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1 Preparation

• Lemos, Chapter 3

• Goldstein, Section 3.12, Chapter 4 (skip 4.5)

2 Orbital Dynamics

In the following we want to discuss two important orbital maneuvers based on our solutions for
the Kepler problem: The transfer of a spacecraft between two Kepler orbits, and the gravitational
assist or slingshot.

2.1 Transfer Orbits

An important problem in orbital dynamics is the determination of optimal ways to send a spacecraft
to another planet. Since craft can only carry limited fuel, this usually means to find a so-called
minimum-energy transfer orbit, or Hohmann transfer orbit, named for its discoverer. Such
an orbit is shown schematically in Fig. 1.

A spacecraft that is starting from a circular low-Earth orbit burns fuel to achieve a velocity
boost ∆~v at the right time to lift it out of Earth’s gravity well and place it on an elliptical orbit
around the sun. Eventually, it will reach the orbit of the destination planet around the sun, and
a second boost ∆~v will “insert” the craft in a circular orbit in that planet’s gravity well. It is
clear that such a transfer orbit will crucially depend on the locations of the planets’ relative to
each other, which defines the so-called launch window: The destination planet better be near the
rendezvous point when the spacecraft arrives on its transfer orbit. Figure 1 also suggests that the
timing matters for the velocities: The transfer will be most efficient if the spacecraft is launched
from its Earth orbit with a velocity ~v∞ that has the same direction as Earths velocity around the
Sun, because then the velocity of the spacecraft in the Sun’s reference frame will have its largest
possible magnitude, vE + v∞. Likewise, the rendezvous should be timed such that the relative
velocity of the craft and the destination planet is small, to allow a controlled orbital insertion.

Before we discuss the necessary steps of the transfer maneuver, we can determine how long it
will take the spacecraft to reach its destination using Kepler’s Third Law (cf. worksheet #8). We
recall that

T = 2π

√
a3µS
kS

, kS = GMSm, µS ≡
MSm

m+MS
, (1)
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Figure 1: A Hohmann transfer orbit between low-eccentricity orbits with radii r1 and r2.

where the potential strength and reduced mass refer to the system consisting of the sun and the
object in question. Expressing the period of the craft’s transfer orbit in terms of the Earth’s orbital
period TE , we have

T

TE
=

√
a3

r31
, (2)

Figure 1 also indicates that the semi-major axis of the transfer orbit is

a =
r1 + r2

2
, (3)

as a consequence of the optimal launch window discussed before. Thus, the orbital period of the
transfer orbit is

T =

(
r1 + r2

2r1

)3/2

TE , (4)

and the craft’s travel time is ∆t = T/2, since it will only travel the outgoing leg of the orbit.
The orbital transfer now proceeds in the following steps:

• The spacecraft is lifted into a parking orbit with radius R0 and a speed v0 =
√

GME
R0

(cf. prob-

lem G21).

• At the appropriate time, the craft receives a boost ∆~v in the same direction as ~v0 and the
Earth’s velocity ~vE in order to allow an efficient escape from the Earth’s gravity well. Energy
conservation implies that

1

2
µEv

2
∞ =

1

2
µE(v0 + ∆v)2 − GMEm

R0
, (5)
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where µE ≈ m is the reduced mass of the spacecraft and the Earth. Therefore,

v∞ =

√
(v0 + ∆v)2 − 2GMEm

µER0
≈
√

(v0 + ∆v)2 − 2v20 , (6)

The craft is now traveling on a hyperbolic relative to the Earth, but is still close to Earth’s
orbit around the sun.

• Assuming we timed the launch properly, the spacecraft’s velocity in the reference frame of
the sun will now be

v = v∞ + vE , (7)

and it is moving under the influence of the sun’s gravity alone. As indicated in Fig. 1, we
consider the craft to be at the perihelion of the transfer orbit now. This implies

E =
1

2
µSv

2 − GMSm

r1
= −GMSm

2a
, (8)

where we have used that

a = − k

2E
(9)

for Kepler ellipses (cf. worksheet #8). We can once again approximate the reduced mass of
spacecraft and sun, µS ≈ m. Solving for v, we obtain

v2 = GMS

(
2

r1
− 1

a

)
= 2GMS

(
1

r1
− 1

r1 + r2

)
, (10)

and we can put everything together. Equation (7) yields

v2∞ = (v − vE)2 = v2 − 2vvE + v2E

= GMS

(
2

r1
− 1

a

)
− 2vE

√
GMS

(
2

r1
− 1

a

)
+ v2E (11)

and combining this with Eq. (6), we have

∆v2 + 2v0∆v = GMS

(
2

r1
− 1

a

)
− 2vE

√
GMS

(
2

r1
− 1

a

)
+ v2E + v20 , (12)

whose solutions determine the required ∆v.

