SS5: Linear Transverse Particle Equations of Motion without
Space-Charge, Acceleration, and Momentum Spread
SS5A: Hill's Equation

Neglect:
*+ Space-charge effects: 9¢/0x ~ 0
+ Nonlinear applied focusing and bends: E?, B® have only
* Acceleration: 0 ~ const linear focus terms
+ Momentum spread effects: v,; =~ [pcC

Then the transverse particle equations of motion reduce to Hill's Equation:

z"(s) + k(s)z(s) =0

x = 1 particle coordinate
(i.e., z or y or possibly combinations of coordinates)
s = Axial coordinate of reference particle

_ 4
T ds

k(s) = Lattice focusing function (linear fields)

/
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For a periodic lattice:
K(s + Ly) = A(s)
L, = Lattice Period

/I Example: Hard-Edge Periodic Focusing Function

"

0 1 2 3 4 5
s/ L, |Lattice Periods] ///

For a ring (i.e., circular accelerator), one also has the “superperiod” condition:

k(s +C) = k(s)
C = N'L, = Ring Circumfrance
N = Superperiod Number

+ Distinction matters when there are (field) construction errors in the ring
- Repeat with superperiod but not lattice period
- See lectures on: Particle Resonances
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/Il Example: Period and Superperiod distinctions for errors in a ring

* Magnet with systematic defect will be felt every lattice period
X Magnet with random (fabrication) defect felt once per lap

Lattice
Period
Sector -

One Lattice Period

sk %k
Ring Lattice: 12 Periods * Triplet ) ~
(SIS-18, GSI) Quadrupoles ]VJ%‘,ndmg v
Dipoles
"
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S5B: Transfer Matrix Form of the Solution to Hill's Equation

Hill's equation is linear. The solution with initial condition:

x(s = s;) = z(s;) s = s; = Axial location

of initial condition

2'(s=s;) =2'(s;)

can be uniquely expressed in matrix form (M is the transfer matrix) as:

[ z/(zg)) } = M(s|s;) - { i/(i;z)) }
C(s]si)

=[G e |- e

Where C(s|s;)and S(s|s;) are “cosine-like” and “sine-like” principal
trajectories satisfying:

C"(s]si) + k(s)C(s]si) =0 C(si|si) =1 C'(sils;) =0
S" (s]s;) + k(s)S(s]s;) =0 S(si|si) =0 S'(sils;) =1
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Transfer matrices will be worked out in the problems for a few simple focusing
systems discussed in S2 with the additional assumption of piecewise constant K(s)

1) Drift: =0 2" =0
1 s—s;
Msts) = | 5" |

2) Continuous Focusing: k = k%o = const >0 " + kéox =0

sls.) — cos[kpo(s — ;)] % sin[kgo(s — ;)]
M(s]s:) [ —kgo sin[kgo(s — si)]  cos[kgo(s — $i)] ]

3) Solenoidal Focusing: k = k = const > 0 2" +kr=0
Results are expressed within the rotating Larmor Frame
(same as continuous focusing with reinterpretation of variables)

—Vksin[Vi(s — s;)] -

sls.) = cos[VA(s — 5)] I sin[Vi(s — 57)]
M(sls;) = [ cos[VA(s — ;)] ]
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4) Quadrupole Focusing-Plane: +k = Ak = const > 0 2 +kr =0

(Obtain from continuous focusing case)
M(s]si) = cos[Vi(s — si)] ﬁ sin[v/&(s — s1)]
’ —Visin[Vi(s — s;)]  cos[Vi(s — ;)]

5) Quadrupole DeFocusing-Plane: £ = —A = const < 0 2 —kr=0
(Obtain from quadrupole focusing case with /% — /& ¢=V—1)
M(s|s:) — cosh[v/&(s — s;)] % sinh[v/A(s — ;)]

‘ Visinh[V&(s — s;)]  cosh[V&(s — ;)]

. ]- 1 1
6) Thin Lens: x(s) = ?5(3 — S0) T+ fé(s —so)z =0

so = const = Axial Location Lens
f = const = Focal Length

d(z) = Dirac-Delta Function

Msflsg) = | Lo V]

<l
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S5C: Wronskian Symmetry of Hill's Equation

An important property of this linear motion is a Wronskian invariant/symmetry:

Cl(slsi)  S(slsi) }

W (s|s;) = det M(s]|s;) = det C'(slsi)  S'(s|si)

= C(ss:)S"(s]s;) — C'(s]s:)S(s]s;) = 1
C =C(s|s;) ete.
Multiply Equations of Motion for C and S by -S and C, respectively:
—S(C"+kC)=0
+C(8" +kS)=0
Add Equations: 0
cs" —-SsC" + /i(CS//j?C) =0
aw _ ! / _ 1" " __
Is —dS(CS ¢’'S)y=0Cc8"-5C"=0
— W = const
Apply initial conditions:
W(s)=W(s;)=C;S.—ClSi=1-1-0-0=1 1"
SM Lund, USPAS, 2015

/// Proof:  Abbreviate Notation
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/// Example: Continuous Focusing: Transfer Matrix and Wronskian
k(s) = k?ao = const >0
Principal orbit equations are simple harmonic oscillators with solution:
C(s]s;) = cos[kgo(s — si)] C'(s|si) = —kgo sin[kgo(s — si)]

S(sls;) = Sin[kﬁz(;o — 51)]

Transfer matrix gives the familiar solution:

[ x(s) ] _ l cosllao (s — 51)]

—kgo Sin[kgo(s — Sz)]

S'(s]s;) = coslkgo(s — ;)]

sin[kgo(s—s;)]
’jkzio . |: .Tl(Sl) :|
cos[kgo(s — s;)] z'(s;)

W = cos®[kgo(s — s;)] + sin®[kgo(s — si)] = 1

Wronskian invariant is elementary:

"
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S5D: Stability of Solutions to Hill's Equation in a Periodic Lattice

The transfer matrix must be the same in any period of the lattice:
M(s + Lyls; + Ly) = M(s]s:)
For a propagation distance s — s; satisfying
NL,<s—s<(N+1)L,
the transfer matrix can be resolved as
M(s|s;) = M(s — NL,|s;) - M(s; + NLy,|s;)
=M(s — NLypl|s;) - [M(s; + Lp|s;)|Y
Residual N Full Periods

N=0,1,2,-

For a lattice to have stable orbits, both x(s) and x'(s) should remain bounded on
propagation through an arbitrary number N of lattice periods. This is equivalent
to requiring that the elements of M remain bounded on propagation through any
number of lattice periods:

