04.sup Equations of Motion
and Applied Fields’

Prof. Steven M. Lund
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Facility for Rare Isotope Beams (FRIB)

S1: Particle Equations of Motion
STA: Introduction: The Lorentz Force Equation

The Lorentz force equation of a charged particle is given by (MKS Units):

9 p(t) = i [Bxi 1) + vi(t) <B(ixi, 1)

Michigan State University (MSU) ™Mi, i - particle mass, charge L= p,artlde index
x;(t) ... particle coordinate ¢ = time
PHY 905 Lectures p;(t) = myyi(t)vi(t) ... particle momentum
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t) = —x;(t t icle veloci
Steven M. Lund and Yue Hao vi(t) dt ) particle velocity
o ) ) ) ~i(t) = ;2 ... particle gamma factor
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S1B: Applied Fields used to Focus, Bend, and Accelerate Beam

Transverse optics for focusing:
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Longitudinal Acceleration:

RF Cavity Induction Cell
Pulse Power
Feed Magnetic
. 1=
—
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Beam “ ]
j RF Source M
\ Acceleration z

Gap

We will cover primarily transverse dynamics. Lectures by J.J. Barnard will cover
acceleration and longitudinal physics:

+ Acceleration influences transverse dynamics — not possible to fully decouple
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S1C: Machine Lattice

Applied field structures are often arraigned in a regular (periodic) lattice for beam
transport/acceleration:

AL A A
VRV IVE

Focus, Accel Focus Accel Focus,

Quadrupole  RF Cavity
Solenoid Induction Cell

+ Sometimes functions like bending/focusing are combined into a single element
Example — Linear FODO lattice (symmetric quadrupole doublet)

Lattice Period 4>E

AT A
VR N

Focus Accel DeFocus Aceel Focus
Quadrupole Quadrupole Quadrupole
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Lattices for rings and some beam insertion/extraction sections also incorporate
bends and more complicated periodic structures:

Lattice
Period
Sector

One Lattice Period

Triplet : .

Quadrupoles )

Ring Lattice: 12 Periods
(SIS-18, GSI)

+ Elements to insert beam into and out of ring further complicate lattice
+ Acceleration cells also present
(typically several RF cavities at one or more location)
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S1D: Self fields

Self-fields are generated by the distribution of beam particles:
Charges
Currents

Particle at Rest Particle in Motion

(pure electrostatic)

S
. E
Obtain from
Lorentz boost q V
of rest-frame field:
see Jackson,
Classical
Electrodynamics

B*=0

+ Superimpose for all particles in the beam distribution
+ Accelerating particles also radiate
- We neglect electromagnetic radiation in this class
(see: J.J. Barnard, Intro Lectures)
SM Lund, PHY 905, 2018
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The electric (E%) and magnetic ( B®) fields satisfy the Maxwell Equations. The
linear structure of the Maxwell equations can be exploited to resolve the field into
Applied and Self-Field components:

E=E*+E°

B =B+ B°
Applied Fields (often quasi-static 0/0t ~0 ) E®, B®

Generated by elements in lattice

pe 10
V-E*=— V x B = ;pJ* + = —E°
€0 % Hol™ o+ 2ot
vup - Op VB =0
ot
p® = applied charge density 1 _ 2
J® = applied current density Ho€o
+ Boundary Conditions on E* and B*

+ Boundary conditions depend on the total fields E, B
and if separated into Applied and Self-Field components, care can be required
+ System often solved as static boundary value problem and source free in the

vacuum transgort region of the beam
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/Il Aside: Notation:

.0 .0 . .
V=x—+ ya—y + - Cartesian Representation

il
or 0z
o 60 0
=f—+4+ —-— +2— - Cylindrical Representation
or rdl 0z P o
T =r7rcosf r =x%xcosf +ysinf
P y =rsinf 6 = —%sinf +y cosd
=~ x - Abbreviated Representation
= i + zﬁ - Resolved Abbreviated Representation
Ox1 9z Resolved into Perpendicular (J_)

X = Xz + 9y + 82 and Parallel (Z ) components
=X +2z x|, =XT+3Jy

In integrals, we denote:

/d21:J_--~:/ dx/ dy---:/ drr dag ---
oo —oo 0 —x 1
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Self-Fields (dynamic, evolve with beam)

Generated by particle of the beam rather than (applied) sources outside beam

ol 10
v.E =" S od® + ~ 2 s
. V xB LodJ +c28tE
Lo, VB =0
V xE :_&B i = particle index

(N particles)

p° = beam charge density
q; = particle charge

= Z qi6[x — x;(t)]

x; = particle coordinate

v; = particle velocity

N 6(x) = 6(x)d(y)d(2)
— Z qivi(t)d[x — x;(t)] d(z) = Dirac-delta function
i=1 N
Z = sum over
i=1 beam particles
+ Boundary Conditions on E® and B*®
from material structures, radiation conditions, etc.

J® = beam current density
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In accelerators, typically there is ideally a single species of particle:
9 —q
m; — m

Large Simplification!
Multi-species results in more complex collective effects

Motion of particles within axial slices of the “bunch” are highly directed:
Slice

= Mean axial velocity of

N’ particles in beam slice

|0v;| < |Bplc  Paraxial Approximation

There are typically many particles: (see S13, Vlasov Models for more details)

N
J° = Z qivi(t)0[x — x;(t)]

continuous axial
current-density

N
P’ = Z qi0[x — x;(t)]

~ p(x, 1) continuous
= P charge-density

SM Lund, PHY 905, 2018
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The beam evolution is typically sufficiently slow (for heavy ions) where we can
neglect radiation and approximate the self-field Maxwell Equations as:
See: Appendix B, Magnetic Self-Fields and
J. J. Barnard, Intro. Lectures: Electrostatic Approximation

s_ Vast Reduction of
Eé =-V¢ 4 self-field model:
B*=VxA A= = Approximation equiv to
9 9 s electrostatic interactions
Vip=— - —¢= _r in frame moving with
ox  Ox €0 beam: see Appendix B
+ Boundary Conditions on ¢ But still complicated

Resolve the Lorentz force acting on beam particles into

Applied and Self-Field terms: i =Fi +F;
E=E*+E°
Fi(xi,t) = qB(x;, 1) + qvi(t) x B(x;,1) +
. B =B*+B°
Applied:
F{ = qE{ + qv; x B}
a J— a
Self-Field: E®(xi,t) = Ef etc.
F; = ¢E; + qv; x B}
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The self-field force can be simplified:
+ See also: J.J. Barnard, Intro. Lectures

Plug in self-field forms:

~0 Neglect: Paraxial

F; = qE] + qv; x B}
¢ . 9 B
_q[—& +(ﬂbcz+5l)x<axz—>z}

c
Resolve into transverse (x and y) and longitudinal (z) components and simplify:

Bycz x (8—Xx ;D >i:ﬁbix <%xz¢>>

7 X=X;

%

i

8y Oz
¢, 0.
=B <8x * oy
o9
=2 3
X i
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also

09
8x

Longitudinal

Transverse

1

Yo = —Tﬁg

+ Transverse and longitudinal forces have different axial gamma factors
+ 1/~} factor in transverse force shows the space-charge forces become weaker
as axial beam kinetic energy increases
- Most important in low energy (nonrelativistic) beam transport
- Strong in/near injectors before much acceleration

Axial relativistic gamma of beam
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/Il Aside: Singular Self Fields
In free space, the beam potential generated from the singular charge density:
N

p° = Z qi6[x — x;(t)]

1
Thus, the force of a particle at X = xZ is:

Z —
47T60 Ix; —x;3/2

Which diverges due to the i = term. This divergence is essentially “erased”
when the continuous charge density is applied:

Fi=—a5¢ ax

p° = ZQi5[X -xi(t)] — px,t)

+ Effectively removes effect of collisions
See: J.J. Barnard, Intro Lectures for more details
- Find collisionless Vlasov model of evolution is often adequate M
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The particle equations of motion in x; — v; phase-space variables become:

+ Separate parts of ¢E? + qv; x B{ into transverse and longitudinal comp
Transverse

4
dt

X1i =Vl

mYivii) =~ qE + qBpcz x B, + qB; vy X Z ~— q ———

d
dt( ____________________________________________________________________

Longitudinal
d

dt

Zi = Uz

g V=) =BG — q(vniBy; —vyiBg) - q -

In the remainder of this (and most other) lectures, we analyze Transverse
Dynamics. Longitudinal Dynamics will be covered in J.J. Barnard lectures
+ Except near injector, acceleration is typically slow
« Fractional change in Vs, By small over characteristic transverse dynamical
scales such as lattice period and betatron oscillation periods
+ Regard Vb, B as specified functions given by the “acceleration schedule”
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S1E: Equations of Motion in s and the Paraxial Approximation
In transverse accelerator dynamics, it is convenient to employ the axial coordinate
(s) of a particle in the accelerator as the independent variable:

+ Need fields at lattice location of particle to integrate equations for particle trajectories

t
s=s;+ /dtvzz()
y t y

i

Time t Beam

Initial Bcam T

In the paraxial approximation, x' and y' can be interpreted as the (small
magnitude) angles that the particles make with the longitudinal-axis:

m—angle:%fvvmi:m'- . .
Vi By i Typical accel lattice values:
Uyi Uy , [x1< 50 mrad
y—angle= — ~ — =y,
Uz Pue

The angles will be small in the paraxial approximation:

2

2
Vois U;i < 6302 — T, yz <1

Slice | | Slice |}
Transform: t=t Z Neglect Since the spread of axial momentum/velocities is small in the paraxial
5= . . . . . . . .
ds d; ds dz; d da; approximation, a thin axial slice of the beam maps to a thin axial slice and s can
Vyy = pr = Uz = dt = at ds =0—— = (Bpc+ 0Uzi) —— ds also be thought of as the axial coordinate of the slice in the accelerator lattice
NI
Denote: ~ d:rz Slice — Vzi
dx; , 5bc e By=3Y 2
d Vi = —F7 & ,BbCl'i ) i=1
e dt Neglecting term consistent .
~ ds dyi , with assumption of small ‘ slice
Vyi = at ~ Bycy; longitudinal momentum spread > to N
(paraxial approximation) Bee s~ s+ / dt ﬁb(t)
+ Procedure becomes more complicated when bends present: see SIH i ti
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7
s~ 8; —l—/ dt By(t)
ti

The coordinate s can alternatively be interpreted as the axial coordinate of a
reference (design) particle moving in the lattice
+ Design particle has no momentum spread

It is often desirable to express the particle equations of motion in terms of s rather
than the time ¢

+ Makes it clear where you are in the lattice of the machine

+ Sometimes easier to use t in codes when including many effects to high order
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Transform transverse particle equations of motion to s rather than ¢ derivatives

d 7T L 1 0¢
my;vi)i~ qE] ¢z x B¢ + BZv Zi—q— —
gl = Bl Gt |
Term 1 Term 2
Transform Terms 1 and 2 in the particle equation of motion: d d
— =y —
T 1 d dXLi d d dt ds
o MY = MUz~ | ViVzi 5-X1i
T ds \ 1 g5t
d? n d d ( )
- i X1 zi | 7-XLi | 57 (ViUzi
= myv g Xt mvs | x| oo (w
Term 1A Term 1B
Approximate:
d2 d2 2 211
Term 1A:  my;v zzd ——X1i ~ myfc? XL = = mypByc X

d d d d
Term 1B:  muvy; (EXM) s (1iv2i) =~ mPye <£Xu) 7 (7585¢)
~ mByc® (W) %,
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Using the approximations 1A and 1B gives for Term 1:

L (2
dt \" dt

) ~ m%ﬂgcQ [XL +

(768) <
(78p)

Similarly we approximate in Term 2:

a 5o a ’ -~
qB%;v i X2~ qBZ,BycX | ; X Z

Using the simplified expressions for Terms 1 and 2 obtain the reduced transverse

equation of motion:

!
xNi + (PYbBb) / ;= q
T (wB) T mpBRe?
qB /
myBye”

a q
.+ ——2x B9,
T ey Bye

5 qg 09
myb 3p2c? 8XJ_

+ Will be analyzed extensively in lectures that follow in various limits to
better understand solution properties

SM Lund, PHY 905, 2018
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S1F: Axial Particle Kinetic Energy

Relativistic particle kinetic

(v — 1)mc?

g:

E=(yw—1)me +

energy is:

1
L ey

= (By + 0B:)cz + Brex,
= Particle Velocity (3D)
For a directed paraxial beam with motion primarily along the machine axis the

kinetic energy is essentially the axial kinetic energy &, :

||J_

o

525},5

(v — 1)mc®

Bb /Bb

In nonrelativistic limit:

B <1

E=(w— 1)mc2

12

1
Emﬂ 22 4+ mﬁbc + -

SmiRe + O(3h)

Convenient units:

Electrons:

m = m, = 511

keV

SM Lund, PHY 905, 2018
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Electrons rapidly relativistic
) due to relatively low mass

22

Tons/Protons:

m = (atomic mass) - m,,

my, = Atomic Mass Unit

— 931.49 Mev

Note:

MeV

= Neutron Mass = 939.5

Approximate roughly for ions:

7 MeV

MeV
2

my ~ my, ~ 940

My > Me

m~ Am,,

A =Mass Number

(Number of Nucleons)

Protons/ions take much
longer to become relativistic

than electrons

Mp, My > My due to nuclear binding energy

/A

My, C?

