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S9: Momentum Spread Effects in Bending and Focusing
S9A: Formulation

Except for brief digressions in S1 and S4, we have concentrated on particle
dynamics where all particles have the design longitudinal momentum at a value of
s in the lattice:

| ps = mypPpc = same for every particle

Realistically, there will always be a finite spread of particle momentum within a
beam slice, so we take:

Ps =po +0p

Po = mpPrc = Design Momentum

op = Off Momentum

Typical values of momentum spread in a beam with a single species of particles
with conventional sources and accelerating structures:
1]
Po
The spread of particle momentum can modify particle orbits, particularly when
dipole bends are present since the bend radius depends strongly on the particle

momentum
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Full Orbit Resolution in a Periodic Dispersive Lattice

Taking a particle initial condition,

x(s=s;) = 6:5_]3

2 (s=s;) =1, Po
and using the homogeneous (Hill’s Equation Solution) and particular solutions
(Dispersion function) of the periodic lattice, the orbit can be resolved as

— D;C(s|s;) — DiS(s|ss)]
D;C’(s|s;) — DLS'(s]s4)]

z(s) =z, + xp = 2;C(s|s;) + @, S(s|s;) + 6[D(s)
2’ (s) = @), + x), = 2;C" (s]s) + 2.5 (1) + O[D'(s) —

here,
D(s=s;)=D;

D'(s=s;) =D,
are uniquely determined in the periodic lattice
* Varies with choice of initial condition (s = s;) in lattice only
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To better understand this effect, we analyze the particle equations of motion with
leading-order momentum spread (see: S1H) effects retained:

1 1-96 K () |
" z — —
YO maTrs T aror | " T 155 R
Koy (s
W@%+a%%%w$—0
Magnetic Dipole Bend
R(s) = Local Bend Radius 1 B aipote
for design momentum pg R(s) = Byl
(R — oo in straight sections) p
Po
6= op Kz, = Focusing Functions [Bp] = q
Do (using design momentum)
_J 1, Magnetic Quadrupoles
"~ ]2, Solenoids, Electric Quadrupoles
Neglects:

+ Space-charge: ¢ — 0
+ Nonlinear applied focusing: E*, B® contain only linear focus terms
* Acceleration: pg = mcypp = const
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In the equations of motion, it is important to understand that BZ of the magnetic
bends are set from the radius R required by the design particle orbit
(see: S1 for details)

+ Equation relating R to fields must be modified for electric bends (see S1)

+ y-plane bends also require modification of eqns (analogous to x-plane case)
The focusing strengths are defined with respect to the design momentum:

g G = —0E3 /0x = OF;; /0y = Electric Quad.

—Ky = BoclBp]’

Ky =4 —RKy = %, ) G = 0B3 /0y = 0By /0x = Magnetic Quad.
Ky = (2?];2]) ,  B.o = Solenoidal Magnetic Field

Vb, Bp calculated from ¢, m and [Bp]
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Comments:

+ Electric and magnetic quadrupoles have different variation on
different axial velocity dependance in the coupling to the fields

+ Included solenoid case to illustrate focusing dispersion but this would rely on
the Larmor transform and that does not make sense in a bent coordinate system

due to the

1 1-96 Kz () 6 1
BE1+s  aror) T T R

')+ () =0

2" (s) +

Terms in the equations of motion associated with momentum spread ( ) can be
lumped into two classes:

S.9B: Dispersive -- Associated with Dipole Bends

S.9C: Chromatic -- Associated with Applied Focusing (<)

SM Lund, PHY 905, 2018 Accelerator Physics

S9B: Dispersive Effects

Present only in the x-equation of motion and result from bending. Neglecting
chromatic terms:

I 1 1-6 B ) 1
T+ mTrs W) = TS R
Term 1 Term 2

Particles are bent at different radii when the momentum deviates from the design
value ( § # 0 ) leading to changes in the particle orbit
+Dispersive terms contain the bend radius R

Generally, the bend radii R are large and J is small, and we can take to leading

order:

11-9

R21+56
5 1

1)
Term 2: mﬁ =~ E
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+I€m:| r~ kyx + O(1/R?) + ©(5/R?, 6%/ R?)