MN = [MNZ'J']

lim ‘MNij < oo = Stable Motion

N—oo
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Clarification of stability notion: Unstable Orbit
100

— 50 _
E 0 L,=05m
: -50 n= 0.5

K
48/m?  where k # 0
0 otherwise

2(0) = 1 mm
2(0)=0

s/ L, [Lattice Periods]|

: 1 1
Forenergetic g — ~,2 4 ~ 32 ~ Large, but # const
particle: 2 2

where |z’| small, |z| large
where |z| small, |z/| large

The matrix criterion corresponds to our intuitive notion of stability: as the
particle advances there are no large oscillation excursions in position and angle.
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To analyze the stability condition, examine the eigenvectors/eigenvalues of M for
transport through one lattice period:

M(s; + Lp|s;) - E=AE

E = Eigenvector

A = Eigenvalue

+ Eigenvectors and Eigenvalues are generally complex
+ Eigenvectors and Eigenvalues generally vary with s;
+ Two independent Eigenvalues and Eigenvectors

- Degeneracies special case

Derive the two independent eigenvectors/eigenvalues through analysis of the
characteristic equation:  Abbreviate Notation

C(Si + Lp|8i) S(Sz + Lp|8i) _ cC S
C'(si+Lplsi) S'(si+Lyls;) | — | ¢ &

Nontrivial solutions exist when:

-\ S , , )
C’ S/_/\:|:)\2—(C+S))\+(CS—SC):O

SM Lund, USPAS, 2015

M(s; + Lyp|si) = [

det {
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But we can apply the Wronskian condition:
cs' —sC'=1
and we make the notational definition

C+8 =TrM = 2cosay

The characteristic equation then reduces to:

1
A2 =2 cosop+1=0 cosog = §Tr M(s; + Ly|s;)

The use of 2 cos oy to denote Tr M is in anticipation of later results
(see S6) where o is identified as the phase-advance of a stable orbit

There are two solutions to the characteristic equation that we denote A+

Ar = cosog £ \/cos2op — 1 = cosog £ isinog = eTi7°
t=v-—1

E = Corresponding Figenvectors

Note that:  AxA_ =1
Ar=1/X_
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Consider a vector of initial conditions:

H%f) } :H]

The eigenvectors E4 span two-dimensional space. So any initial condition
vector can be expanded as:

2

|: x} :| :Oé_|_E_|_ -+ a_E_

a4+ = Complex Constants

Thenusing ME, = \,E.

o lim AN .. .
Therefore, if N oo is bounded, then the motion is stable. This will always
be the case if Ai| = |e:|:i00| < 1, corresponding to 0o real with |cosog| <1
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This implies for stability or the orbit that we must have:

1 1
3 |Trace M(s; + Lp|s;)| = §|C(sl + Lp|s;) + S'(si + Lyplsi)|

= |cosog| <1

In a periodic focusing lattice, this important stability condition places restrictions
on the lattice structure (focusing strength) that are generally interpreted in terms
of phase advance limits (see: S6).
+ Accelerator lattices almost always tuned for single particle stability to
maintain beam control
- Even for intense beams, beam centroid approximately obeys single
particle equations of motion when image charges are negligible
+Space-charge and nonlinear applied fields can further limit particle stability
- Resonances: see: Particle Resonances ....
- Envelope Instability: see: Transverse Centroid and Envelope ....
- Higher Order Instability: see: Transverse Kinetic Stability
+We will show (see: S6) that for stable orbits 0¢ can be interpreted as the
phase-advance of single particle oscillations
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/Il Example: Continuous Focusing Stability
k(s) = k3, = const > 0
Principal orbit equations are simple harmonic oscillators with solution:
C(s|s;) = cos[kgo(s — s4)] C'(s|s;) = —kgo sin[kgo(s — si)]

S(slsi) = sin[kgo(s — ;)]
)= —Fr—_ "

kgo
Stability bound then gives:

S'(s|si) = coslkgo(s — ;)]

N | =

|C(si + Lyp|si) + S (si + Lypls;)|

| cos[kgo(s —s;)]| <1

1
3 | Trace M(s; + Ly|s;)|

+ Always satisfied for real kgg
+Confirms known result using formalism: continuous focusing stable

- Energy not pumped into or out of particle orbit Jl/

The simplest example of the stability criterion applied to periodic lattices will be
given in the problem sets: Stability of a periodic thin lens lattice
+ Analytically find that lattice unstable when focusing kicks sufficiently strong
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More advanced treatments

+ See: Dragt, Lectures on Nonlinear Orbit Dynamics, AIP Conf Proc 87 (1982)
show that symplectic 2x2 transfer matrices associated with Hill's Equation have
only two possible classes of eigenvalue symmetries:

1) Stable 2) Unstable, Lattice Resonance
_'TE_
Imh, | =7y e
Re },
™ h
+ ) —IT
-io, ]x’?\.i: (]/'Yt Je

A, =1/, =e¢
h - Occurs in bands when focusing
strength is increased beyond

oo = 180°/period

Occurs for:
0 < g¢ < 180° /period

+ Limited class of possibilities simplifies analysis of focusing lattices
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Eigenvalue structure as focusing strength is increased
Weak Focusing:

+ Make ~ as small as needed (low phase advance o)
+ Always first eigenvalue case: |[A\x| =1, A =1/A_=\*
Tmi.

Weak, Stable

-
1 JReX

. /L [Latice Periods|
Stability Threshold:
+ Increase k o stability limit (phase advance oo = 180°/Period )
# Transition between fir]st fmd second eigenvalue case: A+ = —1
m - A

2 / \ Threshold
A/ \ - - - -
Al \ 1 ) R:)‘t Weak, Stable
\J o 1 2 3 4

s/ L, [Lattice Periods|

Instability:
+ Increase  beyond threshold (phase advance o9 = 180° /Period )

+ Second eigenvalue case: [Ay|#1, A =1/A_ AL both real and negative
Im), 4

Unstable

/’ \ ' o ___ Threhold o o

= bl

e o - - - -—-- -

Q 1 Red, 0 1 3 4 s
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Comments:
+ As k becomes stronger and stronger it is not necessarily the case that
instability persists. There can be (typically) narrow ranges of stability within
a mostly unstable range of parameters.
- Example: Stability/instability bands of the Matheiu equation
commonly studied in mathematical physics which is a special case of
Hills' equation.
+ Higher order regions of stability past the first instability band likely make little
sense to exploit because they require higher field strength (to generate
larger k) and generally lead to larger particle oscillations than for weaker
fields below the first stability threshold.
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S6: Hill's Equation: Floquet's Theorem and the
Phase-Amplitude Form of the Particle Orbit
S6A: Introduction