>y -1 —

=1+

By =1/1-1/%

& /A

My, €

Energy/Nucleon &,/A fixes Bp to set phase needs of RF cavities

SM Lund, PHY 905, 2018
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Contrast beam relativistic 3 for electrons and protons/ions:

10,000

Electrons Ions (and approx Protons)
H 1
10 ’.' 10 i
Speed of Light ; Speed of Light :'I
Il I
08 /’ 08 b /
Non—Relativistic Il Non—Relativistic l’ Relativistic
- /7 / Relativistic N /
£ 06 /, 42 06 /
] !, ] /7
2 /
= =z Y
04 Zoal
02 0.2
0.0 0.0
0.1 1 10 100 1,000 10.( 0.1 1 10 100 1.000
&, Axial Kinetic Energy (keV) £,/A Axial Kinetic Energy Per Nucleon (MeV /u)
Notes: 1) plots do not overlay, scale changed

2) Ton plot slightly off for protons since 7y 7 My

+ Electrons become relativistic easier relative to protons/ions due to light mass
+ Space-charge more important for ions than electrons (see Sec. S1D)
- Low energy ions near injector expected to have strongest space-charge

SM Lund, PHY 905, 2018
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S1G: Summary: Transverse Particle Equations of Motion

v (wb) q a qa . a qB; .
XL (75) L myp B c? m%ﬁbcz B+ meﬁbCXJ_ ><z
q 0
mypBEc? 0x .
E® = Applied Electric ~ Field d 1

B® = Applied Magnetic Field ds
o 0 p
2 _ — . — _ —
Ve = ox 8x¢ €0

+ Boundary Conditions on ¢

Drop particle i subscripts (in most cases) henceforth to simplify notation
Neglects axial energy spread, bending, and electromagnetic radiation

v— factors different in applied and self-field terms:
q

my; BEc? Ox

Yy = Kinematics

In ¢, contributions to 7},” :

’71? = Self-Magnetic Field Corrections (leading order)
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S1H: Preview: Analysis to Come

Much of transverse accelerator physics centers on understanding the evolution of
beam particles in 4-dimensional x-x' and y-y' phase space.

Typically, restricted 2-dimensional phase-space projections in x-x' and/or y-)' are
analyzed to simplify interpretations:

When forces are linear particles tend

to move on ellipses of constant area
- Ellipse may elongate/shrink and
rotate as beam evolves in lattice

Nonlinear force components distort
orbits and cause undesirable effects
- Growth in effective
phase-space area reduces
focusability
x Ellipse Twists and Lengthens x4
Phase—Space

Ellipse
Const Area
Particle
/

X

# Particle

-

X
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The “effective” phase-space volume of a distribution of beam particles is of

fundamental interest
Effective area measure in

x-x' phase-space is the
x-emittance

Pevvrboereboreelborreberre bl
a— S

Statistical " Area” ~ e,

ex = 4[(2?) L (@)L — (za") 3]

—003—
AR RN RN RN NN NN
-0.015 0010 —0.00& 0.000 0.005 0010 0015

xIml

We will find in statistical beam descriptions that:

Harder/Easier
— to focus beam
on small final spots

Larger/Smaller beam phase-space areas
(Larger/Smaller emittances)
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Much of advanced accelerator physics centers on preserving beam quality by
understanding and controlling emittance growth due to nonlinear forces arising
from both space-charge and the applied focusing. In the remainder of the next
few lectures we will review the physics of a single particles moving in linear
applied fields with emphasis on transverse effects. Later, we will generalize
concepts to include forces from space-charge in this formulation and nonlinear
effects from both applied and self-fields.
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S1I: Bent Coordinate System and Particle Equations of
Motion with Dipole Bends and Axial Momentum Spread

The previous equations of motion can be applied to dipole bends provided the
x,,z coordinate system is fixed. It can prove more convenient to employ
coordinates that follow the beam in a bend.
+ Orthogonal system employed called Frenet-Serret coordinates
T ) Magnetic

Dipolc Bend
Circular Path

Straight Path !

Reference ds = Rd#
Trajectory ¥ z ds =dz !
pe
T ®
e | o <
Applicd Ficld Region | L ) .
B*= B4y : s S?‘;‘g(?; Path
‘:R P -~ A e
o (d\{
© = Bend Angle Pend
Center =3
R = Bend Radlus Reference
s = Reference Trajectory Coordinate Trajectory
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In this perspective, dipoles are adjusted given the design momentum of the
reference particle to bend the orbit through a radius R.
+ Bends usually only in one plane (say x)
- Implemented by a dipole applied field: £ or By
+ Easy to apply material analogously for y-plane bends, if necessary
Denote:

po = mypPpc = design momentum

Then a magnetic x-bend through a radius R is specified by:
B* = B,y = const in bend
1 _aBy

R Po

The particle rigidity is defined as ( [ Bp] read as one symbol called “B-Rho”):
_ Po _ mYpbec
[Bp) = 20 — TR

Analogous formula for
Electric Bend will be derived
in problem set

q q
is often applied to express the bend result as:
1 By
R [Bp]
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Comments on bends:
+ R can be positive or negative depending on sign of BZ /[Bp)
* For straight sections, R — oo ( or equivalently, By = 0)
+ Lattices often made from discrete element dipoles and straight sections with
separated function optics
- Bends can provide “edge focusing”
- Sometimes elements for bending/focusing are combined
+ For a ring, dipoles strengths are tuned with particle rigidity/momentum so the
reference orbit makes a closed path lap through the circular machine
- Dipoles adjusted as particles gain energy to maintain closed path
- In a Synchrotron dipoles and focusing elements are adjusted together
to maintain focusing and bending properties as the particles
gain energy. This is the origin of the name “Synchrotron.”
+ Total bending strength of a ring in Tesla-meters limits the ultimately
achievable particle energy/momentum in the ring
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For a magnetic field over a path length S, the beam will be bent through an angle:

s  SB:

R [Bp]

To make a ring, the bends must deflect the beam through a total angle of 27 :
+ Neglect any energy gain changing the rigidity over one lap

Si S;
e Yo=Y oY

By ;
i,Dipoles % [Bp]

For a symmetric ring, N dipoles are all the same, giving for the bend field:
# Typically choose parameters for dipole field as high as technology allows for a
compact ring

o (Bp]
By =2rm NS
For a symmetric ring of total circumference C with straight sections of length L
between the bends:

# Features of straight sections typically dictated by needs of focusing, acceleration, and

dispersion control

C=NS+NL

SM Lund, PHY 905, 2018
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Example: Typical separated function lattice in a Synchrotron
Focus Elements in Red
Bending Elements in Green

Lattice
Period

Sector

One Lattice Period
(separated function)

Triplet I .

Ring Lattice: 12 Periods

For “off-momentum” errors:

ps =Po + 0p
po = mypPpc = design momentum

Op = off- momentum

This will modify the particle equations of motion, particularly in cases where
there are bends since particles with different momenta will be bent at different

radii ‘
Ps ! ® Byy

NP =Dt dp
\ \\\ Off Momentum (High)
\ N

- Common notation:
Pe=p0

Design
: 1
(SIS-18, GSI) Quadrupoles  Bending - 5= p—ﬁ —Fractional
18 Tesla-Meter Dipoles
Momentum Error
+ Not usual to have acceleration in bends
- Dipole bends and quadrupole focusing are sometimes combined
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Derivatives in accelerator Frenet-Serret Coordinates Gradient:
Summarize results only needed to transform the Maxwell equations, write field V- % ov P v’ 43 1 ov
derivatives, etc. X 7Y dy 14+ x/R 0s
# Reference: Chao and Tigner, Handbook of Accelerator Physics and Engineering
Divergence:
U(z,y,s) = Scalar 19 av, 1 V.
o - A V.-V=———|(1 R)V, LA ——
V(z,y,s) =Vy(z,y,8)%+ V,(z,y,5)y + Vs(z,y,s)§ = Vector 1+z/Rox [ +2/R)Va] + Oy + 14+ z/R Os
Vector Dot and Cross-Products: (V1, V3 Two Vectors) Curl:
Vi1V =V, Vo, 4+ Vi, Vo, + VigVas
1- V2 12V 1y Vay + VisVa TNV i V. 1 9V, vy 1 ovy, 0 [+ 2/R)Vi]
X y s N dy 1+4+z/R 0s yl—l—x/R ds Oz B
Vl X V2 = Vlac Vly Vvls ov. oV-
Voo Vay Vs +8(1+2/R) (a—;’ - 8;)
= (‘/193‘/25 - Vls‘/Zz))A( + (Vls‘/2z - Vlz‘/Zs)y + (‘/1:1:‘/21/ - ‘/11/‘/21)é
Elements: Laplacian: )
1 d ov 0°v 1 0 1 ov
d2ml:dxdy _— R R T V2\I/:7_[(1+£)_:|+_2+ _|: _}
T d(zxdx—kydy—i—s(l—&-ﬁ)ds 14+ xz/R0x R/ Ox Ay 1+x/R0s |[1+x/R Os
Bz, = (1 + —) dxdyds
R
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Transverse particle equations of motion including

bends and “off-momentum” effects
+ See texts such as Edwards and Syphers for guidance on derivation steps
+ Full derivation is beyond needs/scope of this class

Comments continued:
+ Equations are often applied linearized in ¢
+ Achromatic focusing lattices are often designed using equations with
momentum spread to obtain focal points independent of ¢ to some order

N ()" o 1 1-96 . 0 1 q E¢ x and y equations differ significantly due to bends modifying the x-equation
(v0b) R2(s)1+6]"  1+4+0R(s) myPBic®(1+6)2 when R(s) is finite
q B q Be q 1 96 + It will be shown in the problems that for electric bends:
! s 0 vv
myBecl 4+  myfecl+ 57 mygBEc? 1+ 6 Ox 1 _ E3(s)
"y (v06s)" q E«Lf q B R(S) ﬂbC[Bp}
Y y = -
(75) myfpc? (1+6)2  mmByel+0 + Applied fields for focusing: E?, Bi, By
B q B¢ o q 1 3_(15 must be expressed in the bent x,),s system of the reference orbit
mYpfpc 1+ 6 mypBEc2 1+ 6 dy - Includes error fields in dipoles
_ _ ; Self fields may also need to be solved taking into account bend terms
po = mpPrc = Design Momentum 1 B2(s)|pi * Y g
5p e = i ;'D pole [Bp] = bo - Often can be neglected in Poisson's Equation
6 = — = Fractional Momentum Error () (Bl q 1 9 9 92 1 9 1 9
Po —_ (14_2)_ 4+ — + — — ¢:_£
Comment5: 1+.’E/R 81‘ R 8I 8y2 1+.’E/R 88 1+I/R 88 €0
+ Design bends only in x and BZ , B contain no dipole terms (design orbit) if R — oo P P P p
- Dipole components set via the design bend radius R(s) . - 4+ — ==
: : : reduces to familiar: 0x?  0y?  0s?
+ Equations contain only low-order terms in momentum spread § : Yy €0
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Appendix A: Gamma and Beta Factor Conversions Axial derivative factors can be converted using:
It is frequently the case that functions of the relativistic gamma and beta factors , BB , v
are (_:onverted t9 sqperficially different appearing forms when analyzing transyerse T = W B = m
particle dynamics in order to more cleanly express results. Here we summarize
useful formulas in that come up when comparing various forms of equations. .
. . . . Energy factors:
Derivatives are taken wrt the axial coordinate s but also apply wrt time #
: : - S : Erot = ymc? = € + mc?
Results summarized here can be immediately applied in the paraxial tot = 7
approximation by taking:
P v taking B, ;
'U:|V|2’Ub:ﬁbc — ~ 75: € +2 &
7= mc? mc?
Assume that the beam is forward going with 3 > 0 :
1 1 Rigidity:
’y = T = — 2 _
/1= B2 B ~ Y 1 o -
1 p  ymv  mc mc
2 - 2 __ 2 Bol==— = — = — - + 21 ——
TT1 Fr=1-1/y (B ¢ q =7 (ch) <m02>
A commonly occurring acceleration factor can be expressed in several ways:
+ Depending on choice used, equations can look quite different!
OB _ A, B
=—+-=——
Y v B 9B
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Appendix B: Magnetic Self-Fields
The full Maxwell equations for the beam self fields
ES , BS
with electromagnetic effects neglected can be written as
+ Good approx typically for slowly varying ions in weak fields

s_ P 19~

ES = — s __ X s

v - VxB* =l + 5B
g - _9ps V-B°* =0

V x g

+ Boundary Conditions on E® and B*
from material structures, etc.

p = qn(x,t)
J =qgn(x,t)V(x,t)

n(x,t) = Number Density
V(x,t) = "Fluid” Flow Velocity

+ Beam terms from charged particles + Calc from continuum approx distribution

making up the beam
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Electrostatic Approx: Magnetostatic Approx:

v.ps =" V x B® = upJ
€ V-B*=0
VxE* =0
E° =-V¢ B*=VxA

¢ = Electrostatic
Scalar Potential
= VXE'=-VxV¢p=0 .
Continuity of mixed = V:-B°=V-(VxA)=0
partial derivatives
— V.E=-V.vp=LT
0 — VxB'=Vx(VxA)=p

A = Magnetostatic
Vector Potential

Continuity of mixed
partial derivatives

n
V2p = _am
€0 Continue next slide

+ Boundary Conditions on ¢

SM Lund, PHY 905, 2018
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Magnetostatic Approx Continued:
VxB* =V x(VxA)=puyJ
V(V-A) - VA = pod
Still free to take (gauge choice):
V-A =0 Coulomb Gauge

Can always meet this choice:

A — A+ V¢ & = Some Function

0 Cont mixed partial derivatives

= BS:VXA—>V><A+V><j;§:VxA

=V -A -V -A+V%
Can always choose & such that V - A = 0 to satisfy the Coulomb gauge:
VZA = —poJ = —poqnV

+ Essentially one Poisson form eqn
for each field x,),z comp
+ Boundary conditions diff than ¢

But can approximate this further for “typical” paraxial beams .....
SM Lund, PHY 905, 2018

+ Boundary Conditions on A
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V2A = —pod = —pognV
Expect for a beam with primarily forward (paraxial) directed motion:

V. = Brc Ve ~ R By R’ = Beam Envelope Angle

(Typically 10s mrad Magnitude)
= [Aeyl <A
Giving:

Free to use from
V?A, = —pogByen

€02
n= —EV ¢ electrostatic part
V?A, = —(poeo)cBp V3

_ B

C

Ho€o = 0_2 From unit definition

—A,

+ Allows simply taking into account low-order self-magnetic field effects
- Care must be taken if magnetic materials are present close to beam
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Further insight can be obtained on the nature of the approximations in the reduced
form of the self-magnetic field correction by examining
Lorentz Transformation properties of the potentials.

