PHY422/820: Classical Mechanics

FS 2020
Worksheet \#11 (Nov 9 - Nov 13)

November 8, 2020

1 Preparation

- Lemos, Chapter 4
- Goldstein, Chapter 5

2 Group Exercises

Problem G27 - Rotating Cuboid

Consider a homogenous rotating cuboid with side lengths a, b, c and mass M.

1. Compute the principal moments of inertia with respect to the cuboid's center of mass.

Hint: The diagonalization of the moment-of-inertia tensor can be avoided through an appropriate choice of coordinate system.
2. Determine the cuboid's equations of motion in the body-fixed frame, the Euler equations for the rigid body, by starting from

$$
\begin{equation*}
\frac{d \vec{L}}{d t}+\vec{\omega} \times \vec{L}=\vec{N}, \quad \vec{L}=\boldsymbol{I} \vec{\omega}=\left(A \omega_{x^{\prime}}, B \omega_{y^{\prime}}, C \omega_{z^{\prime}}\right)^{T} \tag{1}
\end{equation*}
$$

where all vectors are expressed in the body-fixed frame, and A, B and C denote the principal moments of inertia.
3. Consider the force-free rotation of the cuboid around a principal axis, e.g., $\vec{\omega}_{0}=\left(\omega_{0}, 0,0\right)^{T}=$ const. Under which conditions is a rotation around this axis stable?
Hint: Assume a small perturbation of the rotational axis,

$$
\begin{equation*}
\vec{\omega}=\vec{\omega}_{0}+\vec{\epsilon}=\vec{\omega}_{0}+\left(\epsilon_{x^{\prime}}, \epsilon_{y^{\prime}}, \epsilon_{z^{\prime}}\right)^{T}, \tag{2}
\end{equation*}
$$

and determine the conditions under which the amplitude of the perturbation $\vec{\epsilon}$ remains small. Omit terms of order $O\left(\epsilon^{2}\right)$ and higher.

Problem G28 - Rotating Platelet

[cf. problem G27] Consider a thin rectangular platelet of mass m with side lengths a, b and a homogeneous mass distribution. Choose a coordinate system whose origin is the platelet's center of mass.

1. Express the platelet's mass density $\rho(x, y, z)$ using δ and step functions.
2. Determine the moment of inertia tensor \boldsymbol{I} in the chosen center-of-mass frame, and determine the principal axes.
Hint: You can use your results from problem G27, or compute I explicitly for practice.
3. Derive the Euler equations for the platelet in the body-fixed frame.
4. Compute the torque \vec{N} that is required to make the platelet rotate with a constant angular velocity around its diagonal. What happens if the platelet is quadratic, i.e., $a=b$?