Careful if R not large as
might be the case in
low-energy beam lines

Term 1: [

+©(6%/R)
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The equations of motion then become:
4]
R(s)

y"(s) + ry(s)y(s) =0

+The y-equation is not changed from the usual Hill's Equation

2"(s) + ki (s)a(s) =

The x-equation is typically solved for periodic ring lattices by exploiting the linear
structure of the equation and linearly resolving:

2(s) = n(s) + 2p(s)

xp, = Homogeneous Solution

x, = Particular Solution

where Th is the general solution to the Hill's Equation:
24 (8) + kx(8)zp(s) =0

and Tp is the periodic solution to:

1
7y =8-D D/(5) 4 Ra()D(s) = s
D = Dispersion Function D(s+ Lp) = D(s)
SM Lund, PHY 905, 2018 Accelerator Physics 13
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This convenient resolution of the orbit x(s) can always be made because the
homogeneous solution will be adjusted to match any initial condition

Note that T}, provides a measure of the offset of the particle orbit relative to the
design orbit resulting from a small deviation of momentum (§ )

x(s) = 0 defines the design orbit

[[D]] = meters

6 - D = Dispersion induced orbit offset in meters

Comments:

+ It can be shown (see Appendix B) that D is unique given a focusing function K
for a periodic lattice provided that % £ integer
™

- In this context D is interpreted as a Lattice Function similarly to the
betatron function
- Consequently, 6D gives the closed orbit of an off-momentum particle in a
ring due to dispersive effects
+ The case of how to interpret and solve for D in a non-periodic lattice (transfer
line) will be covered
- In this case initial conditions of D will matter

Accelerator Physics 14

Extended 3x3 Transfer Matrix Form for Dispersion Function
Can solve D in

1
D// + KZID = E
by taking
D—D D Dy, = Homogeneous Solution
=Dht Dy D,, = Particular Solution

Homogeneous solution is the general solution to
+ Usual Hill’s equation with solution expressed in terms of principle functions in 2x2
matrix form

DZ—FI{zDh =0

Dyl . [ D
| of ], =M [ ]

(et F 3],

C'(s|si)  S'(s]s;) Dy,

SM Lund, PHY 905, 2018 Accelerator Physics 15
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Particular solution take to be the zero initial condition solution to

+ Homogeneous part used to adjust for general initial conditions: always integrate from
zero initial value and angle

1 Denote solution as from zero initial value
D' 4 k. D, = — enote soluti S zero initial valu
P PR and angle at s = s; as Dy (s) = Dp(s|s;)

Dp(si) = 0= Dy(s:)

Can superimpose the homogeneous and particular solutions to form a generalized
3x3 transfer matrix for the Dispersion function D as:
+ Initial condition absorbed on homogeneous solution

D [ C(slsi) S(s|si) Dy(s|si) D
D' | = | C'(slsi) S'(slsi) Dp(slsi) D’
1], Lo 0 1 1],
[ M(slis)] Dy(sls) | [ D D
= Dy (slsi) |- | D = Ms(sls;)- | D’
00 1 1], 1],

Accelerator Physics 16




For a periodic solution:
D(s; + Ly) = D(s:)
D/(Si + Lp) = D/(Sl)

This gives two constraints to determine the needed initial condition for periodicity
+ Third row trivial

D(Sz) — C(SZ + LHS,)D(SI) — S(Sl + Lp|51)D/(SZ) = Dp(Si + Lp|si)
D'(si) = C'(si + Ly|si)D(s:) — S'(si + Ly|si) D' (si) = Dy (si + Ly|si)

Solving this using matrix methods (inverse by minor) and simplifying the result
with the Wronskian invariant (S5C)

W = C(s|s;)S (s|si) — S(s|s:)C"(s]si) =1

and the definition of phase advance in the periodic lattice (S6G)

—_

1
COS 0oy = §Tr M(s; + Lyp|s;) = E[C(si + Lpls;) + S (si + Lyplsi))

SM Lund, PHY 905, 2018 Accelerator Physics 17

Yields:

1 —S'(sl—i-Lp\s‘Z) S(”‘Z-"-Lp"iz)