From EM theory, the potentials ¢, cA  form a relativistic 4-vector that
transforms as a Lorentz vector for covariance:

Au = (¢7 CA)

—_—

By

In the rest frame (*) of the beam, assume that the flows are small enough where
the potentials are purely electrostatic with:

A% = (¢%,0) v2gr = 1"

€0

*
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Review: Under Lorentz transform, the 4-vector components of A, = (¢, cA)
transform as the familiar 4-vector z, = (ct, x)

X

- Lab Frame

Transform Inverse Transform
ct* =yp(ct — Bpz) ct =yp(ct™ + Bpz™)
2" =m(z = Boct) z ="(2" + Bpct”)
X" =x x =x

This gives for the 4-potential A,, = (¢,cA) :
0
¢ = Y(e" -I-éi’bc ) = o"

cA, = %(0/{54' Bpd") = Bo(19™) = Bpd

Bs + Shows result is consistent with pure
— Az = ? electrostatic in beam (*) frame
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S2: Transverse Particle Equations of Motion in
Linear Applied Focusing Channels
S2A: Introduction

Write out transverse particle equations of motion in explicit component form:

/
o (’Ybﬂb) 2 = q E;z . q Bo q Bg /
(75) myp B c? mwBee Y mypBhe 20
__a_ 99
myp BEc? Ox
1" (’Ybﬁb)/ ’ q a q q /
+ = E B — —B%
Y (08p) myBE Y myfee F myfee C
__ a9
m’yg’ﬁgCQ Ay

Equations previously derived under assumptions:
+ No bends (fixed x-y-z coordinate system with no local bends)
# Paraxial equations ( z'?,y2 < 1)
+ No dispersive effects (3, same all particles), acceleration allowed (3, # const )
+ Electrostatic and leading-order (in /3, ) self-magnetic interactions
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The applied focusing fields
Electric: By, Ey
Magnetic: By, By, BY

must be specified as a function of s and the transverse particle coordinates x and y
to complete the description
+ Consistent change in axial velocity ( Syc ) due to EY must be evaluated
- Typically due to RF cavities and/or induction cells
+ Restrict analysis to fields from applied focusing structures
Intense beam accelerators and transport lattices are designed to optimize
linear applied focusing forces with terms:

Electric: E2 ~ (function of s) X (z or y)

By ~ (function of s) x (x or y)

Magnetic: Bj = (function of s) x (z or y)
Ba
y

B¢ ~ (function of s)

1

(function of s) X (x or y)
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Common situations that realize these linear applied focusing forms will be
overviewed:
Continuous Focusing (see: S2B)
Quadrupole Focusing
- Electric  (see: S2C)
- Magnetic (see: S2D)
Solenoidal Focusing (see: S2E)

Other situations that will not be covered (typically more nonlinear optics):
Einzel Lens (see: J.J. Barnard, Intro Lectures)
Plasma Lens
Wire guiding

Why design around linear applied fields ?
+ Linear oscillators have well understood physics allowing formalism to be
developed that can guide design
+ Linear fields are “lower order” so it should be possible for a given source
amplitude to generate field terms with greater strength than for “higher
order” nonlinear fields
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S2B: Continuous Focusing

Assume constant electric field applied focusing force:
BY=0
E = E% + B0y =

_m')/bﬁgch%O - k3o = const >0

q rad
kgol = —
[kgo] = —

Continuous focusing equations of motion:
Insert field components into linear applied field equations and collect terms

!/ 8¢)
<! + (’Ybﬁb) %/ _'_kg x| = — q
L By O my;BEc? Ox
n (wB) 2 q ¢
k S . )
v (753b) ¥ Fgo® my; BEc? Oz Equivalent
Component
" (’Ybﬁb)/ ’ 2 q ¢
— kKoy = ———2— "
Yy + (465s) Yy + kzoy m%;;,ﬁgcg oy Form

Even this simple model can become complicated
+ Space charge: @ must be calculated consistent with beam evolution
+ Acceleration: acts to damp orbits (see: S10)
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Simple model in limit of no acceleration ( /3y =~ const ) and
negligible space-charge (¢ ~ const ):

x| + k%ox 1 =0 = orbits simple harmonic oscillatons

General solution is elementary:

x1 = x1(si) cos[kgo(s — ;)] + [x' (s:)/kgo] sin[kgo(s — s;)]
x| = —kgox 1 (s;)sinlkgo(s — s;)] + x| (si) cos[kgo(s — si)]
x, (s;) = Initial coordinate

x/| (s;) = Initial angle

In terms of a transfer map in the x-plane (y-plane analogous):

[ 5] - Matloa- [ 2 ]

sls.) — cos[kgo(s — s;)] % sin[kgo (s — si)]
M (s]s:) { —kgosin[kgo(s — si)]  cos[kgo(s — ;)]
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/I Example: Particle Orbits in Continuous Focusing
Particle phase-space in x-x’ with only applied field

kgo = 2m rad/m 2(0) =1 mm y(0) =0
¢p=~0 Py =const 2'(0)=0 y'(0) =0
10 T T
o5
00
-05f
— 1‘0 £

X [mm]

=)

]

]

5

" | | |

00 03 10 15 20
s Iml
+ Orbits in the applied field are just simple harmonic oscillators /i
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Problem with continuous focusing model:

The continuous focusing model is realized by a stationary (m — oo ) partially
neutralizing uniform background of charges filling the beam pipe. To see this

apply Maxwell's equations to the applied field to calculate an applied charge
density:

9 2megy B2k
ot = e B = — O oo

= const
ox q .

+ Unphysical model, but commonly employed since it represents the average
action of more physical focusing fields in a simpler to analyze model
- Demonstrate later in simple examples and problems given
+ Continuous focusing can provide reasonably good estimates for more realistic
periodic focusing models if kgo is appropriately identified in terms of
“equivalent” parameters and the periodic system is stable.
- See lectures that follow and homework problems for examples
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In more realistic models, one requires that guasi-static focusing fields in the
machine aperture satisfy the vacuum Maxwell equations

V-E*=0
VxE*=0

V-B*=0
VxB*=0

+ Require in the region of the beam
+ Applied field sources outside of the beam region

The vacuum Maxwell equations constrain the 3D form of applied fields resulting
from spatially localized lenses. The following cases are commonly exploited to
optimize linear focusing strength in physically realizable systems while keeping
the model relatively simple:
1) Alternating Gradient Quadrupoles with transverse orientation
- Electric Quadrupoles (see: S2C)
- Magnetic Quadrupoles (see: S2D)
2) Solenoidal Magnetic Fields with longitudinal orientation (see: S2E)
3) Einzel Lenses (see J.J. Barnard, Introductory Lectures)
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S2C: Alternating Gradient Quadrupole Focusing
Electric Quadrupoles

//Aside: How can you calculate these fields?

Fields satisfy within vacuum aperture:

V-E*"=0
In the axial center of a long electric quadrupole, model the fields as 2D transverse S E2 = _V¢a
_ VxE*=0
2D Transverse Fields . . . .
B — 0 Choose a long axial structure with 2D hyperbolic potential surfaces:
$* = const(z? — y?)
ES = -Gz Require: ¢ =V, at x=r,,y=0 — const = \/(I/rg
E= Gy Vo, 2 2
Y " = E(ﬂf -y°)
a
G= h — _aEg — _8Ey Ee a¢a _2‘/61 G
= = = =— = = -Gz
= Electric Gradient g e Hg? 2V, . G= E
= =2 Yy=4y
¢ =—V, Vq = Pole Voltage Y dy r
Electrodes Outside of Circle r = r, . . .o . . .
Electrodes: 2% — y® = 772 rp, = Pipe Radius Realistic geometries can be considerably more complicated
* Electrodes hyperbolic (clear aperture) + Truncated hyperbolic electrodes transversely, truncated structure in z
+ Structure infinitely extruded along z //
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Quadrupoles actually have finite axial length in z. Model this by taking the
gradient G to vary in s, i.e., G = G(s) with § = 2 — Zcenter (straight section)
+ Variation is called the fringe-field of the focusing element
+ Variation will violate the Maxwell Equations in 3D
- Provides a reasonable first approximation in many applications
+ Usually quadrupole is long, and G(s) will have a flat central region and rapid
variation near the ends

A Gis)

Accurate fringe calculation
typically requires higher
level modeling:

3D analysis

Detailed geometry

§ = Z — Zcenter

Typically employ magnetic
design codes

m‘r

Axial Extent
Quadrupole
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For many applications the actual quadrupole fringe function G(s) is replaced by a
simpler function to allow more idealized modeling
+ Replacements should be made in an “equivalent” parameter sense to be
detailed later (see: lectures on Transverse Centroid and Envelope Modeling)
+ Fringe functions often replaced in design studies by piecewise constant G(s)
- Commonly called “hard-edge” approximation
+ See S3 and Lund and Bukh, PRSTAB 7 924801 (2004), Appendix C for more
details on equivalent models

A Gis)

Replace Gradient ’
H
Piecewise / "“

Continuous

i )
i )

Axial Extent
Quadrupole
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Electric quadrupole equations of motion:
+ Insert applied field components into linear applied field equations and collect

terms
" (Vbﬂb), ’ _ q %
o (voBo) T als)e = mygBEc? O
y" —(%ﬁb),y' —R(8)y = — s o¢
(753) m; g c? Oy
qG G

" mwB2E  ByelBp

oBs _ 0By _ 2,
ox oy 2 N

wfme _ Rigidity

Bye[Bp] = Electric Rigidity

+ For positive/negative K , the applied forces are Focusing/deFocusing in
the x- and y-planes

+ The x- and y-equations are decoupled

+ Valid whether the the focusing function k is piecewise constant or
incorporates a fringe model
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Simple model in limit of no acceleration ( ~y,3;, ~ const ) and
negligible space-charge (¢ ~ const ) and k = const:

2" + Kz =0 = orbits harmonic or hyperbolic

y' —ky=0 depending on sign of x

General solution:

k>0 :
z = z;cos[Vk(s — si)] + (27 /Vk) sin[Vk(s — s;)]
2 = —kx;sin[v/k(s — s;)] + @} cos[v/k(s — s;)]
x(s;) = z; = Initial coordinate
2'(s;) = x}, = Initial angle
y = yicosh[v/k(s — s;)] + (y;/V/k) sinh[V/k(s — s;)]
y' = Vky; sinh[Vk(s — s;)] + 9 cosh[v/k(s — s)]
y(s;) = y; = Initial coordinate
y'(s;) =y, = Initial angle
k<0 :
Ezxchangexandyink > 0 case.
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In terms of a transfer maps:

k>0 :

| — |
SR
—
w
I

| —
<@
—_
w

Il

Mic(sls:)

{ cos[v/k(s = si)] 7= sin[v/k(s — 5)] ]
—Vesin[y/k(s —si)]  cos[Vr(s —si)]

ols.) = cosh[v/k(s — ;)] ﬁ sinh[\/k(s — s;)]
Myl = | R ) R o))
k<0 :

Exchange x and y in k > 0 case.
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Quadrupoles must be arranged in a lattice where the particles traverse a sequence
of optics with alternating gradient to focus strongly in both transverse directions
+ Alternating gradient necessary to provide focusing in both x- and y-planes
+ Alternating Gradient Focusing often abbreviated “AG” and is sometimes

called “Strong Focusing”

+ FODO is acronym:
- F (Focus) in plane placed where excursions (on average) are small
- D (deFocus) placed where excursions (on average) are large
- O (drift) allows axial separation between elements

+ Focusing lattices often (but not necessarily) periodic
- Periodic expected to give optimal efficiency in focusing with

quadrupoles
+ Dirifts between F and D quadrupoles allow space for:
acceleration cells, beam diagnostics, vacuum pumping, ....
+ Focusing strength must be limited for stability (see S5)
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Example Quadrupole FODO periodic lattices with piecewise constant ~
+ FODO: [Focus drift(O) DeFocus Drift(O)] has equal length drifts and same
length F and D quadrupoles
+ FODO is simplest possible realization of “alternating gradient” focusing
- Can also have thin lens limit of finite axial length magnets in FODO lattice

| :
Ro()] | (R =—hy) 1 P )
d i d
F Quad <7>§<—>§<—>
: ‘ ' ‘ ‘ -
I D Quad : o
o |
S A
» Ly ~ d=(1—-n)Ly/2
1 Lattice Period i

n = Occupancy € (0, 1]
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/I Example: Particle Orbits in a FODO Periodic Quadrupole Focusing Lattice:
Particle phase-space in x-x' with only hard-edge applied field

Lp=05m g =450rad/m?in Quads «(0)=1mm y(0)=
n=0.5 ¢=~0 W = const 2'(0) =0 y'(0) =0
3 : . : :
— 2 ]
g 1
g TN S 3
& of r — — £ (scaled + shifted)s
Sfo - —
4 L 1 L 1
0 1 2 3 4 5
s/ L, |Lattice Periods]
10 T T T T
E
8 N/~ = A
S S /- _r (scaled + shifted)\
st B e
0 1 2 3 4 5
s/ L, [Lattice Periods] Il
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Comments on Orbits:
+ Orbits strongly deviate from simple harmonic form due to AG focusing
- Multiple harmonics present
+ Orbit tends to be farther from axis in focusing quadrupoles and
closer to axis in defocusing quadrupoles to provide net focusing
+ Will find later that if the focusing is sufficiently strong, the orbit can
become unstable (see: S5)
+ y-orbit has the same properties as x-orbit due to the periodic structure and AG
focusing
+If quadrupoles are rotated about their z-axis of symmetry, then the
x- and y-equations become cross-coupled. This is called quadrupole
skew coupling (see: Appendix A) and complicates the dynamics.