In this section we consider Hill's Equation:

2" (s) + k(s)z(s) =0

subject to a periodic applied focusing function

k(s + Lp) = K(s)
L, = Lattice Period

+ Many results will also hold in more complicated form for a non-periodic K(s)
- Results less clean in this case
(initial conditions not removable to same degree as periodic case)
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S6B: Floquet's Theorem

Floquet's Theorem (proof: see standard Mathematics and Mathematical Physics Texts)

The solution to Hill's Equation x(s) has two linearly independent solutions that

can be expressed as: i =1
— s 1
z1(s) = w(s)e _ W= §Tr M(s; + Ly|s;) = cosog
x2(s) = w(s)e™*H*

= const = Characteristic Exponent
Where w(s) is a periodic function:

w(s + L) = w(s)

+ Theorem as written only applies for M with non-degenerate eigenvalues. But
a similar theorem applies in the degenerate case.
+ A similar theorem is also valid for non-periodic focusing functions
- Expression not as simple but has analogous form
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S6C: Phase-Amplitude Form of Particle Orbit

As a consequence of Floquet's Theorem, any (stable or unstable) nondegenerate
solution to Hill's Equation can be expressed in phase-amplitude form as:

x(s) = A(s) cosp(s)
A(s + Lp) = A(s)

A(s) = Real-Valued Amplitude Function
1(s) = Real-Valued Phase Function

Derive equations of motion for A, ) by taking derivatives of the
phase-amplitude form for x(s):

x = Acosy
' = A’ cosp — A’ sinyp
x = A" costp — 24" sinp — Ay’ sinep — A% cosp

then substitute in Hill's Equation:

2’ + Kz = [A" + kA — AY*?] cosyp — [2A"Y + Ay"]siny =0
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2’ + kx = [A" + kA — AY?] cosy — [2A"Y + Ay"]siny =0

We are free to introduce an additional constraint between A and ):
+ Two functions A, % to represent one function x allows a constraint
Choose:

Eq. (1) 247 + Ay =0 —  Coefficient of sin1) zero

Then to satisfy Hill's Equation for all ¢, the coefficient of cos ) must also
vanish giving:

Eq.2) | A" 4 kA—AY? =0 = Coeflicient of cos zero
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Eq. (1) Analysis (coefficient of sin ):
Simplify:

24 + Ay =0

( A2 w/) Assume for moment:

/
2A11/JI+A1/J”:T:0 A#O

, Will show later

- (AQQ//) =0 that this assumption

Integrate once: met for all s

A%’ = const

One commonly rescales the amplitude A(s) in terms of an auxiliary amplitude
function w(s):

A(s) = Ajw(s)

A; = const = Initial Amplitude

such that
wi =1
This equation can then be integrated to obtain the phase-function of the particle:

(s) = i+ / wffs)
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1); = const = Initial Phase
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Eq. (2) Analysis (coefficient of costp ): A" + kA — A¢’2 =0

With the choice of amplitude rescaling, A = A;w and w2¢’ =1, Eq.(2)
becomes:

w”—i—mu——SZO
w

Floquet's theorem tells us that we are free to restrict w to be a periodic solution:

w(s + L) = w(s)

Reduced Expressions for x and x":
Using A = A;w and w?’ = 1.
= Acosvy
' = A’ costp — Ay’ sintp

= A;wcosy

A, .
2 = A;w cosp — —sine
w
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S6D: Summary: Phase-Amplitude Form of Solution to Hill's Eqn

x(s) = A;w(s) cos(s)

A .
x'(s) = A;w'(s) cos(s) — W;) sin 9 (s)
where w(s) and ¥ (S) are amplitude- and phase-functions satisfying:

Amplitude Equations Phase Equations

" 1 _ /S :;
w (s)+fi(s)w(8)—w3—(8)—0 Y'(s) () .

Y(s) =i + /sz w2—(§)
Y(s) = Pi + Ap(s)

A; = const = Initial
Amplitude
1; = const = Initial Phase

w(s + Ly) = u(s)
w(s) >0

Initial ( 8 = S; ) amplitudes are constrained by the particle initial conditions as:
x(s = s:) = As;wi cos s

i
or 2/ (s = s;) = Ajw} cosh; — e sin 1;

Ajcostp; = x(s = s;) /w;
A;siny; = x(s

w; = w(s = s;)

siw; — ' (s = s;)w;

=uw'(s=s;)
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S6E: Points on the Phase-Amplitude Formulation
1) w(s) can be taken as positive definite
w(s) >0
//] Proof: Sign choices in w:
Let w(s) be positive at some point. Then the equation:

w”—l—mu——S:O
w

Insures that w can never vanish or change sign. This follows because whenever w
becomes small, w'” ~ 1 / w? > 0 can become arbitrarily large to turn w before
it reaches zero. Thus, to fix phases, we conveniently require that w > 0. )

*Proof verifies assumption made in analysis that A = A;w # 0

+Conversely, one could choose w negative and it would always remain negative
for analogous reasons. This choice is not commonly made.

+ Sign choice removes ambiguity in relating initial conditions z(s; ), x’ (s3)

to A,
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2) w(s) is a unique periodic function
+ Can be proved using a connection between w and the principal orbit functions
C and S (see: Appendix A and S7)
+ w(s) can be regarded as a special, periodic function describing the lattice
focusing function £(s)

3) The amplitude parameters
w; = w(s = s;)
w; = w'(s;)
depend only on the periodic lattice properties and are independent of the particle

initial conditions x(s;), x'(s;)

4) The change in phase

5 ds
Ny
Si wz(s)
depends on the choice of initial condition s,.
through one lattice period

AY(s; + L) = /

s wi(3)

However, the phase-advance

sithe dg
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is independent of S; since w is a periodic function with period L,,
+ Will show that (see later in this section)
AY(s; + Lyp) = 0

is the undepressed phase advance of particle oscillations

5) w(s) has dimensions [[w]] = Sqrt[meters]
+ Can prove inconvenient in applications and motivates the use of an alternative
“betatron” function 3
Bls) = w(s)

with dimension [[£]] = meters (see: S7 and S8)

6) On the surface, what we have done: Transform the linear Hill's Equation to a
form where a solution to nonlinear axillary equations for w and 1) are needed via
the phase-amplitude method seems insane ..... why do it?
+ Method will help identify the useful Courant-Snyder invariant which will
aid interpretation of the dynamics (see: S7)
+ Decoupling of initial conditions in the phase-amplitude method will help
simplify understanding of bundles of particles in the distribution
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S6F: Relation between Principal Orbit Functions and
Phase-Amplitude Form Orbit Functions