D _ 1
[ D’ L T 2A=cosoor) | C(s; 4 Lylsi) 1—C(si + Lp|s;)

} , [ Dy(si + Lp|si)
Dy, (si + Lp|ss)

+ Resulting solution for D from this initial condition will have the periodicity of
the lattice. These values always exist for real oo, (09, < 180°)

* Values of D(s;), D’(s;) depend on location of choice of $; in lattice period

+ Can use 3x3 transfer matrix to find D anywhere in the lattice

+ Formulation assumes that the underlying lattice is stable with g, < 180°

Alternatively, take $; = $ to obtain

[1—8"(s 4 Lyl|s)] Dp(s + Lp|s) + S(s + Ly|s) Dy, (s + Ly|s)
2(1 — cosogy)

C'(s + Lp|s)Dy(s + Lp|s) + [1 = C(s + Lp|s)| D}, (s + Ly|s)
2(1 — cos 0g,,)

D(s) =

D'(s) =

SM Lund, PHY 905, 2018 Accelerator Physics 18

Particular Solution for the Dispersion Function in a Periodic
Lattice

To solve the particular function of the dispersion from a zero initial condition,

1
D;)/—'—K/Z-Dp = E

A Green’s function method can be applied (see Appendix A) to express the
solution in terms of projection on the principal orbits of Hill’s equation as:

Dy(s) = / s %G(s,é)
G(s,8) = S(s]s;)C(8]s;) — C(s]s:)S(8]si)

Dy(si) =0= D;;(Si)

(s|s;) = Cosine-like Principal Trajectory

C(s|
S(s|s;) = Sine-like Principal Trajectory

Cosine-Like Solution
C"(s|s;) + K(s)C(s|s;) =0
C(silsi) =1

C'(s4]s:) =0

SM Lund, PHY 905, 2018

Sine-Like Solution

8" (s|s:) + k(s)S(s|s;) =0
S(si|si) =0

S'(si]s8:) =1

Accelerator Physics 19

Discussion:
+ The Green’s function solution for D), together with the 3x3 transfer matrix
can be used to solve explicitly for D from an initial value
+ The initial values D(s;), D’(s;) found will yield the unique solution for D
with the periodicity of the lattice

The periodic lattice solution for the dispersion function can be expressed in terms
of the betatron function of the periodic lattice as follows:

From S7C:
Tl Stslsy a=-p'/2
M(s|s;) = { C'(s|si)  S'(s|s:) }
VBiBsin Av(s)

\/ B eos Ati(s) + a; sin Ads(s)]
=7 O\t/(;z;_g) cos A(s) — Hg[\/ﬂi((:; sin Ay (s) \/%[cos A(s) — asin A(s))
and using

S 5 1 B B B B
D,(s) = /Sl ds %G(s,s) G(s,5) = S(s|si)C(8si) — C(s|s:)S(8]si)

and the periodicity of the lattice functions 3, « = —4'/2

SM Lund, PHY 905, 2018 Accelerator Physics 20




along with considerable algebraic manipulations show that the dispersion function
D for the periodic lattice can be expressed as:

s stlp S
g = gL I [ 5 SO

Full Orbit Resolution in a Periodic Dispersive Lattice

Taking a particle initial condition,
~ =8;) =x; 5p
- ) cos] A (3) — Ap(s) — s/ s =s) = s 5P
2sin(og, /2 R(3) ’ (s =s;) =, Po
D'(s) — a(s) D(s) and using the homogeneous (Hill’s Equation Solution) and particular solutions
B(s) (Dispersion function) of the periodic lattice, the orbit can be resolved as
1 s+Lyp 5 x(s) = C1C(s|s;) + C2C(s|s;) + dD(s) C1, C3 = constants
- - e — / ds VRB(E;) SIn[AG(3) — Ab(s) — 00,/2] o o
/ R 5 P = s . =x; — ol
Bls) sin(0:/2) — x, L ,  Fixes constants ! a:l ,
Givi x; =Co+0D; Cy=x;— 46D,
+ Formulas and related information can be found in SY Lee, Accelerator ving,
Physics and Conte and MacKay, Introduction to the Physics of Particle
Accelerators
+ Provides periodic dispersion function D as an integral of betatron function
describing the linear optics of the lattice