Some properties of particle orbits in quadrupoles with K = const
will be analyzed in the problem sets

S2D: Alternating Gradient Quadrupole Focusing
Magnetic Quadrupoles

In the axial center of a long magnetic quadrupole, model fields as 2D transverse

Yy
2D Transverse Fields
i =
B; =Gy
» By =Gz
r B!=0

By _ oBg _ 0By
Tp oy Ox

= Magnetic Gradient
By = |B*|,;=, = Pole Field

rp = Pipe Radius

G=

Conducting Beam Pipe: » — 7,

Poles: zy = ﬁ:%
+ Magnetic (ideal iron) poles hyperbolic
+ Structure infinitely extruded along z
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/lAside: How can you calculate these fields? 09°
. . o B = — = const - y
Fields satisfy within vacuum aperture: z oz
V . Ba == 0 a 8¢a
= B? = —V¢*® By = — 3 = const - x
VxB*=0 Y
An;llogm;s tjse‘liectric case, BUT magnetic force is different so rotate potential Require: |B’| =B, at r= /22 + 2 = Tp = const = B,/r,
surfaces by egrees:
B
Electric Magnetic = ¢ = _ﬂ G=—+
¢° 0¢° Y "
F,=—q Fi = —qBycz x P
ox 1 ox 1

expect electric potential form
rotated by 45 degrees ...

1 1
T =T — —F=Y

V2o V2
y—)%x-l-%y

¢ — ¢% = —const - xy

¢* = const(z? — ¢?)
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Realistic geometries can be considerably more complicated
+ Truncated hyperbolic poles, truncated structure in z
+ Both effects give nonlinear focusing terms

1
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Analogously to the electric quadrupole case, take G = G(s)
+ Same comments made on electric quadrupole fringe in S2C are directly
applicable to magnetic quadrupoles
Magnetic quadrupole equations of motion:
+ Insert field components into linear applied field equations and collect terms

/ a¢
"+ va/ + K(s)x q

(V6b) (5) - mp B O
(wh) q 09
(3Bs) * (8)y CmAp B dy

k(s) = 7qG = i

mypBye  [Bp]

oo 9B: _ 9By _ B, Bp] = 222 _ Rigidity
Oy Ox Tp q

+ Equations identical to the electric quadrupole case in terms of £(s)

+ All comments made on electric quadrupole focusing lattice are immediately
applicable to magnetic quadruples: just apply different < definitions in design

+ Scaling of K with energy different than electric case impacts applicability
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. . OE®
€: Electric Focusing; G = =% = 2Vy

_ ) Bvc[Bp] dy — 2
" e Magnetic Focusing; G = 0B; _ By
[Bp] & & T 9y T

+ Electric focusing weaker for higher particle energy (larger 5)
+ Technical limit values of gradients

- Voltage holding for electric

- Material properties (iron saturation, superconductor limits, ...) for magnetic
+ See JIB Intro lectures for discussion on focusing technology choices

Different energy dependence also gives different dispersive properties when beam

has axial momentum_spread:

0
o= &P _ Fractional Momentum Error

Po

. W Electric Focusing
K

45 Magnetic Focusing

+ Electric case further complicated because 0 couples to the transverse motion since
particles crossing higher electrostatic potentials are accelerated/deaccelerated
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S2E: Solenoidal Focusing

The field of an ideal magnetic solenoid is invariant under transverse rotations
about it's axis of symmetry (z) can be expanded in terms of the on-axis field as as:

Coil (Azimuthally Symmetric)

RGN Vacuum Maxwell equations:
T V-B*=0
e V xB*=0
— T
[ Imply B® can be expressed in
/ N terms of on-axis field B (r = 0, 2)
a See
E*=0 Appendix D
[ee] _ 2v-2
B¢ = 1 Z ]. v 82’/ 1BzO(Z) |XJ~| Y o :
+7 9 (v—1)"! 9z2v-1 2 XL Reiser,
v=1 Theory and Design
e 2v 2v of Charged
B — Bzo(z Z aB—O(z) M Particle Beams,
? — ) 0 2 Sec.3.3.1
B.o(z) = By (XJ_ = 0,z) = On-Axis Field
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Writing out explicitly the terms of this expansion:

B(r,z) =By (r,z) + 2BZ(r, 2) r=+/x2+y?2
= (—%sinf + ycos0) By (r, z) + 2BZ(r, 2)
where o

B;«l('ry Z) = 2:: %Bigyil) (Z) <g>2u—1

""""""""""" 3 5 7 9

_ 7320(2)7“ T Bio)(z) 3 Bio)(z)rs Bi())(z) 7 _ Bio)(z) P94

2 | 16 384 18432 1474560
. (=1) () 2V
a (. i —
Bz(hz)*;() (V!)z BzO (2) (2>

---------------- . 4 6 8

By 1 B o BOG) 4 B 6 BLIE)
_____ U 4 64 2304 147456

B.o(z) = B¢(r =0, z) = On-axis Field Linear Terms

(n) _ 8”B20(Z) / _ aBz()(z) _ 8 BzO(Z)
By ()=— " Bal)=—p"— Biy(2)=—5 75—
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For modeling, we truncate the expansion using only leading-order terms to obtain:

+ Corresponds to linear dynamics in the equations of motion
10B,
19B:0(2)
2 0z
B — 1 aBzo('Z)y B.o(z) = B2(x,. =0, 2)
v 2 0z _ -
= On-Axis Field

Bl =—

B = Bzo(2)
Note that this truncated expansion is divergence free:
10B, O 0
V-B=——-———. —B.o =0
2 0z Ox, XL+62 0
but not curl free within the vacuum aperture:
1 82 BZ() (Z) N N
V X Ba = 57(—&1; +y.f13)
19%B, 1928, .
:58—202(2)7’(—§(sir19+y0059) 2#(2) 0

+ Nonlinear terms needed to satisfy 3D Maxwell equations
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Solenoid equations of motion:
+ Insert field components into equations of motion and collect terms

o (W)’ Qo(s)y _ Buols) , q 09
(758 2[Bp] [Bp] - mp B2 O
"y ('Ybﬁb), I Béo(s) BzO(s) 2= q 09

B Y 2B T B BB By

Bp) = P _ Rigidiny  Deols) _ wels)
q [Bol — whhe
B,
we(s) = qio(s) = Cyclotron Frequency
m

(in applied axial magnetic field)

+ Equations are linearly cross-coupled in the applied field terms
- x equation depends on y, '
- y equation depends on x, x'
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It can be shown (see: Appendix B) that the linear cross-coupling in the applied
field can be removed by an s-varying transformation to a rotating
“Larmor” frame:

y A » i= xcosy(s)+ysiny(s)
¥ § = —xsini(s) + ycosi(s)

o ) U(s) = —/ ds kp,(3)
Y 84
B.o(s) _ we(s)
2[Bp]  2mBc
= Larmor
wave number

kr(s) =

Sy

~. used to denote
rotating frame variables

s = s; defines
initial condition
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If the beam space-charge is axisymmetric:
0p  0¢ Or 0p x|
ox  Orox.  orr
then the space-charge term also decouples under the Larmor transformation and
the equations of motion can be expressed in fully uncoupled form:

- = - 00 T
7" + ((’Yb[;bé CU/ + R(S)l‘ _ qﬁ . a¢
Vor% . m’yb pe? orr Will demonstrate
i+ (76b) 7+ K(s)j = _qa 1 6¢ Y this in pll*oblems
(765) mfyb Sp2c orr for the simple

case of:

B.o(s) = const

K(s) = k2 (s) = Bf%(;fr = [ZZ(EZI

+ Because Larmor frame equations are in the same form as continuous and
quadrupole focusing with a different ~, for solenoidal focusing we implicitly
work in the Larmor frame and simplify notation by dropping the tildes:

)~(L—>Xl
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/Il Aside: Notation:

A common theme of this class will be to introduce new effects and generalizations
while keeping formulations looking as similar as possible to the the most simple
representations given. When doing so, we will often use “tildes” to denote
transformed variables to stress that the new coordinates have, in fact, a more
complicated form that must be interpreted in the context of the analysis being
carried out. Some examples:
+ Larmor frame transformations for Solenoidal focusing
See: Appendix B
+ Normalized variables for analysis of accelerating systems
See: S10
+ Coordinates expressed relative to the beam centroid
See: S.M. Lund, lectures on Transverse Centroid and Envelope Model
+ Variables used to analyze Einzel lenses
See: J.J. Barnard, Introductory Lectures

"
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Solenoid periodic lattices can be formed similarly to the quadrupole case
+ Drifts placed between solenoids of finite axial length
- Allows space for diagnostics, pumping, acceleration cells, etc.
+ Analogous equivalence cases to quadrupole
- Piecewise constant K often used
+ Fringe can be more important for solenoids

Simple hard-edge solenoid lattice with piecewise constant <

A |
Ra(s)] | (Ka = y) B L
| | -1
/2 ¢ Cdf2df2 d=(1-n)l,
PR SN P
1 Lattice Period 1

1 = Occupancy € (0, 1]
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/I Example: Larmor Frame Particle Orbits in a Periodic Solenoidal Focusing
Lattice: 7 — @’ phase-space for hard edge elements and applied fields

L,=05m x=20rad/m? in Solenoids Z(0) =1mm  §(0) =0
n=0.5 ¢~0 7P = const #(0)=0 7'(0)=0

x (scaled + shifted)

20— n n n n ra—

1 2 3
s/ L, |Lattice Periods|

,2 £

af K (scaled + shifted)

-6F 0 E
2 | 2 3 J 5

s/ L, [Lattice Periods|
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Contrast of Larmor-Frame and Lab-Frame Orbits
+ Same initial condition

Larmor-Frame Coordinate Orbit in transformed x-plane only

=o1of x (scaled + shifted)

2.0 n L T n ~—

0 1 2 3 5
s/L, [Lattice Periods]
Lab-Frame Coordinate Orbit in both x- and y-planes

1.0
0.5 x
0.0 l\: ,,,,,,,,,,, \m ,,,,,,,,,, T

E -05
= ’1'2 = s (scaled shiltod) Calculate
eob o0 . ] using
o} 1 2 3 4 5
s/ L, |Lattice Periods| transfer

matrices in

1.0 3
= o5 Yy T 1 Appendix C
E _g:g ,,:/,\, ,,,,,,, el X
= ::‘"g: | r (scaled shifted)
—20F o —
0 1 2 5

2 3
s/ L, [Lattice Periods]
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Contrast of Larmor-Frame and Lab-Frame Orbits
+ Same initial condition
Larmor-Frame Angle

Additional perspectives of particle orbit in solenoid transport channel
+ Same initial condition
Radius evolution  (Lab or Larmor Frame: radius same)

T T T

k (scaled + shifted)

7 [mm]

0 1 2 3 4 5
s/ Ly, |Lattice Periods|

I Side- (2 view points) and End-View Projections of 3D Lab-Frame Orbit
E ; 0, —
L Calculate %MS 1 Calculate
5 ; : — . = 11 .
% 1 2 3 4 s using 20— e using
s/ L, |Lattice Periods| transfer 4t/ - Jﬁ o transfer
4 matrices. in ¢ % Peroid ‘ E “ matrices in
] ] AR N e Ry A ek Appendix C 4 - E— h Appendix C
=a -4 ¥ < (scaled + shifted) § 0 y\“m |
= —65 7’ o i £ , \ -
—80 1 2 3 — 5 ¢ Pf. ] i - w[mim)]
s/ L, |Lattice Periods| o
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Larmor angle and angular momentum Comments on Orbits:
of particle orbit in solenoid transport channel + See Appendix C for details on calculation
+ Same initial condition ~ _ s B.o(s) - Discontinuous fringe of hard-edge model must be treated carefully if
Larmor Angle Y(s) =— / ds kr(3) ki(s) = 3[By] integrating in the laboratory-frame.
Sq

¥, Larmor Angle

k (scaled | shilted)

0 1 2 3 4 5
s/L, |Lattice Periods]

Angular Momentum and Canonical Angular Momentum (see Sec. S2G )

5F T
14T > >
I s} I/ \.I
g ob T e+ . (srnlcd + shifrod)
5 ; : - - —
50 1 2 3 4 5
s/ L, [Lattice Periods] n
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+ Larmor-frame orbits strongly deviate from simple harmonic form due to
periodic focusing
- Multiple harmonics present
- Less complicated than quadrupole AG focusing case when interpreted
in the Larmor frame due to the optic being focusing in both planes
+ Orbits transformed back into the Laboratory frame using Larmor
transform (see: Appendix B and Appendix C)
- Laboratory frame orbit exhibits more complicated x-y plane coupled
oscillatory structure
+ Will find later that if the focusing is sufficiently strong, the orbit can
become unstable (see: S5)
+ Larmor frame y-orbits have same properties as the x-orbits due to the equations
being decoupled and identical in form in each plane
- In example, Larmor y-orbit is zero due to simple initial condition in x-plane
- Lab y-orbit is nozero due to x-y coupling
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Comments on Orbits (continued):
+ Larmor angle advances continuously even for hard-edge focusing
+ Mechanical angular momentum jumps discontinuously going into and out of the
solenoid
- Particle spins up and down going into and out of the solenoid
- No mechanical angular momentum outside of solenoid due to the
choice of intial condition in this example (initial x-plane motion)
+ Canonical angular momentum Fp is conserved in the 3D orbit evolution
- As expected from analysis in S2G
- Invariance provides a good check on dynamics
- Py in example has zero value due to the specific (x-plane)
choice of initial condition. Other choices can give nonzero values
and finite mechanical angular momentum in drifts.