The transfer matrix M of the particle orbit can be expressed in terms of the
principal orbit functions C and S as (see: S4):

0 | et [ 260 = LGRS ] )

Use of the phase-amplitude forms and some algebra identifies (see problem sets):

C(s|si) = ws) cos A(s) — wiw(s) sin Ap(s)

w;

S(slsi) = wiw(s)sin Adk(s)
€'t = (8 = 2 ) cos (o) = (i wlul (o)) sin A)

w; w(s)

S'(s]s;) = % cos AY(s) + w;w'(s) sin Avp(s)

AY(s) =

/s ds w; =w(s=5;)

w2(3) wi =w'(s = s;)
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/Il Aside: Alternatively, it can be shown (see: Appendix A) that w(s) can be
related to the principal orbit functions calculated over one Lattice period by:

S(slsi)
S(Si + Lp|8i)

S(s; + Lypls;) L, cosag — C(s]si)
P e [ TG L

sithe ds
opg = _—
’ / w?(3)

i

w?(s) = B(s) =sinoy

S(s]s:)

The formula for o in terms of principal orbit functions is useful:
+ 0¢ (phase advance, see: S6G) is often specified for the lattice and the
focusing function k(s) is tuned to achieve the specified value
+ Shows that w(s) can be constructed from two principal orbit integrations over
one lattice period
- Integrations must generally be done numerically for C and S
- No root finding required for initial conditions to construct periodic w(s)
- S; can be anywhere in the lattice period and w(s) will be independent
of the specific choice of s;
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+ The form of w?(s) suggests an underlying Courant-Snyder Invariant
(see: S7 and Appendix A)
s’ = (3 can be applied to calculate max beam particle excursions in the
absence of space-charge effects (see: S8)
- Useful in machine design

- Exploits Courant-Snyder Invariant
"
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S6G: Undepressed Particle Phase Advance

We can now concretely connect 00 for a stable orbit to the change in particle
oscillation phase A1) through one lattice period:

From S5D:

1
cos g = §Tr M(s; + Lp|s;)

Apply the principal orbit representation of M
Tr M(Sl + Lp|82) = C’(SZ + Lp|81) + Sl(Sl + LP|SZ')
and use the phase-amplitude identifications of C and S' calculated in S6F:

1 1 (w(s; + Ly) w;
2Tr M(s; + Lyp|s;) = 3 ( " Wit Lp)) cos AY(s; + Ly)

1
+ 3 (wiw'(s; + Lp) — wiw(s; + Lp)) sin AY(s; + L)
By periodicity:
w(s; +Lp) =w(s;) = w;

w'(s; + L) = w'(s;) = wj

coefficient of cos Ay =1
coefficient of sin Ay =0
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Applying these results gives:

1
cosog = cos AY(s; + Lp) = §Tr M(s; + Lyp|s;)

Thus, 09 is identified as the phase advance of a stable particle orbit through one
lattice period:

sitle (g

i

+ Again verifies that 0 is independent of S; since w(s) is periodic with period
Ly
+ The stability criterion (see: S5)
1
§|Tr M(s; + Lp|s;)| = | cosop| <1

is concretely connected to the particle phase advance through one lattice
period providing a useful physical interpretation

Consequence:

Any periodic lattice with undepressed phase advance satisfying
oo < m/period = 180° /period

will have stable single particle orbits.

Discussion:

The phase advance 00 is an extremely useful dimensionless measure to
characterize the focusing strength of a periodic lattice. Much of conventional
accelerator physics centers on focusing strength and the suppression of resonance
effects. The phase advance is a natural parameter to employ in many situations to
allow ready interpretation of results in a generalizable manner.

We present phase advance formulas for several simple classes of lattices to help
build intuition on focusing strength:

1) Continuous Focusing

2) Periodic Solenoidal Focusing

3) Periodic Quadrupole Doublet Focusing
- FODO Quadrupole Limit

+ Lattices analyzed as “hard-edge” with piecewise-constant x(s)
and lattice period L,,
+ Results are summarized only with derivations guided in the problem sets.
4) Thin Lens Limits
- Useful for analysis of scaling properties

Several of these
will be derived
in the problem sets
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1) Continuous Focusing Rescaled Principal Orbit Evolution:
“Lattice period” L, is an arbitrary length for phase accumulation L. =05m Cosine-Like Sine-Like
: P I: z(0) =1mm 2: 2(0) = 0 mm
( ) — k2 — t>0 Parameters: o0 = 7r/3 = 60° , ,
k\§) = Ko = cons z'(0) = 0 mrad z'(0) = 1 mrad

L, = Lattice Period
k,%’o = Strength

A 2 1
to ()] (e = Ky = kﬂo = const)§ 2
| | o
s
e L, -
Lattice Period
Apply phase advance formulas: 1
w =
1 /
w” + ]{%OU} -3 = 0 —— kﬂo
v sitle gg
opg = — =k OL
og = kﬂOLp \/Svl 2 16 P

+ Always stable
- Energy cannot pump into or out of particle orbit
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kgo = (7/6) rad/m

3 4 5 6

2
s/ L, [Lattice Periods]

=
8
=
= |
0 1 2 3 4 5 6
s/ L, [Lattice Periods]
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Phase-Space Evolution (see also S7):
* Phase-space ellipse stationary and aligned along x, x' axes
for continuous focusing

1

’Y:E
w = 4/1/kgo = const

a=—ww =0

= kpo = const

w' =0
B =w? =1/kgo = const

kgox® + 2% /kgo = € = const

' A
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2) Periodic Solenoidal Focusing

Results are interpreted in the rotating Larmor frame (see S2 and Appendix A)

Parameters:
Kal$)] | (2 = 1) L L, = Lattice Period
n € (0,1] = Occupancy
k = Strength
: : R IC Characteristics:
/2 £ bdj2 i df2t d=(1-n)l, nL, = Optic Length
L £=nL, _ .
Lattice ;eriod (1 - 77)Lp - DI‘lft Length
Calculation gives:
1—
cosog = cos(20) — — 77@sin(26) o= g\/ELp

+Can be unstable when A becomes large
- Energy can pump into or out of particle orbit
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Rescaled Larmor-Frame Principal Orbit Evolution Solenoid Focusing:
Cosine-Like Sine-Like