2.2 Gravitational Assist

The second example we want to discuss is a simplified version of the gravitational assist or grav-
itational slingshot, which is used in interplanetary travel to increase the velocity of a spacecraft
relative to the Sun, without burning fuel. Our particular example is inspired by the trajectory of
the Voyager probes: We will consider a small spacecraft that is scattered by Jupiter’s gravitational
potential to boost its speed and take it from one heliocentric orbit to another.

The first step is to set the spacecraft on a transfer orbit whose perihelion is near Earth, and
whose aphelion is just beyond Jupiter’s orbit around the sun. The scattering process will occur in
a sufficiently short time and spatial region to allow us to model it as an elastic scattering event in
an inertial reference frame that is moving with Jupiters orbital velocity.
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5.7 Example: Gravitational Slingshot 171

Jupiter

Jupiter injection orbit

Jupiter's orbit
d
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Fig. 5.11 Scattering in the heliocentric reference frame. The spacecraft comes in from the right
with heliocentric velocity vin at an angle α relative to the radius of Jupiter’s orbit. In the absence
of any gravitational scattering by Jupiter, the Jupiter injection orbit would cross Jupiter’s orbit a
distancedbehind the planet. After the scattering event the outgoing heliocentric velocity is vout

Exercise 5.9 Using the orbit equation, (4.50), we can find the angle α from

tan α = vφ

vr
= rdφ/dt

dr/dt
= r

dφ
dr

. (5.53)

Show that

tan α =
√

1 − e2

e2 − (1 − r/a)2
. (5.54)

We’re now going to need the impact parameter bin order to find the deflec-
tion angle in the co-moving coordinate system. (Recall from Fig. 5.5 that the impact
parameter is the perpendicular distance between the scattering center and the asymp-
tote of the initial velocity of the incoming object.) To transform to the co-moving
frame, we simply subtract vJ from all velocities in the problem. Thus, the initial
velocity in this frame is vi = vin − vJ. The angle between vi and the path of Jupiter’s
orbit is denoted by β in Fig. 5.12; it satisfies

tan β = vin cosα

vJ − vin sin α
. (5.55)

Once we know β, we then have b= dsin β.

Exercise 5.10 Referring to Fig. 5.12, verify (5.55). Show also that

v2i = v2in + v2J − 2vinvJ sin α . (5.56)

Figure 2: Gravitational scattering of a spacecraft with incoming velocity ~vin off Jupiter’s potential.

Figure 2.2 show the process in the Sun’s reference frame. The incoming trajectory of the
spacecraft — tangential to the Hohmann transfer orbit that took it to Jupiter — will intersect
Jupiter’s orbit around the sun with an angle α, at some distance d from the planet itself. Using

r(α) =
a(1− ε2)

1 + ε cosα
,

dr

dφ

∣∣∣∣
φ=α

=
ε sinα

a(1− ε2)
r2 , (13)

(cf. homework H12), we can determine α from

tanα =
vφ
vr

=
rφ̇

ṙ
= r

(
dr

dφ

)−1
=

√
1− ε2

ε2 −
(
1− r

a

)2 . (14)

Next, we need to find the impact parameter b and the scattering angle θ in Jupiter’s reference
frame (cf. Fig. 2.2. We can change frames by subtracting ~vJ from all velocities in the problem
(cf. worksheet #8), which immediately yields

~vi = ~vin − ~vJ . (15)

Referring to the inset in Fig. 2.2, we see that

v2i = v2in − 2vinvJ sinα+ v2J , (16)

and that the angle between ~vi and the axis defined by Jupiter’s orbit is given by

tanβ =
vin cosα

vJ − vin sinα
. (17)

This allows us to determine the impact parameter using

b = d sinβ . (18)

With this impact parameter b, we can determine the scattering angle in Jupiter’s reference
frame from

cot
θ

2
=

bv2i
2GMJ

, (19)
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5.7 Example: Gravitational Slingshot 173

Jupiter's orbit
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vout
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Jupiter

Jupiter injection orbit

Fig. 5.13 The configuration after the spacecraft scatters off of Jupiter, as seen with respect to
the co-moving reference frame of Jupiter. Within this frame, the scattered velocity is vo. When
converted to the heliocentric frame, the scattered velocity is vout = vo + vJ

with vi given by (5.56), θ given by (5.57), and β given by (5.55). In order to determine
β, we need to know the angle α, which is given by (5.54) with r equal to the radius
of Jupiter’s orbit, 5.2 AU. In order to determine θ , we need to know the impact
parameter b, which is given by b= dsin β. The initial conditions on this problem
are then a(the semi-major axis of the initial orbit), e (its eccentricity), and d(the
distance between Jupiter and the point where the spacecraft’s orbit crosses Jupiter’s
orbit).