z(s) = zp, + xp = 2;,C(s|s;) + 2,5(s|s;) + 6[D(s) — D;C(s|s;) — D;S(s|s;)]
2'(s) = @), + x), = 2;C" (s]s;) + 2.5 (s]sq) + [ D' (s) — D;C'(s]s;) — DS’ (s|s:)]

here, D(s=s;)=D;
D'(s=s;)=D;
are initial dispersion values that are uniquely determined in the periodic lattice
* Varies with choice of initial condition (s = s;) in lattice
SM Lund, PHY 905, 2018 Accelerator Physics 21 SM Lund, PHY 905, 2018 Accelerator Physics 22
3x3 Transfer Matrices for Dispersion Function Drift: k.(s)=0, R— o0
In problems, will derive 3x3 transfer matrices:
+ Summarize results here for completeness 1 (s—si) 0
+ Can use Green function results and 2x2 transfer matrices from previous Ma(slsi) = | 0 1 v
sections to derive 00 1
+ Can apply to any initial conditions D;, D)
— Only specific initial conditions will yield D periodic with (a periodic) lattice

— Useful in general form for applications to transfer lines, achromatic bends, etc

Thin Lens: located at s = s; with focal strength f (no superimposed bend)
D" + kD = 1
R

Kz (8) = —%5(8 - 8i),

R —
1 0 0
+lo— 1
M (s |s; ) = 7 10
D D 0 01
D’ = M3(S|Si) . D
1 1
S Si
SM Lund, PHY 905, 2018 Accelerator Physics 23 SM Lund, PHY 905, 2018 Accelerator Physics 24




Thick Focus Lens: with £; = & = const > 0 (no superimposed bend)

cos[vVi(s — ;)] ﬁ sin[vi(s —s;)] 0]
M;(slsi) = | —Vasin[Va(s —s;)]  cos[VA(s — s;)] 0
0 0 1 ]
Thick deFocus Lens: with k, = —& = const < 0 (no superimposed bend)
cosh[V&(s — si)] ﬁ sinh[Vi(s — ;)] 0]
Mj;(slsi) = | Vasinh[Va(s —s;)] cosh[v/A(s — s;)] 0
0 0 1 ]

Bend with Focusing: R = const, &, = k = const > 0

cos[Vi(s — s)] ﬁ sin[v/&(s — s;)] 1 {1 — cos[VA(s — sz)]}

—VEsin[Vi(s —s;)]  cos[VE(s — s;)] ﬁ sin[v/&(s — s;)]

0 0 1

Bend with deFocusing: R = const, x; = —& = const < 0

cosh[VA(s — 5;)] ﬁ sinh[V&(s — s;)] 2= {—1 + cosh[VA(s — s,)]}

Visinh[Vi&(s — s;)]  cosh[Vi(s — s;)] R+ﬂ sinh[v/&(s — 5;))]
0 0 1

SM Lund, PHY 905, 2018

Ms(s|s;) =

M;(s]si) =

Accelerator Physics 25

For the special case of a sector bend of axial length ¢ the bend with focusing,

corresponding to
1

R?
+ Bend provides x-plane focusing
this result reduces for transport through the full bend to:

R = const, Ky =

{= RO, 60=Bend Angle
cosf  Rsinf R(1—cosb)
M; = —% cos 6 sin 6
0 0 1

For a small angle bend with |§| < 1, this further reduces to:

1 ¢ 09)2
M~ |0 1
00

)

SM Lund, PHY 905, 2018 Accelerator Physics 26

/I Example: Dispersion function for a simple periodic lattice

For purposes of a simple illustration we here use an imaginary FO (Focus-Drift)
piecewise-constant lattice where the x-plane focusing is like the focus-plane of a
quadrupole with one thick lens focus optic per lattice period and a single drift with
the bend in the middle of the drift
+ Focus element implemented by « > 0 x-plane quadrupole transfer matrix
in S5B.
L,=05m k= 20/m2 in Focusing

n=20.5 R =15m, in bend, 25% Occupancy in Period
2.0 T r "
= 10} D K _
S 05 _ 0 3
= 00| /R
s o M o~
15 : : :
0.0 0.5 1.0 1.5 2.0
s/ L, [Lattice Periods|
1
27
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// Example: Dispersion broadens the distribution in x