Ly=05m L, L @(0)=1mm 2:2(0) =0 mm
g0 = 7(;/53 = 60° (k = 8.558 m™") #'(0) =0mrad #'(0) =1 mrad
n=0. . . .

s/ L, |Lattice Periods]

+ Principal orbits in §j — §j phase-space are identical
SM Lund, USPAS, 2015
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Phase-Space Evolution in the Larmor frame (see also: S7):
+ Phase-Space ellipse rotates and evolves in periodic lattice
j — ¢ phase-space properties same as in 7 — 7’
- Phase-space structure in x-x', y-y' phase space is complicated

&% — 20dd + B = ¢ = const

0.0 0.2 0.4 0.6 0.8 1.0

s/L, [Lattice Periods|

N P S

€ = const x O‘ T W T Pf T
Horizontal Diverging Upright Converging  Horizontal
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Comments on periodic solenoid results:
+ Larmor frame analysis greatly simplifies results
- 4D coupled orbit in x-x', y-y' phase-space will be much more
intricate in structure
+ Phase-Space ellipse rotates and evolves in periodic lattice
+ Periodic structure of lattice changes orbits from simple harmonic
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3) Periodic Quadrupole Doublet Focusing

Kx(s)‘l (K, =-%,) A Parameters:
K- L, = Lattice Period

di L2, 4 n € (0,1] = Occupancy
F Quad = « € [0,1] = Syncopation
- D Quad / = Strength
anlz

LI Characteristics:
L, dy=a(l-n)L, nL,/2 =F/D Len
Lattice Period dy= (1*@)(1*1’])1? a(l — n)Lp = Drift Len dl

(1 -a)(1 —mn)L, = Drift Len d

Calculation gives:

1—
cos og = cos © cosh © + —n@(cos © sinh © — sin O cosh ©)
n

_ N s
(17 O =3 VIALy
—2a(l — a)~——5—6%sinOsinh ©
n
+ Can be unstable when A becomes large
- Energy can pump into or out of particle orbit
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Comments on Parameters:

+ The “syncopation” parameter < measures how close the Focusing (F) and
DeFocusing (D) quadrupoles are to each other in the lattice

d2:(1_77)Lp
a=1 — di=(1-nL, d2=0

The range o € [1/2,1] can be mapped to @ € [0, 1/2]
by simply relabeling quantities. Therefore, we can take:

a=0 = d; =0
a € [0,1]

aef0,1/2]

* The special case of a doublet lattice with &« = 1/2 corresponds to equal drift
lengths between the F and D quadrupoles and is called a FODO lattice

a=1/2 — di=do=d=(1-n)L,/2

Phase advance constraint will be derived for FODO case in

problems (algebra much simpler than doublet case)
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Special Case Doublet Focusing: Periodic Quadrupole FODO Lattice
Parameters: Characteristics:

L, = Lattice Period nL,/2 ={=F/D Len
1 € (0,1] = Occupancy (1 —n)L,/2 = d = Drift Len
k = Strength

Kz (s) | (ke = _”y) 777777777777777777 | o )
d 14 d
F Quad - »]
- D Quad s
¢
B ,,,,,,,,J} ,,,,,,,,,,, _’,{ e
Ly d=(1—n)L,/2
Lattice Period i
0=mnL,/2

Phase advance formula reduces to:

1—
cos oy = cos O cosh© + Tn@(cos © sinh © — sin O cosh ©)

1— 2

— (777)@2 sin © sinh ©
27?2

+ Analysis shows FODO provides stronger focus for same integrated field

gradients than doublet due to symmetry
SM Lund, USPAS, 2015
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Rescaled Principal Orbit Evolution FODO Quadrupole:
L,=05m Cosine-Like Sine-Like

oo =7/3=60° (k = 39.24m~2)l: #(0) =1mm 2: 2(0) =0 mm
n =05 2’'(0) =0mrad 2'(0) =1 mrad

3¢ : . . . .

1 2

s/ L, [Lattice Periods]

s/ L, |Lattice Periods]
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Phase-Space Evolution (see also: S7):

ya? — 2oz’ + fr'? = € = const

[}
; ,
S 06 1 1 -
]
p— 1 1 1
\E:“ 0.2 e I E
— E 1 1 1
— 00— 1 —_—t " 1 —
Il 1 1 1
-0.2 1 1 1 1 I e——— —— |
R 0.0 02 ! 04 | 06 o8 10
- 15 L ' L
1 1 1
S 10 1 1
S __ 05 : | |
I =5 00k c - m e e e ¥ e b oS- —— -]
I -os | :
— | 1
g 10 1 1
-15 : '
T 06 108 10

s/ L, [Lattice Periods]: i

S

1
1
1
1
0.0 02 1 0.4
1
1
1
1
1

Area
€ = const &‘ * z £ z z
Diverging Horizontal ~ Converging Upright Diverging
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Comments on periodic FODO quadrupole results:

+ Phase-Space ellipse rotates and evolves in periodic lattice

- Evolution more intricate for Alternating Gradient (AG) focusing
than for solenoidal focusing in the Larmor frame
+ Harmonic content of orbits larger for AG focusing than
solenodial focusing

+ Orbit and phase space evolution analogous in y-y' plane

- Simply related by an shift in s of the lattice
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Contrast of Principal Orbits for different focusing:
+ Use previous examples with “equivalent” focusing strength oy = 60°
+ Note that periodic focusing adds harmonic structure

1) Continuous Focusing

10

= os 2

g o

2w >i\ -

1.0 —
o 1

Simple Harmonic Oscillator

2 3 4 5 6
s/ T, [Lattice Periods]

2) Periodic Solenoidal Focusing (Larmor Frame)
— 0sp S 2 1

Simple harmonic oscillations

g oo T . . .

g -os ] modified with additional
— -10 K . . .
g -15 _ — — — — harmonics due to periodic

W= e e — =
0 1 3 4 5 6 focus

2
s/ L, [Lattice Periods]
3) Periodic FODO Quadrupole Doublet Focusing

Simple harmonic oscillations
more strongly modified due
to periodic AG focus

2 3 4 5
s/L, |Lattice Periods|
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4) Thin Lens Limits
Convenient to simply understand analytic scaling

ks (8) = %5(3 — S0)

sop = Optic Location = const
f = focal length = const

Transfer Matrix:

()=t G

0

Graphical Interpretation:

X
Thin Lens

e
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The thin lens limit of “thick” hard-edge solenoid and quadrupole focusing lattices
presented can be obtained by taking:

Solenoids: k= 1 then take lim
nfLy n—0
2 .
adrupoles: A= —— then take lim
Qu up n f Lp n—0
This obtains when applied in the previous formulas:
- %%, thin-lens periodic solenoid
cosog = LN\2 '
1-— %(1 —a) (7”) , thln—llens quadrupole doublet

These formulas can also be derived directly from the drift and thin lens transfer
matrices as

Periodic Solenoid
1 1L

cosog = =Tr {1 LP} { 11 O} =1---2
2 !