Exercise 5.11 Determine the scattered velocity (speed and direction) for a
spacecraft that was launched from Earth on an initial orbit that reached an
aphelion ra = 5.3 AU, with (a)d= 1000RJ, (b)d= 100RJ, and (c)d= 10RJ.
(RJ is the equatorial radius of Jupiter.) What is the aphelion distance of the new
orbits after scattering for each of the three cases above?

5.8 Transformation to the Lab Frame

So far, we have been analyzing scattering as an effective one-body problem, with all
motiondefined in termsof the interparticle separation r ≡ r1−r2 and relative velocity
v ≡ v1 − v2. In this frame, the scattering angle θ is related to the angle between
the asymptotic initial and final separation vectors. To be precise, if ri ≡ r1i − r2i is

172 5 Scattering

Jupiter

Jupiter injection orbit

Jupiter's orbit
d

vin

-vJ

b

vi

Fig. 5.12 Scattering as seen with respect to the co-moving reference frame of Jupiter. In this frame,
Jupiter is at rest, and the unscattered path of the spacecraft is tilted with respect to the orbital path
of Jupiter by the angle β. The impact parameter, b, is the perpendicular distance between Jupiter
and the unscattered path

Given the impact parameter b, it is now a simplematter to determine the scattering
angle in the co-moving frame of Jupiter. Taking v∞ = vi and using (5.47), we have

cot
(

θ

2

)
= bv2i

GMJ
, (5.57)

where MJ is the mass of Jupiter. Since the scattering is elastic, the outgoing speed vo
is the same as the incoming speed vi, noting that this is with respect to the co-moving
frame. The angle that vo makes with the orbital path of Jupiter is θ+β, as can be seen
in Fig. 5.13. With the magnitude and direction of vo known, we can find the scattered
velocity of the spacecraft in the heliocentric reference frame, vout = vo + vJ, which
has a magnitude greater than vi as expected.

At this point, it is simply amatter of putting together all the different quantities that
we have computed throughout this example. The end result is not a simple expression
and therefore not very illuminating, so here wewill just lay out the equations that will
be used. In order to describe the vectors, we will consider two coordinate systems,
O and O ′, which are related by a simple Galilean velocity transformation. In the
heliocentric frame O , the x-axis is chosen to be tangent to Jupiter’s orbital path,
pointing in the retrograde direction, and the y-axis is chosen to lie along a radial line
from the Sun. In the co-moving frame O ′, the x ′-axis is parallel to the x-axis, and
the y′-axis lies along the line joining the Sun and Jupiter. During the short time of
the scattering encounter, O ′ is simply moving with velocity vJ in the − x direction
of O . Thus,

vout = (vi cos (θ + β) − vJ) x̂ + vi sin (θ + β)ŷ , (5.58)

A

Figure 3: Gravitational scattering of the spacecraft with incoming velocity ~vi in Jupiter’s reference
frame.

where we have used v∞ = vi and MJ is the mass of Jupiter (cf. worksheet #8). Since the scattering
process is elastic, we know that the outgoing speed will be identical to the incoming speed, vo = vi,
but as we can see from Fig. 2.2 the angle the velocity vector makes with Jupiter’s orbit changes
from β to θ+β. This change in angle leads to an increase of ~vout in the Sun’s reference frame: This
is already indicated by the figure, but we can explicitly derive the change between vin and vout via

v2out − v2in = (~vo + ~vJ)2 − (~vi + ~vJ)2

= 2vivJ (cos (π − (θ + β))− cos (π − β))

= 2vivJ (− cos (θ + β) + cosβ) = 2vivJ (cosβ − cos (θ + β)) > 0 . (20)

Here, we have used that vo = vi and that the cosine decreases monotonically from 0 to π.
In general, the expressions for ~vout are rather complicated and not particularly insightful, so we

will just summarize the steps of the general calculation:

1. Determine ~vin from the properties of the transfer orbit, and transform it to the “target”
planet’s reference frame to obtain ~vi.

2. Find α using Eq. (14), where r is the radius of the target planet’s orbit.

3. Determine β from α.

4. Calculate b from β and the distance d at which the spacecraft intersects the planet’s orbit
(Eq. (18)).

5. Compute the gravitational scattering angle θ.

6. Compute the outgoing velocity vo and transform it back to the Sun’s reference frame.
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Exercise 2.1: Gravitational Slingshot

Verify Eqs. (14), (16), (17).

