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1 Preparation

• Lemos, Chapter 7 (skip 7.4, 7.6-7.7 optional)

• Goldstein, Chapter 8 (skip 8.4, 8.3 optional)

2 Hamiltonian Mechanics

In the next couple of weeks, we will discuss the Hamiltonian formulation of Classical Mechan-
ics. We will see that it does not really add new capabilities — in fact, it usually relies on prior
knowledge of the Lagrangian and the generalized coordinates — but it brings new insights into
the mathematical and geometrical structures of Classical Mechanics. The generalization of these
structures were key in the development of both Statistical and Quantum Mechanics.

2.1 Phase Space and the Definition of the Hamiltonian

The setting of Hamiltonian mechanics is the phase space of configurations

(q1(t), . . . , qn(t), p1(t), . . . , pn(t)) (1)

whose evolution will be governed by 2n first-order ODEs, instead of the n second-order ODEs for
the generalized coordinates qi in Lagrangian Mechanics. Importantly, the qi and the canonical
momenta pi are treated as independent variables in a symmetric fashion. Previously, we saw
that

pi(q, q̇, t) =
∂L

∂q̇i
, (2)

and we could try to make a change of variables by using these equations to eliminate the q̇i. However,
such a naive approach would be non-unique, and therefore non-invertible — clearly, this is not
allowed if the Lagrangian and Hamiltonian formulations of mechanics are supposed to be equivalent.
To overcome this issue, we change variables by performing a Legendre transformation of the
Lagrangian (see problem G31). This defines the Hamiltonian of a mechanical system:

H(q, p, t) =
∑
k

pkq̇k(q, p, t)− L(q, p, t) . (3)

1



This matches our definition of the Jacobi integral, but note that the choice of variables is crucial :
the Jacobi integral is defined on the configuration manifold, not on phase space.

Starting from a Hamiltonian, we can switch to the Lagrangian formalism via the Legendre
transformation

L(q, q̇, t) =
∑
k

pk(q, q̇, t)q̇k −H(q, q̇, t) , (4)

where

q̇i(q, p, t) =
∂H

∂pi
. (5)

2.2 Hamilton’s Equations

In order to derive the governing equations for Hamiltonian dynamics, we consider the total differ-
ential of H(q, p, t). Since it is a function of the qi, pi and (potentially) t, the differential must have
the form

dH =
∑
i

(
∂H

∂qi
dqi +

∂H

∂pi
dpi

)
+
∂H

∂t
dt . (6)

The definition via the Legendre transformation of the Lagrangian yields

dH =
∑
i

(q̇idpi + pidq̇i)−
∑
i

(
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i

)
− ∂L

∂t
dt

=
∑
i

(q̇idpi + pidq̇i)−
∑
i

((
d

dt

∂L

∂q̇i

)
dqi +

∂L

∂q̇i
dq̇i

)
− ∂L

∂t
dt

=
∑
i

(q̇idpi + pidq̇i)−
∑
i

(ṗidqi + pidq̇i)−
∂L

∂t
dt

=
∑
i

(q̇idpi − ṗidqi)−
∂L

∂t
dt . (7)

Comparing Eqs. (6) and (7), we obtain Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (8)

as well as

dH

dt
=
∂H

∂t
= −∂L

∂t
. (9)

From the latter equation, we see that H is conserved if it does not explicitly depend on time.
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Box 2.1: Recipe for Solving Problems in Hamiltonian Mechanics

The general procedure for solving problems in Hamiltonian Mechanics consists of the follow-
ing steps:

1. Choose generalized coordinates and construct L(q, q̇, t).

2. Construct the canonical momenta pi, and solve for q̇i(q, p, t).

3. Perform a Legendre transformation to construct H(q, p, t).

4. Write down Hamilton’s equations and solve them.

2.3 Examples

Let us now discuss some examples.

