#### Physics Review

- Ø Newtonian Mechanics
  - @ Gravitational vs. Electromagnetic forces
  - Lorentz Force
- Maxwell's Equations
  - 💿 Integral vs. Differential
- @ Relativity (Special)

#### Newtonian Mechanics

v = dx/dt
p = mv
F = dp/dt
dW = F ds
F<sub>g</sub> = G Mm/r<sup>2</sup> [F<sub>e</sub> = 1/4πε<sub>0</sub> Qq/r<sup>2</sup> F<sub>b</sub> = qv x B, etc.]
The Simple Harmonic Oscillator + Phase Space

#### 축

#### Simple Harmonic Motion

 $\ddot{x} = -kx \qquad \ddot{x} + kx = 0$   $x = a\sin(\omega t) + b\cos(\omega t) = c\sin(\omega t + \delta)$   $\dot{x} = c\omega\cos(\omega t + \delta)$   $\ddot{x} = -c\omega^{2}\sin(\omega t + \delta) = -\omega^{2}x$   $\omega = \sqrt{k}$   $x^{2} + \frac{1}{\omega^{2}}\dot{x}^{2} = c^{2}$   $\overset{\dot{x}}{\longrightarrow} x \text{ ellipse}$   $x^{2} + (\dot{x}/\omega)^{2} = c^{2}$   $\overset{\dot{x}}{\longrightarrow} x \text{ circle}$ Winter Session 2016 MJS USPAS Fundamentals

#### Maxwell's Equations

Integral Form

邋

- Ø Differential Form
- One Consequence: EM Waves
  - 𝐼 speed of waves given by c =  $(\mu_0 ∈_0)^{-1/2}$
- Another Consequence:
  - S If μ<sub>0</sub>, ε<sub>0</sub> are fundamental quantities, same in all reference frames, then so should be the speed of light!



#### Maxwell's Equations

- 🚳 Integral Form
- O Differential Form
- One Consequence: EM Waves
  - $\odot$  speed of waves given by  $c = (\mu_0 \varepsilon_0)^{-1/2}$
- Another Consequence:
  - The function of the second state of the secon

#### Special Relativity

- The Principle of Relativity
  - The Laws of Physics same in all inertial reference frames
- The Problem of the Velocity of Light
- Simultaneity
- Lengths and Clocks
- <sup>⊘</sup> E=mc<sup>2</sup>
- Ø Differential Relationships



# Simultaneity





#### 

31

• The previous equation tells us that as we do work on a particle its energy will change by an amount  $\Delta E = \Delta W = \Delta \gamma mc^2$ . Thus, the energy of a particle should be defined as

$$E = \gamma mc^2$$
.

 If the particle starts from rest, then γ<sub>initial</sub> = 1, and its energy is E = mc<sup>2</sup>. As it speeds up its kinetic energy will be

$$KE = \Delta W = (\gamma - 1)mc^2$$
, where here  $\gamma \equiv \gamma_{final}$ .

So we see that the energy is a combination of a "rest energy" and a "kinetic energy":

$$E = \gamma mc^2 = mc^2 + (\gamma - 1)mc^2$$

If no work were done ( $\Delta W = 0$ ), and the particle were still at rest, the particle would *still* have energy (rest energy):

$$E_0 = mc^2 \rightarrow \text{mass is energy!}$$

Winter Session 2016 MJS

1

2

USPAS Fundamentals

## Speed, Momentum, vs. Energy

### gamma - 1 gamma - 1 Kinetic Energy Kinetic Energy Electron: 0 0.5 1.0 1.5 MeV Proton: 0 1000 2000 3000 MeV

0

2