Same Bundle of particles D nonzero
+ Gaussian distribution of momentum
spreads (9) distorts the x-y distribution
extents in x but not in y

Uniform Bundle of particles D =0

D=0 extent

I
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// Example: Continuous Focusing in a Continuous Bend
Kz(s) = k%o = const
R(s) = R = const

Dispersion equation becomes:

1
i 2 _
With constant solution:
D = const

1
~ 12 p
k ﬁoR
From this result we can crudely estimate the average value of the dispersion
function in a ring with periodic focusing by taking:
R = Avg Radius Ring
L, = Lattice Period (Focusing)
00z = 2-Plane Phase Advance
2
)
Ly, ogR /I

SM Lund, PHY 905, 2018 Accelerator Physics 29

Many rings are designed to focus the dispersion function D(s) to small values in
straight sections even though the lattice has strong bends
+ Desirable since it allows smaller beam extents at locations near where D = 0
and these locations can be used to insert and extract (kick) the beam into and
out of the ring with minimal losses and/or accelerate the beam
- Since average value of D is dictated by ring size and focusing strength
(see example next page) this variation in values can lead to D being
larger in other parts of the ring
+ Quadrupole triplet focusing lattices are often employed in rings since the use
of 3 optics per period (vs 2 in doublet) allows more flexibility to tune D while
simultaneously allowing particle phase advances to also be adjusted

Lattice
 Period
i Sector ;

One Lattice Period

Triplet I .

Quadrupoles ““ “ilfnf"

Ring Lattice: 12 Periods
(SIS-18, GSI)

sles
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Dispersive Effects in Transfer Lines with Bends

It is common that a beam is transported through a single or series of bends in
applications rather than a periodic ring lattice. In such situations, dispersive
corrections to the particle orbit are analyzed differently. In this case, the same
particular + homogeneous solution decomposition is used as in the ring case with
the Dispersion function satisfying:

D" (s) + k4(s)D(s) =

1
R(s)
However, in this case D is solved from an initial condition. Usually (but not

always) from a dispersion-free initial condition s = s; upstream of the bends
with:

D(SL> =0= DI($i>

If the bends and focusing elements can be configured such that on transport
through the bend (s = s4) that

D(Sd) =0= D,(Sd)

Then the bend system is first order achromatic meaning there will be no final orbit
deviation to 1" order in § on traversing the system.

SM Lund, PHY 905, 2018 Accelerator Physics 31

This equation has the form of a Driven Hill's Equation:

" rz— D
2"+ k(s)x = p(s)
p—1/R
The general solution to this equation can be solved analytically using a Green
function method (see Appendix A) based on principle orbits of the homogeneous
Hill’s equation as:

os) = #(s0)C(sls0) + ' (5)(sls0) + [ d5 (s, 5p(3)

Si

G(s,8) = S(s|s:)C(8]si) — C(s|s:)S(5]s;)

Cosine-Like Solution
C"(s]s;) + K(s)C(s|s;) =0
C(sils;) =1

C'(si|s;) =0

Sine-Like Solution
8" (s]s;) + K(s)S(s|s;) =0
S(si|si) =0
S/(Si|5i) =1
z(s;) = Initial value z
2’ (s;) = Initial value 2’
Green function effectively casts driven equation in terms of homogeneous solution

projections of Hill’s equation.