0 1]|-7 1
R e )
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Periodic Quadrupole Doublet

1 1
cosoy = §Tr {_l (1)} B ozfp} {
f

SM Lund, USPAS, 2015

= =

Expanded phase advance formulas (thin lens type limit and similar) can be useful
in system design studies

+Desirable to derive simple formulas relating magnet parameters to o
- Clear analytic scaling trends clarify design trade-offs
+For hard edge periodic lattices, expand formula for cos g to leading order

in © = /|&nL,/2

/I Example: Periodic Quadrupole Doublet Focusing:
Expand previous phase advance formula for syncopated quadrupole doublet to

obtain:
I%LQ 2 9 1 2
cosoozl—(n:Tp) (1—§n) —4<a—§> (1—mn)?
where:
i Magnetic Quadrupoles N
k= B(l; 8 ) < P G = Hard-Edge
FoelBo)’ Electric Quadrupoles Ficld Gradient
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Using these results, plot the Field Gradient and Integrated Gradient for
quadrupole doublet focusing needed for o9 = 80° per lattice period

Gradient ~ |,%|L}27 ~ G
n|&|L2/2 ~ GU
oo = 80° /(Lattice Period) Quadrupole Doublet

Integrated Gradient ~

" e

\\ a=0,2.1,02 03 04, 0.5 ©

50. 2
< N
) = 40 E
- :'S ol
o 30, & <
= =i
B 20 7
[&] 4«—!' o

10. g,,

g

=}

g 0.2 0.4 0.6 08 1. 24 02 0.4 0.6 0.8 1.

7, Oceupaney [1] 7, Oceupancy [1]

+Exact (non-expanded) solutions plotted dashed (almost overlay)

+ Gradient and integrated gradient required depend only weakly on syncopation
factor o when « is near or larger than Y2

+ Stronger gradient required for low occupancy 7 but integrated gradient varies
comparatively less with 77 except for small & i
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Appendix A: Calculation of w(s) from Principal Orbit Functions
Evaluate principal orbit expressions of the transfer matrix through one lattice
period using

w(s; + Lp) = w;

w'(s; + L) = w;
and

sitle (s
Atp(si + Lyp) Z/ w2s) O

to obtain (see principal orbit formulas expressed in phase-amplitude form):
C(si + Lyp|s;) = cosog — w;w, sinog

S(si + Lp|si) = wf sin o

1 .
C'(s; + Lyplsi) = — (F + wzw;> sin o

S'(s; + Lp|si) = cosog + w;w) sinog

Al
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Giving:

S(si + Lylsi) Apply C(slsi) Eqn.

sin gg

w; = cosg0 — Clsi £ Lylsi) Apply S(s[s;) Eqn.

\/S(Si + Lp|5i) sin o 4+ w; Result Above

w; =

Or in terms of the betatron formulation (see: S7 and S8) with

8 =w? B =2uwu

S(si + Ly|s;)

g2 = 2 T Rl

fi = w; sin og

3 = 2w = 2[cos g — C(8; + Lp|si)]
¢ B sin o

Next, calculate w from the principal orbit expression in phase-amplitude form:

S .
= sin Ay
w;w

’ S = S(s|s;) ete.
w; w;
—(C 4+ =5 =cos Ay
w w A2
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Square and add equations:

S \?2 w,C  wiS 2
+(—+—2=) =1
w; W w w

+ This result reflects the structure of the underlying Courant-Snyder invariant
(see: S7)

Gives: 9
2 S 7 2
w=—] 4+ (w,C+wS)
w;
Use w;, w; previously identified and write out result:

52 (s]s:)
S(si+ Lyplsi)

4 Stei ¥ Lylsi) {C(5|5i) +
S oo

w?(s) = B(s) = sinoy

2

cosog — C(s; + Lp|s;) S(s|s:)

S(si+ Lyp|si)

+ Formula shows that for a given o (used to specify lattice focusing strength),
w(s) is given by two linear principal orbits calculated over one lattice period
- Easy to apply numerically
A3
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An alternative way to calculate w(s) is as follows. 1% apply the phase-amplitude
formulas for the principal orbit functions with:
Si — 8

s—s+ 1L,
C(s+ Ly|s) = cosop — w(s)w'(s) sin o

S(s+ Lyls) = w?(s)sinag

(54 Lyls) _ Mia(s + Lyls)

sin o sin o

WP (s) = ls) = 2

*» Formula requires calculation of S(s + Ly|s) at every value of s within
lattice period

* Previous formula requires one calculation of C'(s|s;), S(s|s;)
for s; < s < s; + Ly, and any value of s;

A4
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Matrix algebra can be applied to simplify this result:

} } \ -

\

w

: s Sz'+LP 3+Lp
M(s + Lpls) = M(s + Lp|si + Ly) - M(s; + Ly|s)
M(s|s;) - M(s; + Lyp|s) - [M(s]s;) - M~ (s]s;)]

M(s]s;) - M(s; + Lp|s;) - M~ (s]s;)

M(s + Lp|s) = M(s|s;) - Mi(s; + Ly|s:) - M~ (s]s:)

+ Using this result with the previous formula allows the transfer matrix to be
calculated only once per period from any initial condition

+ Using: cA()iIZIIi};ixl:onSkian
¢ S 1 S’ -5 :
M:(C' 5’) M :<—C’ C > det M =1

The matrix formula can be shown to the equivalent to the previous one

+ Methodology applied in: Lund, Chilton, and Lee, PRSTAB 9 064201 (2006)

to construct a fail-safe iterative matched envelope including space-charge A5

SM Lund, USPAS, 2015 Transverse Particle Dynamics 219

S7: Hill's Equation: The Courant-Snyder Invariant and
Single Particle Emittance
S7A: Introduction

Constants of the motion can simplify the interpretation of dynamics in physics
+ Desirable to identify constants of motion for Hill's equation for improved
understanding of focusing in accelerators
+ Constants of the motion are not immediately obvious for Hill's Equation due
to s-varying focusing forces related to %(s) can add and remove energy from
the particle
- Wronskian symmetry is one useful symmetry
- Are there other symmetries?
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/Il NMustrative Example: Continuous Focusing/Simple Harmonic Oscillator

Equation of motion:

2
z’ + kgoz =0 k%o = const > 0
Constant of motion is the well-know Hamiltonian/Energy:
1 1
H= 53:'2 + 5]6%0562 = const

which shows that the particle moves on an ellipse in x-x' phase-space with:
+ Location of particle on ellipse set by initial conditions
+ All initial conditions with same energy/H give same ellipse

Max/Minfz] & 2’ =0 7 T
Max/Min[z] = +/2H/k3, -/
\

Max/Min[z'] & z =0 " S
Max/Min[z] = £v2H T~ /

Question:
For Hill's equation:
2"+ k(s)z =0
does a quadratic invariant exist that can aid interpretation of the dynamics?