~s1

m1 m2

m3

~r3

~s3

~s2

Figure 4: Three-body problem in the center-of-mass system.

3 Three-Body Systems

While we have extensively discussed the exact solutions of the gravitational two-body problem in
recent weeks, the addition of an additional mass will, in general, prevent analytic solutions. Here,
we still want to discuss general aspects of the problem, as well as some special cases in which an
analytic treatment is possible.

3.1 The General Case

Figure 4 shows a system of three masses in their center-of-mass system. The equations of motion
read

m1~̈r1 = −Gm1m2
~r1 − ~r2
|~r1 − ~r2|3

−Gm1m3
~r1 − ~r3
|~r1 − ~r3|3

, (21)

m2~̈r2 = −Gm2m1
~r2 − ~r1
|~r2 − ~r1|3

−Gm2m3
~r2 − ~r3
|~r2 − ~r3|3

, (22)

m3~̈r3 = −Gm3m1
~r3 − ~r1
|~r3 − ~r1|3

−Gm3m2
~r3 − ~r2
|~r3 − ~r2|3

. (23)

Now we introduce the relative vectors

~s1 = ~r3 − ~r2 , ~s2 = ~r1 − ~r3 , ~s3 = ~r2 − ~r1 . (24)

Noting that
~s1 + ~s2 + ~s3 = 0 , (25)

and using
M ~R = m1~r1 +m2~r2 +m3~r3 = 0 , (26)

we see that they are related to the ~ri by

~r1 =
1

M
(m3~s2 −m2~s3) , ~r2 =

1

M
(m1~s3 −m3~s1) , ~r3 =

1

M
(m2~s1 −m1~s2) . (27)
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Using the ~si, we can rewrite the equations of motion as

~̈si = mi
~G−GM ~si

s3i
, si = |~si| , (28)

where

~G ≡ G
(
~s1
s31

+
~s2
s32

+
~s3
s33

)
. (29)

Let us now discuss some of the special solutions to these equations.

Euler’s Collinear Solutions

Euler discovered a class of solutions in which the masses are collinear and their distances are in a
fixed ratio. Assuming that m2 lies between the other masses for specificity, we have

~s1 = λ~s3 , ~s2 = −(1 + λ)~s3 . (30)

From the equation of motion for ~s3, we have

~G =
1

m3

(
~̈s3 +GM

~s3
s33

)
, (31)

which we can use to eliminate ~G in the remaining equations of motion:

~̈s1 +GM
~s1
s31

=
m1

m3

(
~̈s3 +GM

~s3
s33

)
, (32)

~̈s2 +GM
~s2
s32

=
m2

m3

(
~̈s3 +GM

~s3
s33

)
. (33)

Plugging in the relations (30) and rearranging, we obtain

(m2 +m3 (1 + λ)) ~̈s3 = −GM
(
m2 +

m3

(1 + λ)2

)
~s3
s33
, (34)

(m1 −m3λ) ~̈s3 = −GM
(
m1 −

m3

λ2

) ~s3
s33
. (35)

Thus,

m2 +m3 (1 + λ)

m1 −m3λ
=
m2 + m3

(1+λ)2

m1 − m3
λ2

(36)

and we find

P (λ) = (m1 +m2)λ
5 + (3m1 + 2m2)λ

4 + (3m1 +m2)λ
3

− (m2 + 3m3)λ
2 − (2m2 + 3m3)λ− (m2 +m3) = 0 . (37)

We can use Descartes’ sign rule for polynomials to determine that P (λ), whose coefficients have
the signature (+,+,+,−,−,−), has at most one positive real root. We also note that

P (0) < 0 , lim
λ→+∞

P (λ) = +∞ , (38)

so a positive root must exist. This implies the existence of a unique solution λ for a given mass
ratios m1 : m2 : m3. We can then plug this solution either into Eq. (34) or (35) to determine ~s3(t),
and from this the ~ri(t). A (schematic) solution is shown in Fig. 5. Additional solutions can be
found by swapping the mass in the center.
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m1
m2

m3

Figure 5: Euler’s collinear solution for the three-body problem.

Lagrange’s Triangular Solutions

Equation (28) implies that the equations of motion decouple if ~G = 0, which turns the three-body
problem in to a set of three separate gravitational problems which we can solve with the usual
techniques. Lagrange proved that this condition can be met if the interacting objects form an
equilateral triangle at all times, regardless of their masses. The size and orientation of the triangle
will change during the objects’ motion, as illustrated in Fig. 6. We will work out these solutions in
more detail in problem G22.