SM Lund, PHY 905, 2018 Accelerator Physics 32




Using this Green function solution from the dispersion-free initial condition gives

D(S) = S(S|si) /sd§ %C(ﬂsl) — C($|5i) /sd§ %5(5‘81)

C(s]s;) = Cosine-like Principal Trajectory
S(s|

s;) = Sine-like Principal Trajectory

+ Alternatively, the 3x3 transfer matrices previously derived can also be applied
to advance D from a dispersion free point in the the linear lattice

The full particle orbit consistent with dispersive effects is given by

z(s) = x(s:)C(s]s;) + 2'(s:)S(s|s;) + 6D(s)
7/ (s) = x(s;)C(s|s;) + a/(s:)S'(s|s;) + dD'(s)

» Note that D(s;) =0 =
initial condition

D'(s;) in this expansion due to the dispersion free

SM Lund, PHY 905, 2018 Accelerator Physics 33

For a 1* order achromatic system we requite for no leading-order dispersive
corrections to the orbit on transiting the lattice ( s; — sq). This requires:

0— /ds %C(Zﬂsi)
0:/5 ds -1 R() S(5]s:)

Various lattices consisting of regular combinations of bends and focusing optics
can be made achromatic to 1* order by meeting these criteria.
+ Higher-order achromats also possible under more detailed analysis. See, for
examples: Rusthoi and Wadlinger, 1991 PAC, 607

Examples are provided in the following slides for achromatic bends as well as
bend systems to maximize/manipulate dispersive properties for species separation.
Further examples can be found in the literature

SM Lund, PHY 905, 2018 Accelerator Physics 34

Symmetries in Achromatic Lattice Design
Input from C.Y. Wong, MSU
Symmetries are commonly exploited in the design of achromatic lattices to:

+ Simplify the lattice design

+ Reproduce (symmetrically) initial beam conditions downstream
Example lattices will be given after discussing general strategies:
Approach 1: beam line with reflection symmetry about its mid-plane

Plane of reflection

/\f f /\ i : initial
i - middl
\/ E v n; : ﬁmrial )

S = Sm 5 =38y

If ¢'(sm) =0, then g(s;) = g(ss), ¢'(s;) = —g'(sy)
where g can be 3., 8, or D

After the mid-plane, the beam traverses the same lattice elements in reverse order.

So if the lattice function angle (d/ds) vanishes at mid-plane, the lattice function
undergoes “time reversal” in the 2™ half of the beam line exiting downstream at

the symmetric axial location with the same initial value and opposite initial angle.
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Approach 2: beam line with rotational symmetry about the mid-point:

0

Note that the dipoles bend
in different directions

Origin of rotation  Trajectory in red: ideal
off-momentum particle

x(s;) = D(s;)0 #0

Focusing properties of dipoles are independent of bend direction (sign §).
Same reasoning as Approach 1 gives:

If /8;71/ (Sm) =0, then Bmy(sz) = ﬁx,y(sf) ﬁz y(sz) =—0; y(sf)

Dispersive properties of dipoles change with bend direction. See Appendix C.
If D(s,,) = 0 (instead of D'), then D(s;) = —D(sy), D'(s;) = D'(sy)

If D vanishes at mid-plane, the dispersive shift of an off-momentum particle also
exhibits rotational symmetry about the mid-point
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Example: Achromatic Bend with Thin Lens Focusing
Input from C.Y. Wong, MSU
Apply Approach 1 with simple round numbers:

p, 0 /\f . /\ §=r/6
,,,,,, E p=6/mm
a \/ b I b \/ a
g ' a=1m
s:/si s =5y b=1m
Bend Focus Focus Bend
MAD-X 5.02.00 05/08/16 16.42.25 Dl (sl )7

10. Achromatic Bend 20

. 0

> P18 D'(sy) =0 if f=ptan=+a

s re 2

7. [ 1.4 (see next slide)
~ 6] P2 _ = f=151lm
< 4 ] 05"  The bending system is achromatic,

3] Los but the betatron functions are

2 L 0.4 asymmetric due to insufficient

1 [ 02 lattice parameters to tune.

O R S R S S S R s Add more elements to address

5 (m)

s
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Constraint Derivation
For incident beam with D(s;) = 0 = D’(s;), the dispersion function only evolves
once the beam enters the dipole