Answer we will find:
Yes, the Courant-Snyder invariant

Comments:
+ Very important in accelerator physics
- Helps interpretation of linear dynamics
+ Named in honor of Courant and Snyder who popularized it's use in
Accelerator physics while co-discovering alternating gradient (AG) focusing
in a single seminal (and very elegant) paper:

Courant and Snyder, Theory of the Alternating Gradient Synchrotron,
Annals of Physics 3, 1 (1958).

- Christofolos also understood AG focusing in the same period using a

Ve more heuristic analysis
/I + Easily derived using phase-amplitude form of orbit solution
- Can be much harder using other methods
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S7B: Derivation of Courant-Snyder Invariant

The phase amplitude method described in S6 makes identification of the invariant
elementary. Use the phase amplitude form of the orbit:

z(s) = Aw(s) cosp(s) As, Y = Y(sg)
A, set by initial
z'(s) = Ajw'(s) cos¢(s) — w(s) sinv(s) at s =s;
where 1
w” + k(s)w — 5= 0

Re-arrange the phase-amplitude trajectory equations:
x
— = A;cosv
w

wr’ —w'x = A;siny
square and add the equations to obtain the Courant-Snyder invariant:

Comments on the Courant-Snyder Invariant:
+ Simplifies interpretation of dynamics (will show how shortly)
+Extensively used in accelerator physics
+ Quadratic structure in x-x' defines a rotated ellipse in x-x' phase space.
+Because 5 (T , ,

w (—) =wr —we
w .
the Courant-Snvder invariant can he alternatively expressed as:

z\2 A 2
( — ) + |w ( — ) = const
w w
+ Cannot be interpreted as a conserved energy!

The point that the Courant-Snyder invariant is not a conserved energy should be
elaborated on. The equation of motion:

2"+ k(s)z =0

22 ) L ) ) ) Is derivable from the Hamiltonian d OH
() + (wa' = w'a)? = A}(cos? Y +sin? ) 1, 1 s’ o " "
5 H:—:C/2+_/€x2 e d 8H - T +I§Jl':0
= A; = const 2 2 Sy = — gk
ds Ox
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H is the energy: T lm’Q — Kinetic ”Energy” /1l Aside: Only for the special case of continuous focusing (i.e., a simple
1 1 y Harmonic oscillator) are the Courant-Snyder invariant and energy simply related:
H= 2"+ -ka*=T+V 1 5 . i i 2
2 2 V= §mc = Potential ”Energy” Continuous Focusing:  £(s) = k3o = const
. . _ . 1 1
Apply the chain-Rule with H = H(x,x';s): — = §m/2 + 5’“;05’72 — const
dH OH OHdx OH dx’ ) 1
- = - = - P "
ds  9s Oz ds 0x' ds wequation:  w” + kgow — 25—V
Apply the equation of motion in Hamiltonian form:
d oOH d , 0H = w=,/-— = const
=" ==
ds ox! 0 ds Oz 70 )
Courant-Snyder Invariant: (E) + (wz" —w’ a:)2 = const
dH O0H dx'dx dxdx’ OH 1 w
= = _ =/ = =_k'2240 x ?
ds 0s dd ds = ds/ds Js 2

= | H # const

+ Energy of a “kicked” oscillator with k(s) # const is not conserved
+ Energy should not be confused with the Courant-Snyder invariant
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2
= (—) + (wz’ — w'z)? = kgoz® + -
kgo

w
2 1 /2 1 2 .2
== (a2 4k
kw <2.T + B 80T

= —— = const
kgo 1
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Interpret the Courant-Snyder invariant:

2
(£> + (wz' —w'z)* = A? = const
w

by expanding and isolating terms quadratic terms in x-x' phase-space variables:
1
[—2 + w’2] 22 4 2[—ww']zz’ + [w?]z"? = A? = const
w
The three coefficients in [...] are functions of w and w' only and therefore are

Sfunctions of the lattice only (not particle initial conditions). They are commonly
called “Twiss Parameters” and are expressed denoted as:

yx? + 20xx’ + fa’? = A? = const

1+a?(s)

V8 =1+a
Bls) = w(s)

a(s) = —w(s)w'(s)

+ All Twiss “parameters” are specified by w(s)

+ Given w and w' at a point (s) any 2 Twiss parameters give the 3rd
SM Lund, USPAS, 2015
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The area of the invariant ellipse is:
+ Analytic geometry formulas: yz2 + 2aza’ + fz'? = 7 A2 — Area = A2/\/v8 — a2
+ For Courant-Snyder ellipse: 78 = 1 + o?

A2
Phase-Space Area = / R =7A? = 7e

- 7
ellipse 1/ ’Yﬁ —a?

Where € is the single-particle emittance:
+ Emittance is the area of the orbit in x-x' phase-space divided by ™

[1/w? + w?|2? + 2[—ww'|zz’ + [w?]z? = € S’l?/pef —elp

yr? + 20z’ + Bx’? = € = const

See problem sets
for critical point
calculation Negative Quadrant
Critical Points Symmetrical
SM Lund, USPAS, 2015 ) 28

/Il Aside on Notation: Twiss Parameters and Emittance Units:

Twiss Parameters:
Use of &, 3, 7 should not create confusion with kinematic relativistic factors

+ By, Vb are absorbed in the focusing function

+ Contextual use of notation unfortunate reality .... not enough symbols!

+ Notation originally due to Courant and Snyder, not Twiss, and might be more

appropriately called “Courant-Snyder functions” or “lattice functions.”