3.2 The Restricted Three-Body Problem

3.2.1 The Synodic Frame

The restricted three-body problem refers to the case where one of the masses is much smaller
than the other two, m�M1,M2. Common examples are spacecraft that move within the gravita-
tional fields of two primary bodies, e.g., the Sun and a planet, or the Earth and the Moon, as well
as objects in the asteroid belt that are subject to the gravity of the Sun and Jupiter. To describe
the motion of the mass m, we introduce the so-called synodic coordinate system shown in Fig. 7.
Its origin lies in the center of mass of the two heavy masses, which is essentially the center of mass
of the three-body system as well, and we assume that it rotates with the vector connecting the
primary masses, which is ~s3 in the conventions from before. Let us define

λ =
M1

M1 +M2
< 1 , 1− λ =

M2

M1 +M2
, (39)

and choose the x-axis to coincide with with direction of ~s3. Then

~r1 = (λ− 1)s3~ex , ~r2 = λs3~ex , (40)

and the distances between M1 and M2 are given by

s1 =
√

(x− (λ− 1)s3)2 + y2 , s2 =
√

(x− λs3)2 + y2 , (41)

where x and y are the coordinates of the mass m. The three masses span the xy plane of the
coordinate system, which we assume to be the plane of the ecliptic of the Solar system. Thus,
~l = l~ez, as in the one- and two-body Kepler problems.
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3.12 The Three-Body Problem 123

FIGURE 3.29 Lagrange’s equilateral triangle solution to the three-body problem for
the mass ratio m1 < m2 < m3. Adapted from Hestenes, New Foundations for Classi-
cal Mechanics, 1999, Fig. 5.3.

masses are at the vertices of an equilateral triangle. As the motion proceeds,
the equations remain uncoupled so the equilateral triangle condition continues
to be satisfied, but the triangle changes in size and orientation. Figure 3.29
presents Lagrange’s elliptic solution case with the same mass ratio as before,
m1 < m2 < m3. The figure shows the configuration when the masses are close
together, each at its respective perihelion point, and also indicates the analogous
aphelion arrangement.

Various asymptotic solutions have been worked out for the three-body prob-
lem. For example, if the total energy is positive, then all three masses can move
away from each other, or one can escape, carrying away most of the energy, and
leave the other two behind in elliptic orbits. If the energy is negative, one can
escape and leave the other two in a bound state, or all three can move in bound
orbits.

The restricted three-body problem is one in which two of the masses are large
and bound, and the third is small and merely perturbs the motion of the other two.
Examples are a spacecraft in orbit between Earth and the Moon, or the perturba-
tion of the Sun on the Moon’s orbit. In the spacecraft case, the first approach
is to assume that the Earth and Moon move in their unperturbed orbits, and
the satellite interacts with them through their respective inverse-square gravita-
tional forces. We should also note that satellites orbiting Earth at altitudes of 90
miles or 150 kilometers have their orbits perturbed by Earth’s nonspherical mass
distribution.

A

Figure 6: Lagrange’s triangular solutions for the three-body problem: The masses mi form equi-
lateral triangles of different sizes and orientations at all times.

Assuming that the orbit is nearly circular, which is an excellent approximation for most plan-
ets in the Solar system, the angular velocity with which the coordinate system rotates can be
determined using Kepler’s Third Law: The period T of the revolution is

T = 2π

√
a3

G(M1 +M2)
= 2π

√
s33

G(M1 +M2)
(42)

(cf. worksheet #8), hence the angular velocity is

ω =
2π

T
=

√
G(M1 +M2)

s33
. (43)

(For an ellipse, this is only the average angular velocity, because φ must change to compensate the
changing distance between the mass and the center of the gravitational potential in order to keep
~l constant). For a circular trajectory, ~ω ‖ ~l, i.e., ~ω = ω~ez.

3.2.2 Lagrangian in a Rotating Frame

Let us now construct the Lagrangian and the Lagrange equations in the synodic coordinate system,
as parameterized by the coordinates ~r and velocities ~̇r. For comparison, we will also need an inertial
frame, in which the position and velocity of mare given by ~r′, ~̇r′.

The potential is the same in both frames since it only depends on the distances of the masses,
which are invariant under a rotation. For the velocity, we have the relation

~̇r′ = ~̇r + ~ω × ~r , (44)

hence the kinetic energy is given by

T =
1

2
m~̇r′2 =

1

2
m
(
~̇r + ~ω × ~r

)2
=

1

2
m~̇r2 +m~̇r · (~ω × ~r) +

1

2
m (~ω × ~r)2 . (45)
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Figure 7: The synodic coordinate system for the restricted three-body problem.

