Medical Isotope Production and Use

Darrell R. Fisher, Ph.D. Office of National Isotope Programs March 20, 2009 Washington State University

PNNL-SA-65456

1

Medical isotope production methods

Nuclear reactors

- Charged-particle accelerators
 - Proton cyclotrons, linear accelerators
 - Alpha-particle accelerators
 - Electron beam (x-ray) interactions
- Chemical separation from longer-lived parent isotopes
 - ${}^{90}Sr \rightarrow \beta$ + ${}^{90}Y \rightarrow \beta$ + ${}^{90}Zr$ (stable)
 - 224 Ra $\rightarrow \ldots \rightarrow ^{212}$ Pb $\rightarrow \beta$ + 212 Bi (alpha emitter)

Nuclear reactors

National Research Universal (Chalk River, Ontario)

- Operated by Chalk River Laboratories, AECL
- 135 MW, low-enriched uranium fuel, high-enriched targets
- Produces Mo-99, I-131, I-125, Xe-133, Ir-192
- The major isotope-production facility in the world
- Isotopes separated from targets and sold by MDS Nordion, Kanata, Ontario
- Serves the isotope needs of 20 million patients per year

Nuclear reactors

High-Flux Isotope Reactor (HFIR, Oak Ridge, TN)

- Operated by Oak Ridge National Laboratory for DOE
- Uses highly-enriched uranium fuel elements
- 85 MW, 4E15 neutrons/cm²-s², 26-day irradiation cycles
- Produces Se-75, Cf-252, W-188/Re-188, Ni-63

Nuclear reactors

Advanced Test Reactor (ATR, near Idaho Falls, ID)

- Operated by Idaho National Laboratory for DOE
- 85 MW, 4E14 n/cm²-s², large core volume, 57-d irradiation cycles
- Hydraulic tube for short-term target irradiations
- Produces mainly cobalt-60

Co-60 is produced for medical "gamma knife" irradiators for highprecision treatment by external radiation of brain tumors

Particle accelerators

- Brookhaven Linac Isotope Producer (BLIP) on Long Island, NY
 - Operated by Brookhaven National Laboratory
 - 200 MeV/150 µA proton beam drawn from the Alternating Gradient Synchrotron
 - System for target insertion/retrieval
 - Main isotopes produced:
 - Ge-68/Ga-68, and Sr-82/Rb-82, also Zn-65, Mg-28, Fe-52, Rb-83
 - Considerable down-times

Particle accelerators

Isotope Production Facility (IPF) at Los Alamos, NM

- 100 MeV/250 µA proton beam from the LANSCE 0.5 mile linear accelerator at TA-53
- Targets processed at TA-48
- Available 30-40 weeks per year
- Main isotopes: Ge-68/Ga-68 and Sr-82/Rb-82, and also smaller amounts of AI-26, Si-32

Particle accelerators

- Commercial cyclotrons
 - Accelerates charged hydrogen atoms (protons, deuterons)
 - Energies 13-40 MeV and up to 100 MeV, current up to 2 mA
 - Efficient, reliable, expensive to operate
 - For production of proton-rich isotopes, including: ¹⁸F, ⁸²Sr, ⁶⁴Cu, ¹⁵O, ¹¹C, ⁷⁷Br, ⁷⁷Br, ¹²⁴I, ⁸⁶Y, ⁶⁶Ga, ⁶⁰Cu, ⁶¹Cu, ⁸⁹Zr
 - Several manufacturers: Ion Beam Applications (IBA, Belgium) Ebco Technologies (Canada) Sumitomo Heavy Industries, Ltd. (Japan) General Electric (United States) Siemens (Germany)

Left: 17 MeV GE PETtrace cyclotron

Right: Compact French 65 MeV cyclotron for proton and neutron therapy.

What is a good medical isotope?

