Physics Review

(6) Newtonian Mechanics
(Gravitational vs. Electromagnetic forces
(2) Lorentz Force
(6) Maxwell's Equations
© Integral vs. Differential
(2) Relativity (Special)

Newtonian Mechanics

(2) $v=d x / d t$
(2) $p=m v$
(2) $F=d p / d t$
(2) $d W=F d s$
(2) $\mathrm{F}_{\mathrm{g}}=G \mathrm{Mm} / \mathrm{r}^{2} \quad\left[\mathrm{~F}_{e}=1 / 4 \pi \epsilon_{0} \quad \mathrm{Qq} / \mathrm{r}^{2} \quad \mathrm{Fb}_{\mathrm{b}}=\mathrm{qv} \times \mathrm{B}\right.$, etc.]
© The Simple Harmonic Oscillator + Phase Space

Simple Harmonic Motion

$$
\begin{array}{cl}
\ddot{x}=-k x & \ddot{x}+k x=0 \\
x=a \sin (\omega t)+b \cos (\omega t)=c \sin (\omega t+\delta) \\
\dot{x}=c \omega \cos (\omega t+\delta) \\
\ddot{x}=-c \omega^{2} \sin (\omega t+\delta)=-\omega^{2} x \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
\end{array}
$$

Maxwell's Equations

© Integral Form

- Differential Form
- One Consequence: EM Waves
(2) speed of waves given by $c=\left(\mu_{0} \epsilon_{0}\right)^{-1 / 2}$
(2) Another Consequence:
(2) If μ_{0}, ϵ_{0} are fundamental quantities, same in all reference frames, then so should be the speed of light!

Wave Equation and the Speed of Propagation

Suppose in free space, no current sources...

$$
\begin{aligned}
& \nabla \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
& \text { in general: } \quad \nabla \times \nabla \times \vec{f}=\nabla(\nabla \cdot \vec{f})-\nabla^{2} \vec{f} \\
& \text { so, } \quad \nabla \times \nabla \times \vec{B}=\nabla(\nabla \cdot \vec{B})-\nabla^{2} \vec{B}=-\nabla^{2} \vec{B} \\
& -\nabla^{2} \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial(\nabla \times \vec{B})}{\partial t}=-\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}}
\end{aligned}
$$

thus,

$$
\nabla^{2} \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}} \quad \text { and, ikewise, } \quad \nabla^{2} \vec{E}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

Wave Equation and the Speed of Propagation

$$
\begin{aligned}
& \qquad \nabla^{2} \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}} \text { and } \nabla^{2} \vec{E}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}} \\
& \text { Example: let } B=b \cos (\omega t-k x)=b \cos (2 \pi f t-2 \pi x / \lambda) \\
& d^{2} B / d x^{2}=-k^{2} B \\
& d^{2} B / d t^{2}=-\omega^{2} B \quad d^{2} B / d x^{2}=-k^{2} B=\mu_{0} \epsilon_{0}\left(-\omega^{2} B\right) \\
& \mu_{0} \epsilon_{0}=(k / \omega)^{2}=1 /(\lambda f)^{2}=1 / v_{\text {wave }}^{2} \\
& \text { speed }=1 / \sqrt{\mu_{0} \epsilon_{0}} \equiv c
\end{aligned}
$$

wave equation

Maxwell's Equations

(3) Integral Form

- Differential Form
(3) One Consequence: EM Waves
(2) speed of waves given by $c=\left(\mu_{0} \epsilon_{0}\right)^{-1 / 2}$
(2) Another Consequence:
- If μ_{0}, ϵ_{0} are fundamental quantities, same in all reference frames, then so should be the speed of light!

Special Relativity

- The Principle of Relativity
- The Laws of Physics same in all inertial reference frames
(0) The Problem of the Velocity of Light
- Simultaneity
(2) Lengths and Clocks
(- $\mathrm{E}=\mathrm{mc}{ }^{2}$
- Differential Relationships

Simultaneity

Lengths and Clocks

(a)

(c)

－The previous equation tells us that as we do work on a particle its energy will change by an amount $\Delta E=\Delta W=\Delta \gamma m c^{2}$ ． Thus，the energy of a particle should be defined as

$$
E=\gamma m c^{2}
$$

－If the particle starts from rest，then $\gamma_{\text {initial }}=1$ ，and its energy is $E=m c^{2}$ ．As it speeds up its kinetic energy will be

$$
K E=\Delta W=(\gamma-1) m c^{2}, \text { where here } \gamma \equiv \gamma_{f i n a l}
$$

－So we see that the energy is a combination of a＂rest energy＂ and a＂kinetic energy＂：

$$
E=\gamma m c^{2}=m c^{2}+(\gamma-1) m c^{2}
$$

If no work were done $(\Delta W=0)$ ，and the particle were still at rest，the particle would still have energy（rest energy）：

$$
E_{0}=m c^{2} \rightarrow \text { mass is energy! }
$$

Winter Session 2016 MJS USPAS Fundamentals 31

Speed，Momentum，vs．Energy

Kinetic Energy

Kinetic Energy

Electron：	0	0.5	1.0	1.5	MeV
Proton：	0	1000	2000	3000	MeV