Thus, the Lagrangian in the noninertial frame is given by

L =
1

2
m~̇r2 +m~̇r · (~ω × ~r) +

1

2
m (~ω × ~r)2 − V (~r) ≡ 1

2
m~̇r2 − U(~r, ~̇r) , (46)

where we have introduced the velocity-dependent potential

U(~r, ~̇r) = V (~r)−m~̇r · (~ω × ~r)− 1

2
(~ω × ~r)2 . (47)

The associated generalized force is

~Q =
d

dt

∂U

∂~̇r
− ∂U

∂~r

= −m d

dt
(~ω × ~r) +m

∂

∂~r

(
~̇r · (~ω × ~r) +

1

2
(~ω × ~r)2

)
− ∂V

∂~r

= −m~̇ω × ~r −m~ω × ~̇r +m
∂

∂~r

((
~̇r × ~ω

)
· ~r +

1

2

(
ω2r2 − (~ω · ~r)2

))
− ∂V

∂~r

= −m~̇ω × ~r −m~ω × ~̇r +m~̇r × ~ω +
1

2
m
(
2ω2~r − 2(~ω · ~r)ω

)
− ∂V

∂~r

= −m~̇ω × ~r − 2m~ω × ~̇r +m~ω × (~r × ~ω)− ∂V

∂~r

= −m~̇ω × ~r − 2m~ω × ~̇r −m~ω × (~ω × ~r)− ∂V

∂~r
. (48)

We can identify the following contributions, which are the usual pseudoforces or fictitious forces
associated with a rotating frame:

1. the Euler force
~FE ≡ −mẇ × ~r , (49)

which is caused by any variation of ~ω,
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2. the Coriolis force
~FC ≡ −2m~ω × ~̇r , (50)

3. and the centrifugal force
~Fcf ≡ −m~ω × (~ω × ~r) . (51)

For the circular restricted three-body problem under consideration, ω = const. and ~ω ⊥ ~r, hence
~FE = 0 and the centrifugal term simplifies to

~Fcf = −m
(
ω2~r − (~ω · ~r)︸ ︷︷ ︸

=0

~ω

)
= −mω2~r . (52)

The Lagrange equations for the Lagrangian (46) read

m~̈r +m~̇ω × ~r + 2m~ω × ~̇r +m~ω × (~ω × ~r) +
∂V

∂~r
= 0 , (53)

and with the aforementioned simplifications,

m~̈r + 2m~ω × ~̇r +mω2~r − ∂V

∂~r
= 0 . (54)

3.2.3 Jacobi Integral and Roche Potential

Since the Lagrangian (46) does not depend explicitly on time, we know that the Jacobi integral
will be conserved:

h(~r, ~̇r) =
∂L

∂~̇r
· ~̇r − L

= m
(
~̇r + ~ω × ~r

)
· ~̇r − 1

2
m~̇r2 −m~̇r · (~ω × ~r)− 1

2
m (~ω × ~r)2 + V (~r)

=
1

2
m~̇r2 − 1

2
m

(
ω2r2 − (~ω · ~r︸︷︷︸

=0

)2
)

+ V (~r) = const. (55)

Dividing by m and introducing the Roche potential

Φ(~r) =
V (~r)

m
− 1

2
ω2r2 , (56)

we can rewrite the conservation law as

h =
1

2
~̇r2 + Φ(~r) = const. (57)

This is, in fact, the original Jacobi integral that gave all others its name. It was derived (with an
opposite sign) in Jacobi’s original work on the restricted three-body problem.

Using Eq. (43), we can rewrite the Roche potential as

Φ(~r) = −GM1

s1
− GM2

s2
− M1 +M2

2s33
r2

= − GM1√
(x− (λ− 1)s3)2 + y2

− GM2√
(x− λs3)2 + y2

− M1 +M2

2

x2 + y2

s33
. (58)
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3.5 Das reduzierte Dreikörperproblem 111

Ka
pi
te
l3

seien jeweils d1 und d2:

d1 D
q
.x1 ! .q ! 1/d/2 C x22;

d2 D
q
.x1 ! qd/2 C x22:

(3.147)

Da das Koordinatensystem rotiert, müssen Zentrifugal- und Co-
riolis-Kräfte berücksichtigt werden, die auf die Punktmasse m3
wirken. Die Winkelgeschwindigkeit ist konstant, sodass Terme
mit P! verschwinden. Weiterhin liegt der Ursprung des Koor-
dinatensystems auf der Drehachse, und man findet b0 D 0
in (2.80). Die resultierende Bewegungsgleichung für m3 lautet
demnach

RxC 2! " PxC! " .! " x/C r! .x/ D 0: (3.148)