Some properties of particle orbits in solenoids with piecewise x = const
will be analyzed in the problem sets

i
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S2F: Summary of Transverse Particle Equations of Motion

In linear applied focusing channels, without momentum spread or radiation, the
particle equations of motion in both the x- and y-planes expressed as:

(7))’ z _ q 0
o (’Ybﬁb) o (s)e = mfyb 32 mry3B2c2 8x¢
( vB) _ q 0

('Y ) + " (S)y - m'Yb Bb myPB2c? ay¢

ks (s) = z-focusing function of lattice

ky(s) = y-focusing function of lattice

Common focusing functions:
Conti :
ontitous Kz (8) = Ky(s) = kgo = const
Quadrupole (Electric or Magnetic):
fa(s) = —ry(s) = K(s)
Solenoidal (equations must be interpreted in Larmor Frame: see Appendix B):
ra(s) = ry(s) = K(s)
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Although the equations have the same form, the couplings to the fields are
different which leads to different regimes of applicability for the various focusing

technologies with their associated technology limits:
Focusing:

Continuous:

Ka(s) = ky(s) = k3o = const
Good qualitative guide (see later material/lecture)
BUT not physically realizable (see S2B)

It is instructive to review the structure of solutions of the transverse particle
equations of motion in the absence of:

0 0
Space-charge: —¢ ~ _(b 0
Acceleration: Yp3p = const = (:/l:,—ﬁbb) ~0

In this simple limit, the x and y-equations are of the same Hill's Equation form:

Quadrupole: e Electric [Bp] s Boc 2+ K, (s)m =0
Bp]’ =
Rals) = —my(s) = L G q y' 4 ry(s)y =0
c[Bp]’ agnetic Th - 1 d Lo . 1
. . . . . C . * ese equations are central to transverse dynamics in conventiona
G is the field gradient which f;)r linear applied fields is: accelerator physics (weak space-charge and acceleration)
— a;;w = aai Y — %7 Electric - Will study how solutions change with space-charge in later lectures
G(s) = e aBo Z
653 L= gt = &, Magnetic In many cases beam transport lattices are designed where the applied focusing
Y T Tp . ..
) functions are periodic:
Solenoid: ) )
B.o(s) we(s) qB.o(s) Kx(s+ Lp) = Kz (8)
ro(s) = & (s)zki(@:{ ) wels) = L2052 ’ _ Lattice Peri
x y 2(By) 29 BC m k(s + Ly) = i, (5) L, = Lattice Period
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Common, simple examples of periodic lattices:

Periodic Solenoid
ot | (e = ) . |
SR RRRRERER EE DL ——
3 | | ‘ 1 E
! L Lot !
cd/2t 0 a2 d/2 d=(1-n)l,
i iPeriodic FODO Quadrupole t=nly
wa(s)] | (ke = —ry) .
,,,,,,,,,,,,,,,,,,,,,,, -
d ¢ d
F Quad -——biqi-iq-—-
e D Quad o
E |
- Ly - d=(1— )L,/
Lattice Period i
(=nL,/2
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However, the focusing functions need not be periodic:

+ Often take periodic or continuous in this class for simplicity of interpretation
Focusing functions can vary strongly in many common situations:

+ Matching and transition sections

+ Strong acceleration

+ Significantly different elements can occur within periods of lattices in rings

- “Panofsky” type (wide aperture along one plane) quadrupoles for beam
insertion and extraction in a ring

Example of Non-Periodic Focusing Functions: Beam Matching Section
Maintains alternating-gradient structure but not quasi-periodic

Matching Section x-Focusing Strength

Example corresponds to
High Current Experiment
Matching Section

kx (Arb Units)
|
o9 oo 004
BN ON B O O O

(hard edge equivalent)
at LBNL (2002)
0 50. 100. 150, 200. 250. 300. 350.
s [em]
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Equations presented in this section apply to a single particle moving in a beam
under the action of linear applied focusing forces. In the remaining sections, we
will (mostly) neglect space-charge (¢ — () as is conventional in the standard
theory of low-intensity accelerators.
+ What we learn from treatment will later aid analysis of space-charge effects
- Appropriate variable substitutions will be made to apply results
+ Important to understand basic applied field dynamics since space-charge
complicates
- Results in plasma-like collective response

/Il Example: We will see in Transverse Centroid and Envelope Descriptions of
Beam Evolution that the linear particle equations of motion can be applied to
analyze the evolution of a beam when image charges are neglected

x — x. = (x), x— centroid

y = ye = (y). y— centroid p
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S2G: Conservation of Angular Momentum in
Axisymmetric Focusing Systems
Background:

Goal: find an invariant for axisymmetric focusing systems which can help us
further interpret/understand the dynamics.

In Hamiltonian descriptions of beam dynamics one must employ proper canonical
conjugate variables such as (x-plane):

T = Canonical Coordinate + analogous

P, =p; + qA, = Canonical Momentum y-plane

Here, A4 denotes the vector potential of the (static for cases of field models
considered here) applied magnetic field with:

B=Vx A

For the cases of linear applied magnetic fields in this section, we have:
i% (y2 - ‘7;2)7
A = —xiB.oy +y3B.oz, Solenoidal Focusing

0, Otherwise
SM Lund, PHY 905, 2018

Magnetic Quadrupole Focusing
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For continuous, electric or magnetic quadrupole focusing without acceleration
(vp8p = const) , it is straightforward to verify that x,x"and y,)" are canonical

For solenoidal magnetic focusing without acceleration, it can be verified that we
can take (tilde) canonical variables:
+ Tildes do not denote Larmor transform variables here !

coordinates and that the correct equations of motion are generated by the
Hamiltonian: T=z J=1y
B B [B } — m’YbﬁbC
L, 1, 1 o, 1 qo T L Ay j o=y + 20 T g
Hi =52 + 5y + Skat”™ + SRyy” + ——5— 2[Bp] 2[Bp]
2 2 2 2 my;, By ¢ With Famls
d OH, d OH, ith Hamiltonian . .
—r = — —_—r = —
ds ox'! ds oy’ Vi 1 7 4 B.o (i - B.o . + q9
72| \" T o) Y aBg” 33203
d ,_ 0Hy d , OH, [Bp] 2[Bp my; Bie
ds Oz dsy o dy d . 3]2& i~ . 0H | Caution:
£{L' = 97 ds y= oy’ Primes do not mean d/ds in
. . . - ilde variables here: jus
Giving the familiar equations of motion: i L OH, i L OH, gmzﬁvoa:?o fsﬁ;; iigst
2"+ ko= — q a¢ ds” or dsy oy “momentum” variable!
* my; ﬁb my3 B2 Ox Giving (after some algebra) the familiar equations of motion:
M4 ey = _qa a¢ 2 ;0(5)y _ Bo(s) , __ q %
Y vy = - mAR 22 dy 2[Bp] [Bp] myy Bjc? Ox
Blo(s) ., Bwo(s) q 09
" 20 z /
Yy + T+ xr =
2[Bp] (Bp] m% b 57 mAEBRe? dy
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Canonical angular momentum

One expects from general considerations (Noether's Theorem in dynamics) that
systems with a symmetry have a conservation constraint associated with the
generator of the symmetry. So for systems with azimuthal symmetry (0/96 = 0),
one expects there to be a conserved canonical angular momentum (generator of
rotations). Based on the Hamiltonian dynamics structure, examine:

Pp=xxP]l-z=[xx(p+qA)] -z

This is exactly equivalent to
+ Here 7 factor is exact (not paraxial)

Py = (wpy — ypz) + a(zAy — yAs)
= 1(po + qAo)

Or employing the usual paraxial approximation steps:

Py ~ myByc(xy’ — yx') + q(zAy — yAy)
= myByer®0’ + qriy

= m7r29 + qrAy
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Inserting the vector potential components consistent with linear approximation
solenoid focusing in the paraxial expression gives:
+ Applies to (superimposed or separately) to continuous, magnetic or electric
quadrupole, or solenoidal focusing since Ay = ( only for solenoidal
focusing

B,
Py ~ mypBpc(zy’ — yx') + qTO(x2 + y2)

quO 7_2

= myBeer?d’ + 5

For a coasting beam (,/3, = const), it is often convenient to analyze:
+ Later we will find this is analogous to use of “unnormalized” variables used in
calculation of ordinary emittance rather than normalized emittance

P9 / ’ 20 2 2 mPYb/BbC
=ay —ya' + x4+ Bp|= ——
nfee =Y Y 2[Bp]( yo) (Bp] .
B
2/ 20 2
=r0 + r
2[Bp]
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Conservation of canonical angular momentum

To investigate situations where the canonical angular momentum is a constant of
the motion for a beam evolving in linear applied fields, we differentiate Py with
respect to s and apply equations of motion

Equations of Motion:

Including acceleration effects again, we summarize the equations of motion as:
+ Applies to continuous, quadrupole (electric + magnetic), and solenoid
focusing as expressed
+ Several types of focusing can also be superimposed
- Show for superimposed solenoid

" (Vbﬂb)/ / . ;0(5) . BZO(S) r_ q @
B T T B Y T B Y T moBEe oa
1 (Vb/Bb)/ ’ ;:0(5) BZO(S) r_ q @
v () ” Ty 2[Bp) v [Bp] © T mpBER oy

k3, = const, Continuous Focus (k, = k)

[Bp] = mAwBec Kz(s) = ﬂ:i%)p]., Electric Quadrupole Focus (ky, = —kz)
¢ %fp)], Magnetic Quadrupole Focus (ky = —Kg)
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Employ the paraxial form of Py consistent with the possible existence of a
solenoid magnetic field:
+ Formula also applies as expressed to continuous and quadrupole focusing

Bz
Py = myfpc(ey’ —ya') + 52 (2% + y?)
Differentiate and apply equations of motion:
+ Intermediate algebraic steps not shown

iPe =me(wf) (zy' — yx') + me(w ) (xy” — ya")

ds
B/
+ qTZO(mZ +y%) + ¢Buo(zz’ +yy')
=mc(hy) ke — Kylzy — 2q (;Ua_¢ _ y%)
So IF: Toloe \ Oy 0w
1) K = Fy 220,00 9% _
. . . . Ay ox 00
+ Valid continuous or solenoid focusing ) )
+ Invalid for quadrupole focusing * Axisymmetric beam
d
— Py =0 e Py = const
ds
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For:
+ Continuous focusing
+ Linear optics solenoid magnetic focusing
+ Other axisymmetric electric optics not covered such as Einzel lenses ...

Py = myfhelzy — ya') + 52 (% 1 4?) = const

myBpc(ry’ — yx') = Mechanical Angular Momentum Term

quO (
2

In S2E we plot for solenoidal focusing :
+ Mechanical angular momentum o zy’ — ya’
+ Larmor rotation angle v
+ Canonical angular momentum (constant) P,
Comments:
+ Where valid, Py = const provides a powerful constraint to check dynamics
+ If Py = const for all particles, then (Py) = const for the beam as a whole
and it is found in envelope models that canonical angular momentum can act
effectively act phase-space area (emittance-like term) defocusing the beam
+ Valid for acceleration: similar to a “normalized emittance”: see S10
SM Lund, PHY 905, 2018

2% +y?) = Vector Potential Angular Momentum Term

Accelerator Physics 9

Example: solenoidal focusing channel

Employ the solenoid focusing channel example in S2E and plot:
+ Mechanical angular momentum o zy’ — yz'’
+ Vector potential contribution to canonical angular momentum Bzo(x2 + y2)
+ Canonical angular momentum (constant) Py
P,

[2 B 20
mBye

2[Bp]

(2% 4+ y*) = const = Canonical
Angular Momentum

=y —ya' +

— a2y — ya’ = r?0’ = Mechanical Angular Momentum

B .
_ —0(x2 +12) = k(2% + 3?) = Vector Potential Component

2[Bp Canonical Angular Momentum
5 / If j
zy — yx /—

- . . .
5O 1 2 3 4 5

s/L, [Lattice Periods]
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# (scaled + shifted)

[mm-mrad]
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Comments on Orbits (see also info in S2E on 3D orbit):
+ Mechanical angular momentum jumps discontinuously going into and out of the
solenoid
- Particle spins up ( ¢ jumps) and down going into and out of the solenoid
- No mechanical angular momentum outside of solenoid due to the
choice of intial condition in this example (initial x-plane motion)
+ Canonical angular momentum P, is conserved in the 3D orbit evolution
- Invariance provides a strong check on dynamics
- Py in example has zero value due to the specific (x-plane)
choice of initial condition of the particle. Other choices can give
nonzero values and finite mechanical angular momentum in drifts.
+ Solenoid provides focusing due to radial kicks associated with the “fringe” field
entering the solenoid
- Kick is abrupt for hard-edge solenoids
- Details on radial kick/rotation structure can be found in Appendix C

SM Lund, PHY 905, 2018 Accelerator Physics 101

Alternative expressions of canonical angular momentum

It is insightful to express the canonical angular momentum in (denoted tilde here)
in the solenoid focusing canonical variables used earlier in this section and
rotating Larmor frame variables:
+ See Appendix B for Larmor frame transform
+ Might expect simpler form of expressions given the relative simplicity of the
formulation in canonical and Larmor frame variables

Canonical Variables:

T=x Y=y
~ B,y - B.o
IIZL'I* z y !/ __ l+ z T
2[Bp] 2[Bp]
Py / / Bzo 2 2
- — =ay —yr + r° 4+
e =Y Y 2[Bp]( y)
=iy — 2y

+ Applies to acceleration also since just employing transform as a

definition here
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Larmor (Rotating) Frame Variables:

Larmor transform following formulation in Appendix B:
+ Here tildes denote Larmor frame variables

x cos P 0 —sin@/;~ 0 : z U(s) = 7/. ds ki(5)
' _ | krsing cosy kpcosy —sing 7 si
Y sin ¥ y 0 5 cos 5 0 B J ki (s) = B.o(s)
Y —krcost sinty  kpsiniy cosv ¥ L= 2[Bp]
gives after some algebra:
22+ y2 =324 gQ
B
vy —ya' = B — §F — 52 (7 4 7P
: 2[Bp]
Showing that:
Py ’ / B:o 2 2
— =Yy —Yr + o4y
mYpBpc 2[Bp ( )
=2y — 3y

+ Same form as previous canonical variable case due to notation choices.