2.3.1 The Harmonic Oscillator

We start from the Lagrangian

L =
1

2
mq̇2 − 1

2
mω2q2 . (10)

The canconical momentum is

p =
∂L

∂q̇
= mq̇ , q̇ =

p

m
. (11)

Carrying out the Legendre transformation, we obtain the Hamiltonian

H =
∂L

∂q̇
q̇ − L =

p2

m
− p2

2m
+

1

2
mω2q2 =

p2

2m
+

1

2
mω2q2 . (12)

Hamilton’s equations read

q̇ =
∂H

∂p
=

p

m
, (13)

ṗ = −∂H
∂q

= −mω2q . (14)

The first equation simply reproduces what we found from the introduction of the canonical momen-
tum above, and serves as a consistency check. To solve the coupled ODEs (13)–(13) analytically,
we plug one of the equations into the other. In this way, we obtain either

q̈ + ω2q = 0 , (15)

which is solved by the usual ansatz

q(t) = q0 cos(ωt+ φ0) , (16)

or
p̈+ ω2p = 0 , (17)

with
p(t) = p0 cos(ωt+ φ0) . (18)
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Figure 1: Phase space of an underdamped harmonic oscillator with ω0 = 2 s−1 and β = 1 s−1. The
fixed point at the origin is indicated in red.

To obtain the trajectory for the generalized coordinate, we can integrate Eq. (13) to obtain

q(t) = − p0
mω

sin(ωt+ φ0) . (19)

Since ∂H
∂t = 0, we also know that H is conserved. In the present example, it corresponds to the

total energy, and we can write

1 =
H

E
=

p2

2mE
+

q2

2E
mω2

. (20)

This is the definition of an ellipse with semi-axes a =
√

2mE and b =
√

2E/mω2 in phase space.

Phase Space of the Damped and Driven Harmonic Oscillator

Let us take this opportunity to discuss typical phase space trajectories of a general damped and
driven harmonic oscillator, which is described by the equations

q̇ =
p

m
, (21)

ṗ = −mω2q − β

m
p+ fext cosωextt . (22)

They define the phase space flow of the model, a two-dimensional vector field that is tangential
to the phase space trajectory at each point (q, p). In Fig. 1 we show this flow for an underdamped
oscillator without driving (fext = 0). We see that regardless of the starting point in phase space,
the trajectories will always evolve towards the origin. The origin is an (attractive) fixed point
of the oscillator’s dynamics, which is reached in the limit t� 1 as the oscillator comes to a rest.

Figure 2 shows the corresponding flow for the overdamped case, in which the oscillator is not able
to perform a complete oscillation. As a consequence, the “vorticity” we find in the underdamped
case is absent, although the trajectories exhibit some curvature.
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Figure 2: Phase space of an overdamped harmonic oscillator with ω0 = 2 s−1 and β = 1 s−1. The
fixed point at the origin is indicated in red.

2.3.2 The Pendulum

[...] Choosing a downward pointing vertical axis, the Lagrangian of the simple pendulum is given
by

L = T − V =
1

2
ml2φ̇2 +mgl cosφ . (23)

Introducing the canonical momentum

p =
∂L

∂φ̇
= ml2φ̇ , (24)

the Hamiltonian becomes

H =
p2

2ml2
−mgl cosφ . (25)

and we can immediately obtain Hamilton’s equations

q̇ =
∂H

∂p
=

p

ml2
, (26)

ṗ = −∂H
∂φ

= −mgl sinφ . (27)

In Figure 3, we show both the phase space flow as well as several phase space trajectories with
constant energy E. We see that for small angles φ (or canonical momental p), the trajectories are
nearly elliptical, like those of a harmonic oscillator. This is expected in the small-angle limit, as
we have seen numerous times.