Hier wurde das Potenzial

! .x/ WD V .x/
m3

(3.149)

eingeführt, wobei

V .x/ D !Gm1m3

d1
! Gm2m3

d2
(3.150)

die potenzielle Energie der Testmasse m3 in den Gravitationsfel-
dern der Massen m1 und m2 ist. Die Kreuzprodukte in (3.148)
ergeben

! " Px D

0

B@
!! Px2
! Px1
0

1

CA ; ! " .! " x/ D

0

B@
!!2x1
!!2x2

0

1

CA : (3.151)

Führt man das effektive Potenzial

U.x/ WD !.x/ ! !2

2

!
x21 C x22

"
(3.152)

ein, lassen sich die Bewegungsgleichungen (3.148) in der Form

Rx1 ! 2! Px2 D ! @U
@x1

; Rx2 C 2! Px1 D ! @U
@x2

(3.153)

schreiben.

Das effektive Potenzial lässt sich mithilfe von (3.146) auch um-
formulieren:

U.x/
G

D ! m1

d1.x1; x2/
! m2

d2.x1; x2/
!m1 C m2

2d3
.x21Cx22/: (3.154)

Frage 24
Überprüfen Sie, dass ! undU nur Funktionen von x1 und x2 sind
und zeigen Sie die Gültigkeit von (3.153) und (3.154).

x1

x2

−1 0 1

−1

0

1

L1
L2 L3

L5

L4

U0

Abb. 3.17 Darstellung des effektiven Potenzials aus (3.154) für
m2=m1 D 40 in der x1-x2-Ebene. Bereiche gleicher Farbe entsprechen
gleichem effektiven Potenzial. Die Lagrange-Punkte L4 und L5 befin-
den sich in den Maxima (weiß ,U0) des effektiven Potenzials. Sie bilden
mit den beiden Massen m1 und m2 zwei gleichseitige Dreiecke. Einige
Äquipotenziallinien sind in Schwarz eingezeichnet. Sie entsprechen den
Hill-Kurven für bestimmte Werte der Jacobi-Konstanten C

Hill-Kurve

Anstatt die Bewegungsgleichungen zu lösen, betrachten wir das
effektive Potenzial genauer. Multipliziert man die erste Glei-
chung in (3.153) mit Px1, die zweite mit Px2 und addiert beide,
so überprüft man schnell, dass

d
dt

#
1
2

!
Px21 C Px22

"
CU

$
D 0 (3.155)

ist. Die somit erhaltene Größe

C W D !2U !
!
Px21 C Px22

"

D !2 !x21 C x22
"

! 2V !
!
Px21 C Px22

"
D const

(3.156)

ist die Jacobi-Konstante, das einzig bekannte Integral des redu-
zierten Dreikörperproblems.

Die Bewegung von m3 ist offensichtlich auf solche Bereiche be-
schränkt, in denen C C 2U # 0 erfüllt ist, da Px21 C Px22 $ 0
gilt. Die sogenannte Hill-Kurve ist die Menge aller Punkte, die
U.x/ D !C=2 erfüllen. Sie definiert die Grenze des für die
Punktmasse m3 zugänglichen Bereichs (Abb. 3.17).

x

y

Φmax

Figure 8: Roche potential and Lagrange points L1–L5 for M2/M1 = 40. Equipotential lines are
shown in black.

A contour plot for M2/M1 = 40 is shown in Fig. 8. Equipotential lines are shown in black. At large
distances, the third term dominates and the potential is approximately rotationally symmetric. In
the vicinity of the primary masses M1 and M2, the potential is dominated by the first and second
terms in Eq. (58), respectively. The equipotential lines are initially disjointed and nearly circular,
but as Φ grows, they become distorted into teardrop shapes that eventually touch in the point
L1, which will be discussed below. The regions enclosed by the critical equipotential line that
goes through L1 are the so-called Roche lobes: A mass orbiting within either of them will be
gravitationally bound to the respective primary mass M1 or M2. Since M2 � M1, its Roche lobe
is significantly bigger than that of M1.

3.2.4 Lagrange Points

Let us now try and determine whether the equation of motion (58) admits any equilibrium solutions,
which would indicate points at which our mass m would remain at rest relative to the primary
masses M1 and M2. Rewriting Eq. (54) in terms of the Roche potential, we have

~̈r + 2~ω × ~̇r +
∂Φ

∂~r
= 0 . (59)

Assuming static equilibrium (in the synodic frame), we have ~̈r = ~̇r = 0, and the equation of motion
turns into

∂Φ

∂~r
= 0 . (60)

The solutions are the extrema of the Roche potential. Evaluating the gradient, we have

0 =
∂Φ

∂x
= − GM1(x− (λ− 1)s3)

((x− (λ− 1)s3)2 + y2)3/2
− GM2(x− λs3)

((x− λs3)2 + y2)3/2
+ ω2x , (61)
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Figure 9: Cut of the Roche potential Φ(x, 0). The Lagrange points L1, L2 and L3 are highlighted
in red.

