conventions, Ly lies between the
primary masses, where the Roche lobes touch, Lo lies behind on the far side of the mass M; as
viewed from Ms, and similarly, L3 lies on the far side of Ms.
[TODO: Add Ly, L5, stability.]
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4 Group Exercises

Problem G21 — Spacecraft Orbits

At the time ¢t = 0, a spacecraft of mass m < Mg is at a distance 2Rg from the Earth’s center and
traveling with a velocity « that is parallel to the tangent to the equator at a longitude A = 0. Let
us denote

GMpg

2Rp ’

u=|ul =avy, vo=

(63)
where a > 0.
1. Show that the spacecraft will orbit the Earth on a circular trajectory if o = 1.
2. At what velocity will the spacecraft escape from the Earth’s gravitational well?
3. Show that the spacecraft will crash into the Earth at a longitude A if
1—cosA
a(d) = \/m : (64)

(Neglect drag effects due to the atmosphere.) Use your present results and the results of the
previous parts to classify the trajectories.

Problem G22 — Lagrange’s Solutions to the Three-Body Problem

Consider the gravitational three-body problem for the masses mi, mo, ms,

1. Verify that the equations of motion in the center-of-mass frame, Eqgs. (21)—(23), can be cast in
the form (28).

2. Show that the decoupling condition G = 0 for the equations of motion (28) is satisfied if the
masses form an equilateral triangle.

3. Assuming that S3(¢) has been determined by solving eq. (28), show that the trajectories of the
masses in the center-of-mass frame are given by

L 2matmz,  V3ms_.

Ve e (69)
L 2midmz,  V3mg. o

i §3 + 5 g% 5 (66)
g L VEm (67)
3 — M 3 2 M 35

where 77 is the unit normal vector of the equilateral triangle.

HinT: Express 77 in terms of the §;, and use that finite rotations of a vector @ by an angle ¢
around the axis defined by 7 can be expressed as

—/

@ = (7 @i+ (3 —A(f- Q) cos+ (3 x 7)sing. (68)
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Problem G23 — Vectors and Antisymmetric Matrices in Three Dimensions

In three dimensions, one can construct a unique mapping between vectors and antisymmetric (or
skew-symmetric) matrices:

U1 0 —wv3 e
PR R @) =@ | [va] |=[vs 0 -u], (69)
V3 —v2 U 0

or in components

1 ifijk =123,231,312 (cyclic permutations),
[@(0)];; = —€ijkvr, €k = —1 if ijk = 213,132,321 (anticyclic permutations), (70)

0 else,
where ¢ is the usual Levi-Civita tensor.

1. Show that the mapping is linear, i.e.,

O (ad + B7) = ad () + BD(F) . (71)

2. Show that the usual scalar product can be written as

T x 7= ®(a@)7 (73)

or, alternatively,
P (T x ) = ®(@)P(V) — (V)P (7) = [®(T), D(7)] (74)

where we have introduced the commutator

[A,B] = AB - BA. (75)
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