How to probe nuclear size?
 \Rightarrow Electron Scattering from nuclei

For low energies and under conditions where the electron does not penetrate the nucleus, the electron scattering can be described by the Rutherford formula. The Rutherford formula is an analytic expression for the differential scattering cross section, and for a projectile charge of e, it is

$$
\left(\frac{d \sigma}{d \cos \theta}\right)_{R}=\frac{\pi}{2}\left[\frac{\hbar c Z \alpha}{T_{K E}(1-\cos \theta)}\right]_{\text {Kinetic energy of electron }}^{2}
$$

As the energy of the electrons is raised enough to make them an effective nuclear probe, a number of other effects become significant, and the scattering behavior diverges from the Rutherford formula. The probing electrons are relativistic, they produce significant nuclear recoil, and they interact via their magnetic moment as well as by their charge. When the magnetic moment and recoil are taken into account, the expression is called the Mott cross section.

A major period of investigation of nuclear size and structure occurred in the 1950's with the work of Robert Hofstadter and others who compared their high energy electron scattering results with the Mott cross section. The illustration below from Hofstadter's work shows the divergence from the Mott cross section which indicates that the electrons are penetrating the nucleus - departure from point-particle scattering is evidence of the structure of the nucleus.

The cross section from elastic electron scattering is:

$$
\frac{d \sigma}{d \cos \theta}=\left(\frac{d \sigma}{\substack{\text { Mott cross section }}}{ }_{\text {point }}|F(q)|^{2}\right.
$$

$$
\begin{aligned}
& \text { Form factor } \\
& F(\vec{q})=\int d^{3} r \rho_{\mathrm{ch}}(\vec{r}) e^{i \vec{q} \vec{r}} \\
& \boldsymbol{q}-\text { three momentum transfer of electron }
\end{aligned}
$$

Sizes

$\rho(0)=0.16$ nucleons $/ \mathrm{fm}^{3}$
$\rho(r)=\rho_{0}\left[1+\exp \left(\frac{r-R}{a}\right)\right]^{-1}$
$R \approx 1.2 A^{1 / 3} \mathrm{fm}, \quad a \approx 0.6 \mathrm{fm}$

Calculated and measured densities

Protons and neutrons aren't point particles

charge distribution in the proton

mass \rightarrow charge \rightarrow spin \rightarrow name \rightarrow	$\begin{array}{ll} 2.4 & \mathrm{MeV} \\ 2 / 3 \\ 1 / 2 & \\ & \text { up } \end{array}$	$\begin{aligned} & 1.27 \mathrm{GeV} \\ & 2 / 3 \\ & 1 / 2 \\ & \text { charm } \end{aligned}$	$$
$\begin{aligned} & \frac{n}{4} \\ & \frac{\pi}{2} \\ & 0 \end{aligned}$		$\begin{aligned} & 104 \mathrm{MeV} \\ & -1 / 3 \\ & 1 / 2 \\ & \text { strange } \end{aligned}$	$\begin{aligned} & 4.2 \mathrm{GeV} \\ & -1 / 3 \\ & 1 / 2 \\ & \text { bottom } \end{aligned}$

$$
\begin{aligned}
\left\langle R_{\mathrm{ch}}^{2}\right\rangle= & \left\langle R_{\mathrm{pp}}^{2}\right\rangle+\left\langle r_{\mathrm{p}}^{2}\right\rangle+\frac{N}{Z}\left\langle r_{\mathrm{n}}^{2}\right\rangle+\frac{3 \hbar^{2}}{4 m_{p}^{2} c^{2}} \\
\sqrt{\left\langle r_{\mathrm{p}}^{2}\right\rangle} & =0.8775(51) \mathrm{fm} \quad \quad \begin{array}{l}
\text { relativistic Darwin- } \\
\\
\left\langle r_{\mathrm{n}}^{2}\right\rangle
\end{array} \\
=-0.1149(27) \mathrm{fm}^{2} &
\end{aligned}
$$

Proton size puzzle

Muon has a mass of 105.7 MeV , which is about 200 times that of the electron \hbar Bohr radius: $\quad a_{0}=\overline{m_{e} c \alpha}$

New radius: $0.84087(39) \mathrm{fm}$

Proton radius determinations over time

Proton charge radii obtained from hydrogen spectroscopy

Aug. 2016: Pohl et al. (Science 353) determined the charge radius of the deuteron, a nucleus consisting of a proton and a neutron, from the transition frequencies in muonic deuterium. Mirroring the proton radius puzzle, the radius of the deuteron was several standard deviations smaller than the value inferred from previous spectroscopic measurements of electronic deuterium. This independent discrepancy points to experimental or theoretical error or even to physics beyond the standard model.