0 =
∂Φ

∂y
= − GM1y

((x− (λ− 1)s3)2 + y2)3/2
− GM2y

((x− λs3)2 + y2)3/2
+ ω2y

= y

(
ω2 − GM1

((x− (λ− 1)s3)2 + y2)3/2
− GM2

((x− λs3)2 + y2)3/2

)
(62)

From the second equation, we immediately obtain a class of solutions with y = 0, which implies
that the extrema are collinear. We could plug this into the first equation and attempt to solve it,
but the analytic expressions are lengthy and they don’t offer particularly useful insights. Instead,
we consider Φ(x, y) along the cut defined by y = 0, which is shown in Fig. 9 for the same parameters
that were used in Fig. 8. We see that the extrema are local maxima of Φ(x, 0) and saddle points
of the full Roche potential Φ(x, y). Adopting the usual naming conventions, L1 lies between the
primary masses, where the Roche lobes touch, L2 lies behind on the far side of the mass M1 as
viewed from M2, and similarly, L3 lies on the far side of M2.

[TODO: Add L4, L5, stability.]
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4 Group Exercises

Problem G21 – Spacecraft Orbits

At the time t = 0, a spacecraft of mass m�ME is at a distance 2RE from the Earth’s center and
traveling with a velocity ~u that is parallel to the tangent to the equator at a longitude λ = 0. Let
us denote

u = |~u| = αv0 , v0 ≡
√
GME

2RE
, (63)

where α > 0.

1. Show that the spacecraft will orbit the Earth on a circular trajectory if α = 1.

2. At what velocity will the spacecraft escape from the Earth’s gravitational well?

3. Show that the spacecraft will crash into the Earth at a longitude λ if

α(λ) =

√
1− cosλ

2− cosλ
. (64)

(Neglect drag effects due to the atmosphere.) Use your present results and the results of the
previous parts to classify the trajectories.

Problem G22 – Lagrange’s Solutions to the Three-Body Problem

Consider the gravitational three-body problem for the masses m1,m2,m3,

1. Verify that the equations of motion in the center-of-mass frame, Eqs. (21)–(23), can be cast in
the form (28).

2. Show that the decoupling condition ~G = 0 for the equations of motion (28) is satisfied if the
masses form an equilateral triangle.

3. Assuming that ~s3(t) has been determined by solving eq. (28), show that the trajectories of the
masses in the center-of-mass frame are given by

~r1 = −2m2 +m3

2M
~s3 +

√
3

2

m3

M
~n× ~s3 , (65)

~r2 =
2m1 +m3

2M
~s3 +

√
3

2

m3

M
~n× ~s3 , (66)

~r3 =
m1 −m2

2M
~s3 −

√
3

2

m1 +m2

M
~n× ~s3 , (67)

where ~n is the unit normal vector of the equilateral triangle.

Hint: Express ~n in terms of the ~si, and use that finite rotations of a vector ~a by an angle φ
around the axis defined by ~n can be expressed as

~a′ = (~n · ~a)~n+ (~a− ~n(~n · ~a)) cosφ+ (~a× ~n) sinφ . (68)
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Problem G23 – Vectors and Antisymmetric Matrices in Three Dimensions

In three dimensions, one can construct a unique mapping between vectors and antisymmetric (or
skew-symmetric) matrices:

Φ : R3 → R3×3 : Φ(~v) = Φ

v1v2
v3

 =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 , (69)

or in components

[Φ(~v)]ij = −εijkvk , εijk =


1 if ijk = 123, 231, 312 (cyclic permutations) ,

−1 if ijk = 213, 132, 321 (anticyclic permutations) ,

0 else ,

(70)

where ε is the usual Levi-Civita tensor.

1. Show that the mapping is linear, i.e.,

Φ (α~u+ β~v) = αΦ(~u) + βΦ(~v) . (71)

2. Show that the usual scalar product can be written as

~u · ~v =
1

2
tr
[
Φ(~u)TΦ(~v)

]
. (72)

3. Show that the vector product can be obtained from

~u× ~v = Φ(~u)~v (73)

or, alternatively,
Φ(~u× ~v) = Φ(~u)Φ(~v)− Φ(~v)Φ(~u) =

[
Φ(~u),Φ(~v)

]
(74)

where we have introduced the commutator[
A,B

]
= AB −BA . (75)
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