- For applications in medicine, nature and "man-made" physics approaches provide many different radionuclides to choose from.
- The choice of radionuclide is critical for achieving successful diagnostic imaging and cancer treatment outcomes.
- Objectives:
 - 1) <u>Diagnostic nuclear medicine</u>: high quality images of activity in the patient, with low patient radiation dose
 - 2) <u>Therapeutic nuclear medicine</u>: high amount of energy imparted to the target tissue (to destroy cancer cells) relative to critical normal organs and tissues (to prevent radiation damage and side-effects)

Broad categories

Radiopharmaceuticals

- Positron Emitters
- Beta/gamma Emitters
- Alpha Emitters

Medical Devices

- Sealed Sources
- Microsphere Applications
- Nanosphere Applications

Standard photon-emitter clinical imaging agents

- Tc-99m (about 35 common diagnostic radiopharmaceuticals)
- I-131 sodium iodide
- In-111, I-123, TI-201, Ga-67, Xe-133

Tc-99m-sestamibi scan shows breast tumor

Positron emitters

Cancer Metabolism and Functional Imaging

- F-18-fluorodeoxyglucose (FDG) glucose analog, measures hexokinase activity (glucose metabolism), phosphorylated by hexokinase to F-18-FDG-6-PO4, elevated in tumor cells, chemically trapped in cells
- F-18-amino acids (phenylalanine, tyrosine) image metastatic lesions
- F-18-fluorothymidine measures thymidine kinase activity (DNA synthesis)
- F-18-flouromisonidazol (FMISO) images tumor hypoxia
- F-18-estradiol breast tumor detection

Therapy agents

- Thyroid disease (benign and malignant)
 - Iodine-131 sodium iodide, oral
 - Targets thyroid (hormone-secreting) tissues, salivary glands, cancer metastases

I-131 scan of normal thyroid

Therapy agents

- Myeloproliferative diseases (bone marrow)
 - P-32 sodium phosphate (targets trabecular bone surfaces)
 - P-32 orthophosphate for polycythemia vera
 - Ho-166-DOTMP plus melphalan for multiple myeloma
- Malignant ascites (intraperitoneal cavity)
 - P-32 chromic phosphate colloid
 - Y-90 silicate, colloidal suspensions
 - Y-90-labeled anti-ovarian-cell antibodies
 - Targets cell-surface antigens
 - Problem achieving sufficiently high, uniform radiation doses

Pacific

Sealed-source medical devices

- Intra-uterine, cervical brachytherapy
 - Ir-192, Cs-137 sealed sources
- Seed implants
 - I-125, Pd-103, Cs-131, Au-198
- Y-90 microspheres (liver tumors)
- Y-90 eye plaques
- Y-90 intraocular therapy sources (wet age-related macular degeneration)

Next-generation Y-90 microsphere brachytherapy seed (prostate, brain, liver)

Nanoparticle virus phage capsid

 Fuse an affinity reagent by phage display or protein expression

- 2. Remove DNA
- 3. Replace with an insoluble radioisotope core

Beta/gamma Emitters

Technetium-99m Iodine-131 Indium-111 Thallium-201

Positron Emitters

Fluorine-18 Rubidium-82 Copper-61 Technetium-94m

Carbon-11 Germanium-68 Bromine-76 Yttrium-86

Oxygen-15 Copper-64 Bromine-77 Zirconium-89

Nitrogen-13 Copper-60 Iodine-124 Gallium-66

Auger-electron Emitters

Indium-111

Iodine-123

Iodine-125

Beta Emitters

lodine-131	Strontium-89	Samarium-153	Holmium-166
Yttrium-90	Lutetium-177	Promethium-149	Gold-199
Copper-64	Rhenium-186	Rhenium-188	Others?
Copper-67	Tin-117m	Phosphorus-32	

Alpha Emitters

Astatine-211	Radium-223	Actinium-225	Terbium-149
Radium-224	Bismuth-212	Bismuth-213	Thorium-227

Auger-electron Emitters

Bromine-77 Indium-111

lodine-123

Iodine-125