Examples of how the measured values of constants can vary dramatically before converging on their correct values (from PDG)

Isotope Shift

Laser trapping of exotic atoms. RMP 85, 1383 (2013)

TABLE I. Contributions to the electronic binding energy and their orders of magnitude in atomic units. a_{0} is the Bohr radius, $\alpha \approx 1 / 137$. For helium, the atomic number $Z=2$, and the mass ratio $\mu / M \sim 1 \times 10^{-4} . g_{I}$ is the nuclear g factor. α_{d} is the nuclear dipole polarizability.

Contribution	Magnitude
Nonrelativistic energy	Z^{2}
Mass polarization	$Z^{2} \mu / M$
Second-order mass polarization	$Z^{2}(\mu / M)^{2}$
Relativistic corrections	$Z^{4} \alpha^{2}$
Relativistic recoil	$Z^{4} \alpha^{2} \mu / M$
Anomalous magnetic moment	$Z^{4} \alpha^{3}$
Hyperfine structure	$Z^{3} g_{I} \mu_{0}^{2}$
Lamb shift	$Z^{4} \alpha^{3} \ln \alpha+\cdots$
Radiative recoil	$Z^{4} \alpha^{3}(\ln \alpha) \mu / M$
Finite nuclear size	$Z^{4}\left\langle r_{c} / a_{0}\right\rangle^{2}$
Nuclear polarization	$Z^{3} e^{2} \alpha_{d} /\left(\alpha a_{0}^{4}\right)$

$\alpha=\frac{1}{137}$
$\mu=$ reduced electron mass

Difference in mean-square charge radii for the N~60 region, PRL 105, 032502 (2010)

Phys. Rev. Lett. 117, 252501 (2016) BECOLA @ NSCL

Nature Physics 12, 594 (2016)

Neutron radii

- Proton-Nucleus elastic
- Pion, alpha, d scattering
- Pion photoproduction

Phys. Rev. Lett. 112, 242502 (2014)

Parity-violating electron scattering

Z_{0} of Weak Interaction

$$
\mathrm{M}_{\mathrm{z}}=90.19 \mathrm{GeV}!
$$

Parity Violating Asymmetry
$A=\frac{\left(\frac{d \sigma}{d \Omega}\right)_{R}-\left(\frac{d \sigma}{d \Omega}\right)_{L}}{\left(\frac{d \sigma}{d \Omega}\right)_{R}+\left(\frac{d \sigma}{d \Omega}\right)_{L}}=\frac{G_{F} Q^{2}}{2 \pi \alpha \sqrt{2}}[\underbrace{1-4 \sin ^{2} \theta_{W}}_{\approx 0}-\frac{F_{n}\left(Q^{2}\right)}{F_{P}\left(Q^{2}\right)}] \sim 7 \cdot 10^{-7}$
Weinberg angle: $\quad \sin ^{2} \theta_{W}=0.23120 \pm 0.00015$

	proton	neutron
Electric charge	1	0
Weak charge	0.08	1

A comment: Yukawa potential

$$
\begin{gathered}
V_{Y}(r)=-g^{2} \frac{e^{-\mu r}}{r} \\
\lambda_{B}=\frac{1}{\mu}=\frac{\hbar}{m_{B} c}
\end{gathered}
$$

Compton wavelength of the boson (force carrier)

Mass of the boson

$$
-\frac{1}{c^{2}} \frac{\partial^{2} \Psi}{\partial t^{2}}+\nabla^{2} \psi=\mu^{2} \Psi \underset{\substack{\text { m } \\ \text { Klein-Gordon equation }}}{\substack{0.02}}
$$

A long range comparison of Yukawa and Coulomb potentials

Lead (${ }^{208} \mathrm{~Pb}$) Radius Experiment: PREX

Analysis is clean, like electromagnetic scattering:

1. Probes the entire nuclear volume
2. Perturbation theory applies

Phys. Rev. Lett. 108, 112502 (2012)
$R_{\text {skin }}=R_{n}-R_{p}$
PREX: $0.34_{-0.17}^{+0.15} \mathrm{fm}$
Theory: $0.168 \pm 0.022 \mathrm{fm}$

$$
\begin{aligned}
& \mathrm{E}=850 \mathrm{MeV}, \theta=6^{0} \\
& \text { electrons on lead }
\end{aligned}
$$

Neutron \& proton density distributions

S. Mizutori et al., Phys. Rev. C61, 044326 (2000)