Emittance Units:
x has dimensions of length and X' is a dimensionless angle. So x-x' phase-space
area has dimensions [[ € ]] =length. A common choice of units is millimeters
(mm) and milliradians (mrad), e.g.,

€ = 10 mm-mrad

The definition of the emittance employed is not unique and different workers use
a wide variety of symbols. Some common notational choices:

TE — € €—¢ e—FE

Write the emittance values in units witha 7, e.g.,

e = 10.5 m — mm-mrad (seems falling out of favor but still common)

Use caution! Understand conventions being used before applying results! I/
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Properties of Courant-Snyder Invariant:

+ The ellipse will rotate and change shape as the particle advances through the
focusing lattice, but the instantaneous area of the ellipse ( me = const )
remains constant.

+ The location of the particle on the ellipse and the size (area) of the ellipse
depends on the initial conditions of the particle.

+ The orientation of the ellipse is independent of the particle initial conditions.
All particles move on nested ellipses.

+ Quadratic in the x-x' phase-space coordinates, but is not the transverse particle
energy (which is not conserved).
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S7C: Lattice Maps

The Courant-Snyder invariant helps us understand the phase-space evolution of
the particles. Knowing how the ellipse transforms (twists and rotates without
changing area) is equivalent to knowing the dynamics of a bundle of particles.
To see this:

General s:

ya? + 20z’ + Ba’? =€

Initial s = s; Bi = B(s = s3) r; = (s = 5;)
P ol (e a.
vzt 4 20zl + Bl = ¢ a=a(s=s) 2;=2(s=si)

Yi = 7(3 =38

Apply the components of the transport matrix:

(2] weina- [ 3] = [ &0 50 )% ]

2

Invert 2x2 matrix and apply det M = 1 (Wronskian):
x; S’ ) x
= |: xz ] = |: —c' C :| . |: 2 :| C= C(S|Sl), etc.
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Insert expansion for z;, a/, in the initial ellipse expression, collect factors of x*2,
xx', and x'*2, and equate to general s ellipse expression:

(S — 20,;5'C" + 3;C"]2®
+2[—:SS + i (CS' + SC') — B;,CC"xa’
+[7:8? — 20,8C + 3;C?)z"
= va? + 2azx’ + pa’?

Collect coefficients of x°, xx', and x” and summarize in matrix form:

][5 % %o ] 13
5171 e

I} S? —-2C'S Cc?
This result can be applied to illustrate how a bundle of particles will evolve from
an initial location in the lattice subject to the linear focusing optics in the machine
using only principal orbits C, S, C', and S'
+ Principal orbits will generally need to be calculated numerically
- Intuition can be built up using simple analytical results (hard edge etc)
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/Il Example: Ellipse Evolution in a simple kicked focusing lattice

Y=
Drift: [ g/ g/ } = { 1 i_si } a=—v(s—si)+a;
0 B =7i(s — 8:1)* = 20i(s — 8;) + fs

Thin Lens: c s 1 0 v ="+ 20/f + Bi/ f*
focal length f [ c s } N { -1/f 1 } Zi;ﬁi/f+ai

Focus

Drift /\ Drift
U )
x' x' x' x'

RN . 7
. x -

Diverging Converging

Upright Ellipse Diverging

(Beam Waist)

For further examples of phase-space ellipse evolutions in standard lattices,

see previous examples given in: S6G m
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S8: Hill's Equation: The Betatron Formulation of the Particle
Orbit and Maximum Orbit Excursions S8A: Formulation

The phase-amplitude form of the particle orbit analyzed in S6 of
z(s) = Ayw(s) cosh(s) = vew(s) cos(s)

is not a unique choice. Here, w has dimensions sqrt(meters), which can render it
inconvenient in applications. Due to this and the utility of the Twiss parameters
used in describing orientation of the phase-space ellipse associated with the
Courant-Snyder invariant (see: S7) on which the particle moves, it is convenient
to define an alternative, Betatron representation of the orbit with:

z(s) = Ve/B(s) cos1h(s)

[[w]] = (meters)!/?

Betatron function: B(s) = wQ(s)
Single-Particle Emittance: ¢ = A? = const
5 ds
Phase: W(s) = + — = + Ay(s)

* The betatron function is a Twiss “parameter” with dimension [[ 3 1] = meters
SM Lund, USPAS, 2015
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Comments:
+ Use of the symbol (3 for the betatron function does not result in confusion
with relativistic factors such as (3}, since the context of use will make clear
- Relativistic factors often absorbed in lattice focusing function
and do not directly appear in the dynamical descriptions
+ The change in phase At is the same for both formulations:

S ds % ds
A‘”“S)—/m—@ = . 5®

From the equation for w:

w”(s) + k(s)w(s) — =0

w(s + L) = w(s)

the betatron function is described by:

1

SB()8"(5) -

B(s+ Lyp) = B(s)

1 /2 2 —
Zﬁ (s)+k(s)B°(s) =1

B(s) >0

+ The betatron function represents, analogously to the w-function, a special
function defined by the periodic lattice. Similar to w(s) it is a unique function
of the lattice.

+ The equation is still nonlinear but we can apply our previous analysis of w(s)
(see S6 Appendix A) to solve analytically in terms of the principle orbits
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S8B: Maximum Orbit Excursions From: . 1
: : w”(s) + r(s)w(s) — ——= =0
From the orbit equation w(s)
x = /€ cosp w(s+ Ly) = w(s) w(s) >0

the maximum and minimum possible particle excursions occur where:

costh =+1 — Max[z] = /ef(s) = Vew(s)
costp = —1 — Min[z] = —y/ef(s) = —Vew(s)

Thus, the max radial extent of all particle oscillations Max[z] = %, in the beam
distribution occurs for the particle with the max single particle emittance since the

particles move on nested ellipses: In terms of Twiss parameters:

Max[e] = €m Ty = EnW = v/ e'm,ﬁ
iEm(S) =V Gmﬁ(s) = \/aw(s) 'r;n - emw/ = 74/ %Ol

+ Assumes sufficient numbers of particles to populate all possible phases
+ I, corresponds to the min possible machine aperture to
prevent particle losses
- Practical aperture choice influenced by: resonance effects due to
nonlinear applied fields, space-charge, scattering, finite particle lifetime, ....
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We immediately obtain an equation for the maximum locus (envelope) of radial
particle excursions gz, = ,/€,,w as:

zi (8) + K(8)zm(s) — x;Ts) =0
T (s + Lp) = zm(9) Tm(s) >0

Comments:

+ Equation is analogous to the statistical envelope equation derived by J.J.
Barnard in the Intro Lectures when a space-charge term is added and the max
single particle emittance is interpreted as a statistical emittance

- correspondence will become more concrete in later lectures

+ This correspondence will be developed more extensively in later lectures on
Transverse Centroid and Envelope Descriptions of Beam Evolution and
Transverse Equilibrium Distributions
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