For larger angles φ, the trajectories become increasingly deformed. The intersection points of
the trajectories with the p = 0 axis at odd multiples of π (i.e., φ = (2k + 1)π, k ∈ Z) are saddle
points of the flow. At these points, the pendulum’s bob is upside down and at rest, which is
obviously an unstable configuration. The phase space curve passing through these points is called
the separatrix of the pendulum. It is the boundary of the phase space volume that contains the
oscillatory trajectories of the pendulum from trajectories that are purely rotational. In Fig. 3, these
rotational trajectories are periodic in p but unbounded in φ in the sense that we allow multiple
revolutions by allowing φ ∈]−∞,∞[. [...]
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Figure 3: Left: Phase space flow of the simple pendulum. Right: Isoenergetic phase space trajec-
tories.

2.3.3 The Van der Pol Oscillator

[...]
The Van der Pol oscillator is described by the equations

q̇ =
p

ml2
, (28)

ṗ = −mω2q + µ(1− q2)p . (29)

Its phase space flow for µ = 1 and ω0 = 2s−1 is shown in Fig. 4: At large times, any trajectory of
the oscillator will be attracted to the limit cycle that is shown in the figure in red.

[...]

2.4 Hamilton’s Equations from a Variational Principle

3 The Virial Theorem

3.1 Statement and Proof

The mean value of a time-dependent function f(t) can be defined as

〈
f
〉

= lim
τ→∞

1

τ

∫ τ

0
dt f(t) . (30)

For an integrable periodic function with period T , the limit is guaranteed to exist and we have

〈
f
〉

=
1

T

∫ T

0
dt f(t) . (31)

Let us now consider a dynamical system with canonical coordinates (q, p) that is governed by
the Hamiltonian H(q, p, t). We can introduce the so-called (generalized) virial

V ≡ −
∑
i

qi
∂H

∂qi
, (32)
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Figure 4: Phase space of the Van der Pol oscillator with µ = 1 and ω0 = 2s−1. The limit cycle is
indicated in red.

Virial Theorem

If qi(t) and pi(t) are bounded functions and if the mean values of the quantities
∑

i qi
∂H
∂qi

and∑
i pi

∂H
∂pi

exist separately, then they are equal:

〈∑
i

qi
∂H

∂qi

〉
=
〈∑

i

pi
∂H

∂pi

〉
. (33)

which can be related to the mean value of other dynamical quantities under certain circumstances.
In order to prove this theorem, we introduce a function

G(t) ≡
∑
i

pi(t)qi(t) . (34)

Since we demanded that the qi and pi are bounded, G(t) will be bounded as well. Differentiating
G with respect to time and using Hamilton’s equations, we have

Ġ =
∑
i

(piq̇i + ṗiqi) =
∑
i

(
pi
∂H

∂pi
− qi

∂H

∂qi

)
. (35)

Taking the mean value on both sides, we obtain

〈
Ġ
〉

=
〈∑

i

(
pi
∂H

∂pi
− qi

∂H

∂qi

)〉
. (36)

We also have 〈
Ġ
〉

= lim
τ→∞

1

τ

∫ τ

0
dt
dG

dt
= lim

τ→∞

G(τ)−G(0)

τ
= 0 , (37)
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because τ → ∞ while the terms in the numerator were bounded by construction. Provided both
of the mean values on the right-hand side exist separately, we see that〈

Ġ
〉

=
〈∑

i

(
pi
∂H

∂pi
− qi

∂H

∂qi

)〉
=
〈∑

i

pi
∂H

∂pi

〉
−
〈∑

i

qi
∂H

∂qi

〉
= 0 , (38)

which completes our proof.

3.2 Applications

3.2.1 Central-Force Motion

Let us apply the virial theorem to the motion of an object under a central force, whose Hamiltonian
is given by

H =
~p2

2m
+ V (r) . (39)

Evaluating the mean values in Cartesian coordinates for simplicity, we have

〈∑
i

pi
∂H

∂pi

〉
=
〈 ~p2
m

〉
= 2

〈
T
〉

(40)

and 〈∑
i

ri
∂H

∂ri

〉
=
〈
~r · ~∇V (r)

〉
=
〈
~r · dV

dr

~r

r

〉
=
〈
r
dV

dr

〉
. (41)

