

NSCL @ MSU

National Superconducting Cyclotron Laboratory (NSCL)

- Established in 1963, the NSCL is the nation's largest nuclear science facility that is on a university campus
- Home to the K500-K1200 Coupled Cyclotron Facility and the A1900 Projectile Fragment Separator
- MSU #1 ranked Nuclear Physics Program in the Nation
- Upgrade to the Facility for Rare Isotope Beams (FRIB) scheduled for 2022

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

A. N. Pham, 4/29/2016, Slide 3

Scientific Goals of the Laboratory

- Properties of Atomic Nuclei
 - Develop a predictive model of nuclei and their interactions
- Nuclear Processes in Cosmos
 - Origin of the elements; processes in the cosmic cauldrons
 - Stellar evolution, stellar explosions, and compact stars
- Test Fundamental Laws of Nature
- Effects of symmetry violations are amplified in certain nuclei
- Societal Applications and Benefits
 - Advancing technology in a wide range of fields such as medicine, energy, material sciences, and national security

EVEN PARIT

A. N. Pham, 4/29/2016, Slide 4

Surveying the Nuclear Landscape

NSCL/FRIB on the MSU Campus

• Upgrade of NSCL to FRIB will boost beam intensities and extend the varieties of rare isotope currently produced at the laboratory

FRIB Specification

- Baseline Design of FRIB Driver Linac
 - Primary beams of stable ions up to Uranium-238
 - lons are accelerated to energies $\ge 200 \text{ MeV/u}$
 - Beam power ≤ 400 kW on production target
 - Higher beam current by simultaneously accelerating several charge states (ex. ²³⁸U⁷⁶⁺, ..., ²³⁸U⁸⁰⁺) while minimizing emittance
- Production Target and Fragment Separation System
 - Production and separation of Rare Isotope Beams (RIBs)
- Beam transport to experimental programs
 - Fast beams (~ 0.5c), Stopped beams (~ eV), Re-accelerated beams (0.3 12 MeV/u)

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

FRIB Challenges and Goals

- Robust ECR Ion Sources to deliver required beam currents
- Driver Linac accelerating all stable ions up to Uranium
- Produce beam on Production Target w/ spot size ~1 mm diameter
 - Optimized for high production yield while minimizing damage to target
- Design will allow for future upgrades to the facility for
 - Higher beam energies with extra space to add more SRF cavities
 - Light-Ion Injector and Isotope Separation On-Line (ISOL) Facility
- FRIB will push the limits of superconducting RF cavity, ECR ion source, charge stripping, and rare isotope beam (RIB) production technology

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

A. N. Pham, 4/29/2016, Slide 11

A. N. Pham. 4/29/2016. Slide 9

NSCL transition to FRIB

- Upgrade from NSCL to FRIB must minimize changes to existing experimental areas
- Allows post-production systems to be commissioned and ready before FRIB driver linac is completed

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

A. N. Pham, 4/29/2016, Slide 10

FRIB Layout and Operation

Cavity

NSCL

FRIB

FRIB SC-ECR Ion Source Parameters

	Required Charge States	Required Beam Current (puA)	Extraction Energy (keV/u)
ο	> 3	122	12
Са	> 8	51	12
Kr	> 14	50	12
Хе	> 20	24	12
Pb	> 27, 28	23	12
U	> 33, 34	16	12

Pushing the limits of current ECR ion source technology!

U.S. Department of Energy Office of Science National Science Foundation

Michigan State University

Overview of SRF Cavities

Production Phase, SRF (2015)

A. N. Pham, 4/29/2016, Slide 16

FRIB Construction **FRIB Construction** S NSCL U.S. Department of Energy Office of Science U.S. Department of Energy Office of Science FRIB S National Science Foundation Michigan State University FRIB National Science Foundation Michigan State University A. N. Pham, 4/29/2016, Slide 33 A. N. Pham, 4/29/2016, Slide 34 **ReAccelerator @ MSU NSCL ReAccelerator – Closer Look** ReA3 re-accelerates stopped/trapped ion beams to variable energies (~0.3–3 MeV/u for Uranium) It serves as a test bed for FRIB SRF technology Commissioning of ReA3 has been completed Q/A MHB RFQ CM1 EB CM2 Matching ^SO.04,1 CM3 R 10.085 U.S. Department of Energy Office of Science National Science Foundation U.S. Department of Energy Office of Science National Science Foundation S S A. N. Pham, 4/29/2016, Slide 35 Michigan State University Michigan State University A. N. Pham, 4/29/2016, Slide 36 FRIB FRIB