However, steps/variables and implications different in this case !
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Bush's Theorem expression of canonical angular momentum
conservation

Take:

B=Vx A

and apply Stokes Theorem to calculate the magnetic flux ¥ through a
circle of radius 7:

\lfz/d%Ba.z :/de(VxA)-i:]{A-dF

For a nonlinear, but axisymmetric solenoid, one can always take:
+ Also applies to linear field component case

A =04A4(r,2)
8A9 1 8
—— a__ _ s "V 7
B T +Z7"87‘ (rdp)
Thus:
U = 271rAp
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/I Aside: Nonlinear Application of Vector Potential

Given the magnetic field components
Bi(r, 2) Bi(r, 2)

the equations

0
B2(r,2) = —_Ag(r2)

Bi(r,z) = %% [rAg(r, )]

can be integrated for a single isolated magnet to obtain equivalent
expressions for Ay

Ao(r,2) :f/z dz B (r, 3)

1 T
Autri) = [ a7 B2 2)
0

+ Resulting Ay contains consistent nonlinear terms with magnetic field

Then the exact form of the canonical angular momentum for for solenoid
focusing can be expressed as:
+ Here 7V factor is exact (not paraxial)

Py = myr20 + qrAy

. 1\
= myr26 + 1=
2w

This form is often applied in solenoidal focusing and is known as “Bush's
Theorem” with

Py = m7r?0 + L% = const

+ In a static applied magnetic field, v = const further simplifying use of eqn

+ Exact as expressed, but easily modified using familiar steps for paraxial form
and/or linear field components

+ Expresses how a particle “spins up” when entering a solenoidal magnetic field

//
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Appendix A: Quadrupole Skew Coupling I::‘l"a‘efi Fields
ectric
Consider a quadrup(jie actively rotated through an angle % about the z-axis: E® = Elcosy) — Eg sin ) B = —Gi = —G( wcost + ysindb)
Y 8 Transforms Ey = Egsing + Ejcosyy  Ej= Gy= G(-wsiny +ycosi))
o T = xcosy+ ysiny
ol Seeten N . Combine equations, collect terms, and apply trigonometric identities to obtain:
_ otated Position y — —grsin w + y cos w
™ . ES = —Gcos(2¢)x — Gsin(2¢)y 2sin 1 cos ¥ = sin(21))
. ToeSmin . X = Zcosy—gsing By = —Gsin(2¢)z + G cos(2¢)y cos® 1) — sin® Y = cos(2¢))
/ _ y= Isiny + ycosy
z : z Magnetic
Normal Orientation Fields Bi = Bjcosyp — Bjsing  Bi =Gj=G(—zsing +ycosy)
Electric Magnetic By = Bgsiny + Bicosyy Bj=Gi=G( wcosy+ysiny)
Tz = xz — ombine equations, collect terms, and a trigonometric 1dentities to obtain:
E? Gz By =Gy Combine equati 11 d apply trig ic identiti btai
E;= Gy B =Gx -
G = G(s) BS = —Gsin(2¢)z + G cos(2¢)y
= Field Gradient (Electric or Magnetic) By = Gcos(2¢)x + Gsin(2¢)y
Note: units of G different in electric and magnetic cases Al A2
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For both electric and magnetic focusing quadrupoles, these field component
projections can be inserted in the linear field Eqns of motion to obtain:
Skew Coupled Quadrupole Equations of Motion

¢ 99
m’yb 332 m3B2c? dx

' ’ . q 6¢
— 2 + 2 =
Yy — kcos(2¢)y + ksin(2¢)x m’)’b ch "

/x' + Kk cos(29)x + K sin(21))y

G

B Magnetic Focusing

G . .
o — {m, Electric Focusing

System is skew coupled:
* x-equation depends on y, y" and y-equation on x, x' for ¢ = ny/2 (n integer)
Skew-coupling considerably complicates dynamics
+ Unless otherwise specified, we consider only quadrupoles with “normal”
orientation with 1) = nm/2
+ Skew coupling errors or intentional skew couplings can be important
- Leads to transfer of oscillations energy between x and y-planes

- Invariants much more complicated to construct/interpret A3
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The skew coupled equations of motion can be alternatively derived by
actively rotating the quadrupole equation of motion in the form:

" ('Ybﬁb)l / el 8¢
i (75) i m%fgbcz o
e o L 8¢
Lo ('Vbﬁb) 4 (s)y = m'YbﬁbCZ 8?]

+ Steps are then identical whether quadrupoles are electric or magnetic

A4
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Appendix B: The Larmor Transform to Express Solenoidal
Focused Particle Equations of Motion in Uncoupled Form

Solenoid equations of motion:

O T Y i
bPb b b
! B!y(s) B.o(s) q agb
"y ('Ybﬁb) /4 220 + r_
(wB) " " 2ABpl " B T mapBpc Oy
B,o(s) = B(r =0,z = s) = On-Axis Field
(Bp] = 2me quc — Rigidity

To simplify algebra, introduce the complex coordinate

— - - Note* context clarifies use of i
| Z=ET+y t=v—1 | (particle index, initial cond, complex i)
Then the two equations can be expressed as a single complex equation
! (s B.o(s 0 0
_//+ (’Ybﬁb) g'—i—i zO( )§+i ZO( )E/: q —— (_¢ ¢)
(755) 2(Bp] [Bp] my; Bye "oy .
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If the potential is axisymmetric with ¢ = ¢(r)

0 .0 0
99 +1 99 _ 99z r=+/x%2+y?
Ox ay orr

then the complex form equation of motion reduces to:

" ('Vbﬂb)/ / . ,IzO(s) ‘BZO(S) o q _¢
z Z +e = m’ybﬁbcz ar

= R

(wBs) = " 2[Bp] =T B £ T

Following Wiedemann, Vol II, pg 82, introduce a transformed complex variable that
is a local (s-varying) rotation:

y A

- ®
=z2e WO =G4 1Y

¥ (s) = phase-function
(real-valued) D

i

B2
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2 = ;1_’_“[)/2) 62’1[;
S = (~// +21¢/2,+Zw//~ ¢/22) ez’J)

and the complex form equations of motion become:
B-o (’Ybﬁb)/:|
2+ |1 (20 ) + Oy 2
g2 P 7 " B/ (’Ybﬁb)/ ~/):| P
| (7 g+ )

q 09z
m’ybﬂ’bc2 arr

Free to choose the form of ¢ Can choose to eliminate imaginary terms in i( .... )
in equation by taking:

Using these results, the complex form equations of motion reduce to: B4

(7))’ /_|_< B.o )22 g 09z
(V65) 2[Bp) ) = m’yb,Bb m352¢2 Or r

Or using Z = ¥ + 1y , the equations can be expressed in decoupled
T, g variables in the Larmor Frame as:

ZII _"_

[

i (wB) . q
v (765) Tt n(s)2 = mvb ﬁb my3B32c2 Or r
~11 (’Yb/Bb)/ ~/ ~ q a¢ y
" (v650) Trle)y = CmA 2R or
_ _ Buo(s)  we(s) _ Wwhyme
K(s) = ki (s) h@=ﬂ%rﬁwm (Bp) p

Larmor Wave-Number

» B - : B.o (15) . : : :
' =— 20 — w” = — 3] éo] + ] é ] (( 3 )) Equations of motion are uncoupled but must be interpreted in
2[Bpl P PET6Pb the rotating Larmor frame
B3 + Same form as quadrupoles but with focusing function same sign in each plane
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The rotational transformation to the Larmor Frame can be effected by integrating The complex form phase-space transformation and inverse transformations are:
the equation for jy — _ 220
2[B ~ i ~ —i
: [p]() ; z=ze" Z=ze W
~ B.o(s
¢(s):_/dg — | s ku3) o ) o v o (o ifrs)
SRNPILT) 9 £+l zowz)e
Here, S; is some value of s where the initial conditions are taken. z=x+1y Z=I+1y 1/; Ik
+Take s = s; where axial field is zero for simplest interpretation P et AT o L
2 =1 +iy Z=i+ij
(see: pg B6)
Apply to:
Because ppy o -, . . .
+ Project initial conditions from lab-frame when integrating equations
q]/ B,y We + Project integrated solution back to lab-frame to interpret solution
2[Bp]  2vBec - . . : L
If the initial condition § = S; is taken outside of the magnetic field where
the local & — § Larmor frame is rotating at %2 of the local s-varying cyclotron B.o(s;) =0, then:
frequency
+ If B,o = const, then the Larmor frame is uniformly rotating as is well (s = 8;) = x(s = 54) F(s=s;)=2'(s=s;)
known from elementary textbooks (see problem sets) (s = Sz) = y(s = 51) g’ (3 = Sz) = y’ (3 = Si)
Z(s = si) = z(s = si) F(s=si)=2(s=s)
B5 B6
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The transform and inverse transform between the laboratory and rotating frames
can then be applied to project initial conditions into the rotating frame for
integration and then the rotating frame solution back into the laboratory frame.

Using the real and imaginary parts of the complex-valued transformations:

x T T T
x ~ 7’ T’ -1 i
=M, (s|si) - | - = | =M, (s]si) -
¥ s | ; (slso)- | &
Y 7 7 y'

[ cos v ) 0o fsindz 0 ]
~ kp siny cos® kpcosy —sinvy
M, ) = - =~

r(sls:) siny 0 cosyp 0

|l —kpcost sinty  kpsinyg cosvy

[ cosp 0 sin 0
~ -1 krsiny  costp —kp costY siny

M, i) = - -
e (slsi) —siny 0 cos Y 0
L krcosyp —siny kpsiny cos? |

Here we used: and it can be verified that:

W =~k M. = Inverse[M, ]

T

B7
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Appendix C: Transfer Matrices for Hard-Edge

Solenoidal Focusing
Using results and notation from Appendix B, derive transfer matrix for
single particle orbit with:

+ No space-charge

+ No momentum spread
First, the solution to the Larmor-frame equations of motion:

+ Details of decompositions can be found in: Conte
and Mackay, “An Introduction to the Physics of
Particle Accelerators” (2nd edition; 2008)

! 4 Ao (’Ybﬁb) ! +r(s)E=0 9
( B ) ( ) K= k2 — BZO
- (0p)’ r 2[Bp]
7"+ ™ )y’+n(s)g:0
Can be expressed as:
T T
7’ ~ i
7, 7]

z=2z;

+ In this appendix we use z rather than s for the axial coordinate since there are

not usually bends in a solenoid Cl
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Transforming the solution back to the laboratory frame:

From project of initial conditions
to Larmor Frame o

=M, (z|z) M z|zl) M (zl|zl ;~

~

SRS

z Y 2=z,
= I Identity Matrix
+ Here we assume the initial condition is outside the maglnetlc field so that there
is no adjustment to the Larmor frame angles, i.e., M,. " (z;]z;) =1

x x x
T x - x
Y = M(z|z) - Y =M, (z]z) - Mp(2|2) - Y

/ / !
v, y y

z=2; z=2;

+ Care must be taken when applying to discontinuous (hard-edge) field models
of solenoids to correctly calculate transfer matrices
- Fringe field influences beam “spin-up” and “spin-down”
entering and exiting the magnet C2
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Apply formulation to a hard-edge solenoid with no acceleration [(%wBs) =01:
Bao(z)

o~

B. B.o(2) = B. [0(2) — O(2 — 0)]

B\Z = const = Hard-Edge Field
{ = const = Hard-Edge Magnet Length

\ Note coordinate choice: z=0 is start of magnet
z=0 2=t z

Calculate the Larmor-frame transfer matrix in 0 < 2z < £ :

P+ k2E=0 4Bao B.o B. .
L = = = = cons
7+ kg = 2vfsme — 2[Bp] ~ 2[By]
- +
0" =z<t Subtle Point:
C S/ky 0 0 Larmor frame transfer
NI (2[07) = kS C 0 0 matrix is valid both sides
Liz — 10 0 C S/ky, of discontinuity in
0 0 —krS C focusing entering and
exiting solenoid.
C =cos(krz) S =sin(kpz) c3

SM Lund, PHY 905, 2018 Accelerator Physics 120




The Larmor-frame transfer matrix can be decomposed as:
+ Useful for later constructs

e S/kr 0 0
- , —kLS C 0 0 F(z) 0
Mp(207) = | ;77 c Slkr | ~ { 0 F(Z)}
_() 0 7]€LS C
with
. [0 S(z)/k _|10 0
FE=| ks o) L} 02[0 0}

Using results from Appendix E, F can be further decomposed as:

C(z)

50 ) (
F(z) = { —kLS(z) C(2)

1 k
_ { 1 Htan(’T

01

z)/kL }

) } ' { 1—k~L sin(kpz) 1 0 1

0 ] . [ 1 itan(kgz)

Applying these results and the formulation of Appendix B, we obtain the rotation
matrix within the magnet 0 < z < ¢
# Here we apply M, formula with ¢) = —f, » for the hard-edge solenoid

C 0 S 0 Comment: Careful
~ _ kS C  kC S with minus signs!
M., =
r(z07) -8 0o C 0 Here, C and S here

—kC =S —kiS C

have positive
arguments as defined.