For a power-law potential,
V (r) = Arn (42)

the virial theorem therefore implies that

2
〈
T
〉

= n
〈
V
〉
, (43)

and the mean energy must satisfy

E =
〈
E
〉

=
〈
T
〉

+
〈
V
〉

=
n+ 2

n

〈
T
〉

=
(

1 +
n

2

) 〈
V
〉

(44)

For a Kepler-Coulomb type potential (n = 1), we specifically have

E = −
〈
T
〉

= −1

2

〈
V
〉
, (45)

which shows that bound orbits have a negative energy. For the isotropic oscillator (n = 2), we
obtain 〈

T
〉

=
〈
V
〉
. (46)

3.2.2 Equation of State of an Ideal Gas

The virial theorem can be used to derive the equation of state of an ideal gas in an efficient manner.
Such a gas consists of a large number of non-interacing particles that would be described by the
free Hamiltonian

Hfree =
∑
i

~p2i
2m

. (47)
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Let us assume that the gas is contained in a closed volume V , whose walls provide a confining
potential U(~ri) for each particle:

Hfree =
∑
i

(
~p2i
2m

+ U(~ri)

)
. (48)

The virial theorem now implies that

2
〈
T
〉

=
〈∑

i

~ri · ~∇iU
〉

= −
〈∑

i

~ri · ~Fi
〉
. (49)

The force ~Fi the gas molecules experience is solely due to the collision with the wall, which allows
us to relate the mean force experienced by the gas to the pressure on the walls of the volume. For
a small area element of the wall, we have

d~F = −Pd ~A = −P~ndA , (50)

where ~n is the unit vector of the surface. Thus, we can write

−
〈∑

i

~ri · ~Fi
〉

= −
∮
∂V
~r · d~F = P

∮
∂V
~r · d ~A , (51)

where we have used that the pressure is constant. Using Gauss’ Law, we see that∮
∂V
~r · d ~A =

∫
V

~∇ · ~r dV = 3

∫
V
dV = 3V , (52)

Recalling the equipartition theorem, we can write the average kinetic energy of the gas as〈
T
〉

= N · 3

2
kBT , (53)

where N is the number of gas molecules, kB is the Boltzmann constant, and T is the absolute
temperature. Combining our results, Eq. (49) yields

2
〈
T
〉

= 3NkBT = 3PV , (54)

and we obtain the equation of state of the ideal gas:

PV = NkBT . (55)
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4 Group Exercises

Problem G31 – Legendre Transformations

Consider the following situation: We know a function f(x, y) that relates two quantities x and y,
but we would rather have a relationship f̃(x, z) where z = ∂f

∂y is of greater interest to us, e.g.,
because it can be measured more readily, or because it might be conserved (an example would be
L(q, q̇), with p = ∂L

∂q̇ being a conserved momentum).

1. The naive approach: Consider the family of functions

fa(x, y) = x2 + (y − a)2 . (56)

Determine f̃a(x, z) = fa(x, y(x, z)) by computing z = ∂fa
∂y , solving the resulting equation for y,

and plugging this y(x, z) into the original function. Show that the relationship between fa and
f̃a is not unique, which means that we cannot invert the procedure to obtain fa from f̃a.

2. The Legendre transformation: Compute z = ∂fa
∂y as before, and use it to construct the

Legendre transform
ga(x, z) ≡ zy(x, z)− fa(x, y(x, z)) . (57)

Show that the transformation is invertible, i.e., that we can compute y = ∂ga
∂z and obtain the

original function from
fa(x, y) = yz(x, y)− ga(x, z(x, y)) . (58)

How are ∂ga
∂x and ∂fa

∂x related?

Problem G32 – An Abstract Hamiltonian

[adapted from Goldstein 8.14] The Lagrangian for a system can be written as

L = aẋ2 + b
ẏ

x
+ cẋẏ + fy2ẋż + gẏ − k

√
x2 + y2 . (59)

1. Construct the Hamiltonian.

2. Use Hamilton’s equations to identify conserved quantities.
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