Physics Review

Newtonian Mechanics

Gravitational vs. Electromagnetic forces
 Lorentz Force

Maxwell's Equations

Integral vs. Differential

Relativity (Special)

Newtonian Mechanics

 \oslash v = dx/dt @ p = mv $\oslash F = dp/dt$ \oslash dW = F ds The Simple Harmonic Oscillator + Phase Space

Simple Harmonic Motion

$$\ddot{x} = -kx \qquad \qquad \ddot{x} + kx = 0$$

$$\begin{aligned} x &= a \sin(\omega t) + b \cos(\omega t) = c \sin(\omega t + \delta) \\ \dot{x} &= c \omega \cos(\omega t + \delta) \\ \ddot{x} &= -c \omega^2 \sin(\omega t + \delta) = -\omega^2 x \end{aligned}$$

 $\omega = \sqrt{k}$

Maxwell's Equations

- Integral Form
- Ø Differential Form
- One Consequence: EM Waves
 - Speed of waves given by $c = (\mu_0 \epsilon_0)^{-1/2}$
- Another Consequence:

If μ₀, ε₀ are fundamental quantities, same in all reference frames, then so should be the speed of light!

Flux:

$$\Phi_B \equiv \oint_{surface} \vec{B} \cdot d\vec{A}$$
$$\Phi_E \equiv \oint_{surface} \vec{E} \cdot d\vec{A}$$

Maxwell's Equations:

Differential Relationships

$$\begin{split} \Phi_{E})_{closed \ surface} &= \frac{Q_{encl}}{\epsilon_{0}} \\ \Phi_{B})_{closed \ surface} &= 0 \\ \oint_{loop} \vec{B} \cdot d\vec{s} &= \mu_{0} \left(I_{enclosed} + \epsilon_{0} \left(\frac{d\Phi_{E}}{dt} \right)_{through \ loop} \right) \\ \oint_{loop} \vec{E} \cdot d\vec{s} &= -\left(\frac{d\Phi_{B}}{dt} \right)_{through \ loop} \\ \nabla \cdot \vec{E} &= \rho/\epsilon_{0} \\ \nabla \cdot \vec{B} &= 0 \\ \\ Stoke's \ Theorem: \\ \iint_{S} \nabla \times \vec{A} \cdot d\vec{S} &= \oint_{\partial S} \vec{A} \cdot d\vec{r} \\ & \nabla \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \end{split}$$

ASSE

Winter Session 2016 MJS

Wave Equation and the Speed of Propagation

Suppose in free space, no current sources...

$$\nabla \times \vec{B} = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} \qquad \qquad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

in general:
$$\nabla \times \nabla \times \vec{f} = \nabla (\nabla \cdot \vec{f}) - \nabla^2 \vec{f}$$

so,
$$\nabla \times \nabla \times \vec{B} = \nabla (\nabla \cdot \vec{B}) - \nabla^2 \vec{B} = -\nabla^2 \vec{B}$$

$$-\nabla^2 \vec{B} = \mu_0 \epsilon_0 \frac{\partial (\nabla \times \vec{E})}{\partial t} = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2}$$

thus,

$$\nabla^2 \vec{B} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2} \quad \text{and, likewise,} \quad \nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$$
Winter Session 2016 MIS

USPAS FUNDAMENTAIS

Wave Equation and the Speed of Propagation

$$\nabla^2 \vec{B} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2} \quad \text{and} \quad \nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$$

wave equation

Example: let
$$B = b\cos(\omega t - kx) = b\cos(2\pi ft - 2\pi x/\lambda)$$

$$\frac{d^{2}B}{dx^{2}} = -k^{2}B$$

$$\frac{d^{2}B}{dt^{2}} = -\omega^{2}B$$

$$\frac{d^{2}B}{dt^{2}} = -\omega^{2}B$$

$$\frac{d^{2}B}{dt^{2}} = -k^{2}B = \mu_{0}\epsilon_{0}(-\omega^{2}B)$$

$$\mu_0 \epsilon_0 = (k/\omega)^2 = 1/(\lambda f)^2 = 1/v_{wave}^2$$

$$speed = 1/\sqrt{\mu_0\epsilon_0} \equiv c$$

 $c = 1/(4\pi x 10^{-7} \times 8.8 x 10^{-12})^{1/2}$ m/s = 3.0 x 10⁸ m/s

Maxwell's Equations

- Integral Form
- Ø Differential Form
- One Consequence: EM Waves
 - \odot speed of waves given by $c = (\mu_0 \epsilon_0)^{-1/2}$
- Another Consequence:

If μ₀, ε₀ are fundamental quantities, same in all reference frames, then so should be the speed of light!

Special Relativity

The Principle of Relativity

The Laws of Physics same in all inertial reference frames

The Problem of the Velocity of Light

Simultaneity

Lengths and Clocks

[⊘] E=mc²

Differential Relationships

Simultaneity

Lengths and Clocks

Relativistic Momentum

Principal of relativity: All the laws of physics (not just Newton's laws) are the same in all inertial reference frames.

Ex:
$$F = \Delta p / \Delta t$$

The law of conservation of momentum is valid in all inertial *p* reference frames *if* the momentum of each particle (with mass *m* and speed *u*) is *re-defined* by:

$$p = \gamma m u$$

where

$$\gamma = \frac{1}{\sqrt{1 - u^2 / c^2}}$$

$E = mc^2$

The Laws of Physics, and redefining the momentum

What about Energy?

Senergy-momentum relationship

► The work done on a particle is given by

$$\Delta W = \int F \cdot ds = \int dp/dt \cdot ds = \int (ds/dt)dp = \int v \cdot dp.$$

Check: if p = mv then, starting from rest, $\Delta W = \int v dp = \int v m dv = \frac{1}{2}mv^2$.

• But, using our new definition of momentum, $p = \gamma mv$, then

$$\Delta W = \int v \, d(\gamma m v) = \int (v/c) \, m \, d(\gamma v/c) c^2 = mc^2 \int \beta d(\beta \gamma)$$

$$\gamma^2 = 1 + (\beta \gamma)^2 \longrightarrow d\gamma = \beta d(\beta \gamma)$$

So finally, our original integral becomes,

$$\Delta W = mc^2 \int eta d(eta \gamma) = mc^2 \int d\gamma = (\gamma_{final} - \gamma_{initial})mc^2$$

 The previous equation tells us that as we do work on a particle its energy will change by an amount ΔE = ΔW = Δγmc². Thus, the energy of a particle should be defined as

$$E = \gamma mc^2$$
.

• If the particle starts from rest, then $\gamma_{initial} = 1$, and its energy is $E = mc^2$. As it speeds up its kinetic energy will be

$$KE = \Delta W = (\gamma - 1)mc^2$$
, where here $\gamma \equiv \gamma_{final}$.

So we see that the energy is a combination of a "rest energy" and a "kinetic energy":

$$E = \gamma mc^2 = mc^2 + (\gamma - 1)mc^2$$
.

If no work were done $(\Delta W = 0)$, and the particle were still at rest, the particle would *still* have energy (rest energy):

$$E_0 = mc^2 \rightarrow \text{mass is energy!}$$

Speed, Momentum, vs. Energy