With special magnet end-forms:
+ Here we exploit continuity of M,. in Larmor frame

= Mayift (2) - Mihin-lens (2) - Mari (2)

C4
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Entering solenoid
1 00 0 sDirect plug-in from
M, (07]07) = 8 é llfL 8 formula above for M,
kL 0 0 1 at z =0T
Exiting solenoid
1 00 0 *Slope of fringe field
N, (¢ ]6-) = 0 1 —k, 0 is reversed so replace
" 10 01 0 in entrance formula:
kr O 1 kr, — —kr, 5
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The rotation matrix through the full solenoid is (plug in to previous formula for

M.,.(z07) )

cos ¢ 0 sin® 0
~ _ 0 cos ¢ 0 sin ¢ Tcos® Isin @
M, (¢ +107) = —sin® 0 cos® 0 - [ —Isin® Icos® ]
0 —sin® 0 cos ¢
I= 10
D=kt 10 1

and the rotation matrix within the solenoid is (plug into formula for MT(Z\O_)
and apply algebra to resolve sub-forms):

Cz) © S(z) 0 1 00 0
~ v _1|o0 C(z) 0 S(z) 0 1 kL O
M (207) =1 “g1.) o C(z) 0 1o o1 o
0 -S(z) 0 C(z) -k 0 0 1
_[ce1 s [T K
,[_5(2)1 C(z)I} [—K I } Kz{gL 8]
= M,(z0%) - M,.(0*|07) 0<z</

Note that the rotation matrix kick entering the solenoid is expressible as
I K }

M7‘(0+|07) = K I

SM Lund, PHY 905, 2018
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The lab-frame advance matrices are then (after expanding matrix products):

Inside Solenoid 07 <z < (¢~
M(2]07) = M, (2/07)ML(2(07)
cos? ¢ ﬁ sin(2¢) 3 sin(2¢) % sin? ¢
| —krsin(2¢) cos(2¢) kr cos(2¢)  sin(2¢)
—4sin(20) - sin?¢  cos? ¢ 35 sin(2¢)
—kr cos(2¢) —sin(2¢)  —krsin(2¢) cos(2¢)
o=kpz
_| CI  S(2)1 K| [F(z) o
- %0 e S T8 B |
[ Cx)I-SzK C(K+S>=)]I } ] [ F(z) 0 }
—C(z)K — S(z) C(z)I S(z)K 0 F(z)
_ [ C(2)F(z) - F(z)  C(x)K-F(z) +5(2)F(z2) }
Clz)K- F( ) ( JE(z) C(2)F(2) - S(2)K - F(z)

+ 2" forms useful to see structure of transfer matrix

C7
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Through entire Solenoid z = ¢+
M(£7107) = M, (¢7]07)ML(¢F]07)

cos? @ i sin(2®) 1sin(29) ﬁ sin? @

_ f%" sin(2®) cos? ® —kp, sin® @ 1 sin(29)
~ | —3sin(29) _1%,, sin?®  cos? @ ﬁ sin(2®)
ky sin? ® —1sin(2®) —%L sin(2®) cos? ®

o = kLé

_ | cos®I  sin®I | [ F({) O
T | —sin®I cosPI 0 F(()

Due to fringe exiting
kicking angles of beam

M(¢7]07) # M(£F[07)
In more realistic model with a continuously varying fringe to zero, all transfer
matrix components will vary continuously across boundaries
- Still important to get this right in idealized designs
often taken as a first step!

Focusing kicks on particles entering/exiting the solenoid can be calculated as:

_ [ cos3F(()  sinPF(() ] EMEE [ 0%) =2(07)  #/(0) = 4/(07) + kry(0)
—sin®F({) cos PF({)
y(07) =y(07)  ¥(0%) =y'(07) — kra(07)
+ 2" forms useful to see structure of transfer matrix Exiting:
: +\ — Tp+N — W= —
Note that due to discontinuous fringe field: (7)) ==(l7) T() =2 () = kry(C7)
1 00 0 y(0t) = y(™) y'(0F) =y (€7) + kpa()
M(0*[0-) = 0 L kp 0 _ [I K] "y Fringe going in +B . /d ne/exit o -
0 01 0 K I Kicks angles of beam eam spins up/down on entf.:rmg ex1tmg the (abrupt) me.lgnetlc fringe field
—k, 0 0 1 8 + Sense of rotation changes with entry/exit of hard-edge field. 9
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The transfer matrix for a hard-edge solenoid can be resolved into thin-lens
kicks entering and exiting the optic and an rotation in the central region of
the optic as:

M(£+]07) = M, (¢7]07) M (¢7]07)

[ cos? ® i sin(2®@) 1 sin(29) ﬁ sin? ®
| —Esin(2®) cos? @ —kpsin®®  1sin(2®)
| —3sin(29) —%sinQCD cos? @ ﬁsin(Zd))
| kg sin® ® —1sin(2®) —%L sin(2®) cos? ®
(1 00 0][1 z-sin2P) 0 Lsin®® 1 00 0
1o 1 —k, 0|0 cos2p) 1 sin(20) 0 1 k O
o o0 1 0 0 #sin®® 1 5lsin(29) 0 01 0
| ko 0 0 1 1 —sin(2®) 0 cos(2®) —kr 0 0 1

= M(£F|€7) - M(£7[0%) - M(07]07)

where ® = k¢

+ Focusing effect effectively from thin lens kicks at entrance/exit of solenoid as
particle traverses the (abrupt here) fringe field

C10
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The transfer matrix for the hard-edge solenoid is exact within the context of linear

optics. However, real solenoid magnets have an axial fringe field. An obvious

need is how to best set the hard-edge parameters B, ¢ from the real fringe field.
Buo(2)

Real Magnet

7. Hard-Edge and Real Magnets
axially centered to compare

Hard—Fdge Magnet

—

O z— /2

Simple physical motivated prescription by requiring:

1) Equivalent Linear Focus Impulse ¢ /dz k2 o /dngo

— / dz B%(z) :HZZ

— 00

2) Equivalent Net Larmor Rotation Angle o / dz kp, o« / dz Bo

:>/ dz B,o(2) zéé\z

— 00

Cl1
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Solve 1) and 2) for harde edge parameters E\Z’ V4
B\ _ ffooodz B?o(Z)
N ffooodz B.o(2)
2
{fix;odz Bzo(z)]
[75 dz B%(2)

e:

Appendix D: Axisymmetric Applied Magnetic or Electric Field

Expansion
Static, rationally symmetric static applied fields E*, B¢ satisfy the vacuum
Maxwell equations in the beam aperture:

V-E*=0 VxE*=0 V-B*=0 VxB*=0
This implies we can take for some electric potential ¢‘and magnetic potential ¢ :
E® = —V¢*© B = —-V¢™

which in the vacuum aperture satisfies the Laplace equations:
V3¢ =0 V2™ =0

We will analyze the magnetic case and the electric case is analogous. In
axisymmetric (0/00 = 0) geometry we express Laplace's equation as:

V26 (r, ) = 19 (r&pm) N 92 0

o or or 022 5
¢™(r, z) can be expanded as (odd terms in » would imply nonzero B, = — gm
.
atr=20): 0o
2 2 4
" (r,2) = E fou (2)r® = fo+ for® + far® 4+ ...
v=0

C12 where fo = ¢ (r = 0, 2) is the on-axis potential D1
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Plugging ¢ into Laplace's equation yields the recursion relation for f,

(2v+2)* fovga + f5, =0

Iteration then shows that

oz = 3o CR S0 1y

— W) 0% 2

0P (0, 2)
02

Using BZ(r =0,z) = B,y(2) = and diffrentiating yields:

a o agbm o = (—1)V BQV_IBzo(z) ry2v—1
Br(r,z) = — or ; W —1)! 82271 (5)

Opm _ Z (=1)” 0**B,o(2) (r)zu

0z — (V) 02 2

B? =
(r,) .

+ Electric case immediately analogous and can arise in electrostatic Einzel
lens focusing systems often employed near injectors

+ Electric case can also be applied to RF and induction gap structures in
the quasistatic (long RF wavelength relative to gap) limit. D2
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Appendix E: Thin Lens Equivalence for Thick Lenses
In the thin lens model for an orbit described by Hill's equation:
| 2" (s) + kz(s)x(s) =0 |
the applied focusing function () is replaced by a “thin-lens” kick described
by:

sp = Optic Location = const

1
Kz(s) = =0(s — so)
f f = focal length = const

The transfer matrix to describe the action of the thin lens is found by integrating
the Hills's equation to be:

x| 1 0 x _ x
L VL e 5]
_S—SO S=s S—SO

0

Graphical Interpretation:

Thin Lens

El
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For a free drift, Hill's equation is:
2" (s) =0

with a corresponding transfer matrix solution:

=l v ] e ],

We will show that the thin lens and two drifts can exactly replace
Case 1) Piecewise constant  focusing lens: k4 (s) = x = const > 0
Case 2) Piecewise constant defocusing lens: #,(s) = —k = const < 0
Case 3) Arbitrary linear lens represented by: #4(s)

This can be helpful since the thin lens + drift model is simple both to carry out
algebra and conceptually understand.

Case 1) The piecewise constant focusing transfer matrix M, for s, =K > 0
can be resolved as:

—— i d 5 d ' generally,
E AL E | 5 bo2d>s— s
S S F
N | Cls) S(s)/VE
Mic(slss) = [ —VS(s) C(s)

S =

Lo 17 [Lus 1] [ 2]
= Muyitt - Miick - Mayifs

where C(s) = cos[v/k(s — )] d(s) = tan[Vk(s — 5:)/2]/Vk
S(s) = sin[v/i(s — s;)] 1/f(s) = VkS(s)
This resolves the thick focusing lens into a thin-lens kick M. between two
equal length drifts Mgyis, upstream and downstream of the kick
+ Result specifies exact thin-lens equivalent focusing element
+ Can also be applied to continuous focusing (in interval) and solenoid focusing
(in Larmor frame, see S2E and Appendix C) by substituting appropriately for x

E2 + Must adjust element length consistently with composite replacement E3
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Case 2) The piecewise constant de-focusing transfer matrix M, for £z = —& <0 Case 3) General element replacement with an equivalent thin lens
can be resolved as: . .
. Consider a general transport matrix:
' i ! _ | M Mo detM = My May — Mi2May =1
1 1 : : 1 2d < 5 — S M - M M
i‘ M, ‘i D 21 22 + Always true for linear optics, see Sec S5
5 5 A transfer matrix of a drift of length d1 followed by a thin lens of
Ch(s Sh(s)//r strength [, followed by a drift of length do gives:
Mic(slsi) = [ J/RSh(s) Ch(s) }
M |1 d 1 0 1 d;
Lo Yis) 1101 1—do/f di+ds—dids/f
i — i ) . —d2 1 2 — a1d2
h = Masite - Migiok - Masife Seuing M = Mtz thinsdrie B [ -1/f 1—di/f }
where diy = (M — 1)/ M.
Ch(s) = cosh[vk(s — ;)] d(s) = tanh[\/k(s — 5;)/2]/Vk 1= (May = 1)/ Moy
. dy = (M1 —1)/M2
Sh(s) = sinh[v/k(s — ;)] 1/f(s) = v/kSh(s) Y v
+ Result is exact thin-lens equivalent defocusing element f =M
+ Can be applied together with thin lens focus replacement to more simply + M;5 implicitly involved due to unit determinant constraint
i:;,rlve ghase-?dvanci fornﬁulas ete forl AG fgcusmg l?.mlcesl Discussions of this, and similar results can be found in older optics books
>
ustadjust element length consistently with composite replacement E4 such as: Banford, The Transport of Charged Particle Beams, 1965. E5
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Comments:
+ Shows that any linear optic (thick or thin) can be resolved into an
equivalent thin lens kick + drifts
- Use requires element effective length in drift + thin-lens-kick + drift to be
adjusted consistently
- - Care must be taken to interpret lattice period with potentially different
axial extent focusing elements correctly
+ Orbits in thin-lens replacements may differ a little in max excursions
etc, but this shows simple and rapid design estimates can be made using
thin lens models if proper equivalences are employed
- Analysis of thin lens + drifts can simplify interpretation and algebraic steps
+ Construct applies to solenoidal focusing also if the orbit is analyzed in
the Larmor frame where the decoupled orbit can be analyzed with Hill's
equation, but it does not apply in the laboratory frame
- Picewise contant (hard-edge) solenoid in lab frame can be resolved into a
rotation + thin-lens kick structure though (see Appendix C)

E6
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S3: Description of Applied Focusing Fields
S3A: Overview
Applied fields for focusing, bending, and acceleration enter the equations of
motion via:  Fe — Applied Electric Field
B® = Applied Magnetic Field

Generally, these fields are produced by sources (often static or slowly varying in
time) located outside an aperture or so-called pipe radius ” = 7, . For example,
the electric and magnetic quadrupoles of S2:

Electric Quadrupole

Hyperbolic
material
surfaces outside
pipe radius

r=rp

o=V, Conducting Beam Pipe: 7 — 7,
Electrodes Outside of Circle 7 — 7, s

Electrodes: «2 — y® — F72

SM Lund, PHY 905, 2018

Poles: ry — -2
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The fields of such classes of magnets obey the vacuum Maxwell Equations within
the aperture:

V-E*=0 V-B*=0
a 8 a a_la a
V xE _—&B VXB_C28tE

If the fields are static or sufficiently slowly varying (quasistatic) where the time
derivative terms can be neglected, then the fields in the aperture will obey the
static vacuum Maxwell equations:

V-E*=0
V xE* =

V-B*=0
V x B =

In general, optical elements are tuned to limit the strength of nonlinear field terms
so the beam experiences primarily linear applied fields.
+ Linear fields allow better preservation of beam quality
Removal of all nonlinear fields cannot be accomplished
+3D structure of the Maxwell equations precludes for finite geometry optics
+Even in finite geometries deviations from optimal structures and symmetry
will result in nonlinear fields
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As an example of this, when an ideal 2D iron magnet with infinite hyperbolic
poles is truncated radially for finite 2D geometry, this leads to nonlinear focusing
fields even in 2D:

+ Truncation necessary along with confinement of return flux in yoke

Cross-Sections of Iron Quadrupole Magnets

Ideal (infinite geometry) Practical (finite geometry)

k4l

Hyperbolic Iron Pole Sections
(infinite)

Shaped Iron Pole Sections
(finite)
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The design of optimized electric and magnetic optics for accelerators is a
specialized topic with a vast literature. It is not be possible to cover this topic in
this brief survey. In the remaining part of this section we will overview a limited
subset of material on magnetic optics including:

+(see: S3B) Magnetic field expansions for focusing and bending

+(see: S3C) Hard edge equivalent models

+(see: S3D) 2D multipole models and nonlinear field scalings

*(see: S3E) Good field radius

Much of the material presented can be immediately applied to static Electric
Optics since the vacuum Maxwell equations are the same for static Electric E¢
and Magnetic B® fields in vacuum.
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S3B: Magnetic Field Expansions for Focusing and Bending
Forces from transverse (BZ = 0) magnetic fields enter the transverse equations
of motion (see: S1, S2) via:
Force: F9 =~ qBycz x B
Field: Bf ==xB; +yBy
Combined these give: — —
Fy ~ —qBycBy

F) ~ qBpcBy
Field components entering these expressions can be expanded about x| = 0
+ Element center and design orbit taken tobe at x; = 0

1 29B2 30B2
B =B2(0)+ =20y + —=—2(0)x
z z(0) dy ©0) Oz © Nonlinear Focus -
19°B2 9*Bg 19B: .
+ - ——2(0)2? + =2 (0)xy + = —2(0)y? + - - - 1: Dipole Bend
2 O0x2 0x0y 2 Oy? 2: Normal
1 29Be 30B® :
o ha by y Quad Focus
y By (0) + oz (O)x + ay (O)y Nonlinear Focus 3: Skew
19°By 8?B2 1 0B | Quad Focus
1 0)22 Y (0 YV O)R 4
+2 Ox? (0)z +8x8y( )xy—l—Q 8y2( )y +
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Sources of undesired nonlinear applied field components include:

+ Intrinsic finite 3D geometry and the structure of the Maxwell equations

+ Systematic errors or sub-optimal geometry associated with practical trade-offs
in fabricating the optic

+ Random construction errors in individual optical elements

+ Alignment errors of magnets in the lattice giving field projections in
unwanted directions

+ Excitation errors effecting the field strength

- Currents in coils not correct and/or unbalanced

More advanced treatments exploit less simple power-series expansions to express
symmetries more clearly:
+ Maxwell equations constrain structure of solutions
- Expansion coefficients are NOT all independent
+ Forms appropriate for bent coordinate systems in dipole bends can become
complicated
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S3C: Hard Edge Equivalent Models
Real 3D magnets can often be modeled with sufficient accuracy by 2D hard-edge
“equivalent” magnets that give the same approximate focusing impulse to the
particle as the full 3D magnet
+ Objective is to provide same approximate applied focusing “kick” to particles
with different focusing gradient functions G(s)

See Figure Next Slide
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1 3D Magnet Strctire

i 1
End of 3D
Materials/Coil
!
|

of Magnet

|
3 Aperture !
:
T

G(z) = 3D Field Gradient

G™(z) = Hard-Edge
Equivalent
Field Gradient

Mid—Plane Transverse ¥
Structure

Mid-Plane Strueture
Generating B
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Many prescriptions exist for calculating the effective axial length and strength of
hard-edge equivalent models

+See Review: Lund and Bukh, PRSTAB 7 204801 (2004), Appendix C
Here we overview a simple equivalence method that has been shown to work
well:

For a relatively long, but finite axial length magnet with 3D gradient function:
0B2
dy

Take hard-edge equivalent parameters:
+ Take z = 0 at the axial magnet mid-plane

G(z) =

r=y=0

Gradient: G*=G(z=0)

- _[Twae
= gm0

+ More advanced equivalences can be made based more on particle optics
- Disadvantage of such methods is “equivalence” changes with particle
energy and must be revisited as optics are tuned
SM Lund, PHY 905, 2018

Axial Length:
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S3D: 2D Transverse Multipole Magnetic Fields

In many cases, it is sufficient to characterize the field errors in 2D hard-edge
equivalent as:

1 o0

—0o0
1 o0

= / s
oo
2D Effectlve Fields 3D Flelds
' . ) * dz
Operating on the vacuum Maxwell equations with: 7

yields the (exact) 2D Transverse Maxwell equations :

OB, (z,y) _ aB—y(xvy) < From VxB=0

y N ox
0B:(x,y) _ 0By(x,y) | < From V-B=0
Ox Yy
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These equations are recognized as the Cauchy-Riemann conditions for a
complex field variable:

E*EB_w—iB_y

Notation:
Underlines denote
complex variables
where confusion

1=v-1
to be an analytical function of the complex variable:

ZE\/—_1|

|gzw+w

may arise
Cauchy-Riemann Conditions 2D Magnetic Field
E:u(x,y)—i—w(m,y) u:B_z ’U:—B_y
ou _ v IB.(z,y) _  9By(z,y)
dr Oy ox o dy
Ou __0v _y  9Bu(xyy) _9B,(z,y)
dy Ox Ay Oz

F = u+ v analytic
func of z =z + 1y

F=B,— zB_y analytic
func of z =z + 1y

Note the complex field which is an analytic function of 2 = T + 1y is
B* =B, —iB, NOT B = B, +iB, . This is not a typo and is
necessary for B to satisfy the Cauchy-Riemann conditions.

+ See problem sets for illustration
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It follows that B*(2) can be analyzed using the full power of the highly
developed theory of analytical functions of a complex variable.

Expand B*(z) as a Laurent Series within the vacuum aperture as:

Z ot

B*(z) = By(z,y) —

b,, = const (complex)

n = Multipole Index
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The b, are called “multipole coefficients” and give the structure of the field.
The multipole coefficients can be resolved into real and imaginary parts as:

b, =A, —iB,
B,, = "Normal” Multipoles
A,, = 7Skew” Multipoles

2

Some algebra identifies the polynomial symmetries of low-order terms as:

n—1

Cartesian projections: B, — iB,, = (A, — iB,)(z +iy)

Index | Name Normal (A,, = 0) Skew (B, = 0)

n Bz/B n y/B Bt/An By/-An

1 Dipole 0 1 1

2 Quadrupole | y T x -y

3 Sextupole 2zy 2% —y? 12 —y? —2xy

4 Octupole 3a2y — 33 2% — 3xy? a® 31y =322y + o°

5 Decapole 4y — 4oy 2t — 622y + oyt b — 622y +yt  —dady + day?
Comments:

+Reason for pole names most apparent from polar representation
(see following pages) and sketches of the magnetic pole structure
+Caution: In so-called “US notation”, poles are labeled with index n -> n -1
 Arbitrary in 2D but US choice not good notation in 3D generalizations
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Comments continued:
+Normal and Skew symmetries can be taken as a symmetry definition. But this
choice makes sense for n = 2 quadrupole focusing terms:

Fg = —qBycB, = —qBpc(Bax — Azy)
Fg = qBeB, = qfpc(Bay + Azx)
In equations of motion:

Normal = Bs:
Skew = As:

z-eqn, z-focus y-eqn, y-defocus
z-eqn, y-defocus  y-eqn, x-defocus

Magnetic Pole Symmetries (normal orientation):

Dipole (n=1) Quadrupole (n=2) Sextupole (n=3)

TIIiT /{ k ----- ’%‘f‘iﬁ

+ Actively rotate normal field structures clockwise through an angle of 7 / (2n)

for skew field component symmetries
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Multipole scale/units
Frequently, in the multipole expansion:

B*(2) = Bu(,y) — iBy(,y) = ) b,z"""

n=1

the multipole coefficients b, are rescaled as

b, — bnr; - r, = Aperture "Pipe” Radius
Closest radius of approach of magnetic

sources and/or aperture materials

o) n—1
=N é)
nz::l—n <Tp

so that the expansions becomes

B*(2) = Bi(v.y) —iB,

Advantages of alternative notaiton:
+ Multipoles b,, given directly in field units regardless of index n
+ Scaling of field amplitudes with radius within the magnet bore becomes clear
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Scaling of Fields produced by multipole term:
Higher order multipole coefficients (larger n values) leading to nonlinear focusing
forces decrease rapidly within the aperture. To see this use a polar representation

fOI _.’27 _bn
r = 4 /2 2
6 r y

0 = arctan[y, z]

1, = Real Const

z=x+1iy =re"

by, = |by le™

Thus, the nth order multipole terms scale as

n—1 n—1
= = |b,| r eil(n=1)0+4,]
AT Ay

+ Unless the coefficient |bn| is very large, high order terms in » will become
small rapidly as 7, decreases
+ Better field quality can be obtained for a given magnet design by simply
making the clear bore 7p larger, or alternatively using smaller bundles (more
tight focus) of particles
- Larger bore machines/magnets cost more. So designs become trade-off
between cost and performance.

- Stronger focusing to keep beam from aperture can be unstable (see: S5)
SM Lund, PHY 905, 2018
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S3E: Good Field Radius

Often a magnet design will have a so-called “good-field” radius 7" = 7'¢ that the
maximum field errors are specified on.
+In superior designs the good field radius can be around ~70% or more of the
clear bore aperture to the beginning of material structures of the magnet.
+Beam particles should evolve with radial excursions with 7 < 7y

rp = Clear Bore Radius
~ Pole Radius Typical

rq = Good Field Radius
~ 70% 7, Typical
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Comments:
+ Particle orbits are designed to remain within radius "9
+ Field error statements are readily generalized to 3D since:
V-B*=0
VxB*=0
and therefore each component of B? satisfies a Laplace equation within the

vacuum aperture. Therefore, field errors decrease when moving more deeply
within a source-free region.

— V’B*=0

SM Lund, PHY 905, 2018 Accelerator Physics 155

S3F: Example Permanent Magnet Assemblies

A few examples of practical permanent magnet assemblies with field contours are
provided to illustrate error field structures in practical devices

8 Rectangular Block Dipole 8 Square Block Quadrupole
y

¥

o

s
AV /6
oL
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For more info on
permanent magnet design
see: Lund and Halbach,
Fusion Engineering Design,
32-33, 401-415 (1996)
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S4: Transverse Particle Equations of Motion with
Nonlinear Applied Fields S4A: Overview

In S1 we showed that the particle equations of motion can be expressed as:

/ B(l
X//+(’Yb[7)b> x| = q E® + q % x BY + qb, X\ X3
U (wBe) T mmBEe T myBe L myBe
q 0
Vi Bpc? 0x1

When momentum spread is neglected and results are interpreted in a Cartesian
coordinate system (no bends). In S2, we showed that these equations can be
further reduced when the applied focusing fields are linear to:

v (wB) z q 9

+ + ra(s)z = = ¢
('Ybﬁb) m'Yb ﬁb ‘72 oz
( vB)’ g 0

oy T Ry(s)y = 50
(7 ) m'yb Bb myPB2c? oy
where ks (s) = z-focusing function of lattice
ky(s) = y-focusing function of lattice
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describe the linear applied focusing forces and the equations are implicitly
analyzed in the rotating Larmor frame when B? #0.

Lattice designs attempt to minimize nonlinear applied fields. However, the 3D
Maxwell equations show that there will always be some finite nonlinear applied
fields for an applied focusing element with finite extent. Applied field
nonlinearities also result from:

+ Design idealizations

+ Fabrication and material errors
The largest source of nonlinear terms will depend on the case analyzed.

Nonlinear applied fields must be added back in the idealized model when it is
appropriate to analyze their effects
+ Common problem to address when carrying out large-scale numerical
simulations to design/analyze systems

There are two basic approaches to carry this out:
Approach 1: Explicit 3D Formulation
Approach 2: Perturbations About Linear Applied Field Model

We will now discuss each of these in turn
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S4B: Approach 1: Explicit 3D Formulation

This is the simplest. Just employ the full 3D equations of motion expressed in
terms of the applied field components E®, B® and avoid using the focusing
functions Kz, Ky

Comments:
+Most easy to apply in computer simulations where many effects are
simultaneously included
- Simplifies comparison to experiments when many details matter
for high level agreement
+ Simplifies simultaneous inclusion of transverse and longitudinal effects
- Accelerating field 'Y can be included to calculate changes in 85, Vb
- Transverse and longitudinal dynamics cannot be fully decoupled in
high level modeling — especially try when acceleration is strong in
systems like injectors
+Can be applied with time based equations of motion (see: S1)
- Helps avoid unit confusion and continuously adjusting complicated
equations of motion to identify the axial coordinate s appropriately
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S4C: Approach 2: Perturbations About Linear Applied Field Model
Exploit the linearity of the Maxwell equations to take:

Tl + 0E]
B® =B*. + /B¢

where
E?|., BYL are the linear.field components Ky Ky
incorporated in
to express the equations of motion as:
" (’Ybﬁb)/ ’ q q /
+ T 4 Kyt = ———50E, — ———0B, + ———JBJy
(08p) ‘ mypBEc? mypBee Y m’YbﬁbC
. q 99
my; 32 my3B2c2 Ox
(76/3)’ q o q /
"y v kyy = ————0E!+ ——0B? — —— 6Bl
(755) T e B2E T T e Bye m%ﬁbc
a9
my; B2 mr332c2 83/
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This formulation can be most useful to understand the effect of deviations from
the usual linear model where intuition is developed

Comments:
+ Best suited to non-solenoidal focusing
- Simplified Larmor frame analysis for solenoidal focusing is only valid

for axisymmetric potentials o= <l5(7‘) which may not hold in the
presence of non-ideal perturbations.

- Applied field perturbations 0E , dB® would also need to be projected
into the Larmor frame

+ Applied field perturbations SET, 6B” will not necessarily satisfy the
3D Maxwell Equations by themselves
- Follows because the linear field components Ej_ |L7 B ‘ L
will not, in general, satisfy the 3D Maxwell equations by themselves
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future
editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams

Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/msu/phy905_2018

Redistributions of class material welcome. Please do not remove author credits.

SM Lund, PHY 905, 2018

Accelerator Physics 162