D 1 60 D 1 5 0 D
D]l=[010 D’ =(0 1 0o|M|[D
1), \0 01 1), \0 01 L),
where
1 00 1 a 0 cosf psinf p(1 —cosh)
M= |-+ 1 0]fo0o 1 0] =22 coso sin f
0 01 0 01 0 0 1

and (dispersion free initial condition)
D 0
D’ =10
1) 1
Note that the drift b after the thin lens focus does not affect D’
D/(Sm) = D/(Sm - b) =0 if M23 =0
Solution gives: 0
— f =ptan 3 +a
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Discussion:
+ Only have to design half the beam-line by exploiting symmetries:
* One constraint at mid-point satisfies two constraints at the end of the beam
line if an asymmetric design approach was taken
 Symmetric lattice easier to set/tune: strengths in 1* half of the beam line
identical to mirror pair in the 2" half
+ It is possible to achieve the same final conditions with an asymmetric beam
line, but this is generally not preferred
+ There should be more lattice strength parameters that can be turned than
constraints — needs more optics elements than this simple example
+ Except in simplest of cases, parameters often found using numerical
procedures and optimization criteria
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Discussion Continued:
+ Usually Approach 1 and Approach 2 are applied for transfer line bends with

D(si) = 0= D(sg), D'(si) = 0= D'(sy)

However, this is not necessary

+ Common applications with D(s;) = 0 = D’(s;) for linacs and transfer lines:

» Approach 1: fold a linac, or create dispersion at mid-plane to collimate /
select species from a multi-species beam
» Approach 2: translate the beam

+ Common applications for rings:

» Approach 1: Minimize dispersion in straight sections to reduce aberrations
in RF cavities, wigglers/undulators, injection/extraction, etc.

+ Not only is it desirable to minimize the dispersion at cavities for acceleration
purposes for a smaller beam, but an accelerating section has no effect on the
dispersion function up to 1" order only if D = D’ = 0 . To see this:

« Consider an off-momentum particle with #, = 6D’ =0, xp =D # 0
undergoing a purely longitudinal acceleration
0 changes while zp does not, so that D changes
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Example: Simplified Fragment Separator
Input from C.Y. Wong, MSU
Heavy ion beams impinge on a production target to produce isotopes for nuclear
physics research. Since many isotopes are produced, a fragment separator is
needed downstream to serve two purposes:

+ Eliminate unwanted isotopes

+ Select and focus isotope of interest onto a transport line to detectors

Different isotopes have different rigidities, which are exploited to achieve isotope
selection

ref particle (isotope) sets parameters
in lattice transfer matrices

Rigidity [Bp]===
5= op _ A[Bp] Deviation from the reference rigidity treated
p /) [Bplo as an effective momentum difference

+ Applied fields fixed for all species

p _ymu
q

Dispersion exploited to collimate off-rigidity fragments

SM Lund, PHY 905, 2018 Accelerator Physics 41

Discussion:
+ Only have to design half the beam-line by exploiting symmetries:
* One constraint at mid-point satisfies two constraints at the end of the beam
line if an asymmetric design approach was taken
» Symmetric lattice easier to set/tune: strengths in 1* half of the beam line
identical to mirror pair in the 2" half
+ It is possible to achieve the same final conditions with an asymmetric beam
line, but this is generally not preferred
+ There should be more lattice strength parameters that can be turned than
constraints — needs more optics elements than this simple example
+ Except in simplest of cases, parameters often found using numerical
procedures and optimization criteria
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NSCL A1900 Fragment Separator: Simplified Illustration
A1900 schematic

. " D= Dipole Bend Show only dipoles
/e \ and quadrupoles ==
A oy, x> FP
. @

T # * QT = Quadrupole
M¥%, D D %13 Triplet Focus

QT ' "QT
J [https://groups.nscl.msu.edu/al

900/overview/schematic.php]

(1

Further Simplified Example: 2 segment version

@OX XObf

Replace quadrupole triplets

Production by thin lens doublets &A Focal
target
plane
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Design Goals:
+ Dipoles set so desired isotope traverses center of all elements
# Dispersion function D is: large at collimation for rigidity resolution
small elsewhere to minimize losses
+ Bz By should be small at collimation point (compact separated beam) and focal plane

Apply Approach 1 by requiring D’ = 3, = le/ = (0 at mid-plane
Mid-Plane

Production f3 —f - fa f3 Focal Plane

Sl 16
2\% paw

_ e /
Dy =0=D, Be, By small D, =0=D,
Br=0=8, Pr=0=p,
B =By =Po Bo is dete.rmi.ned.by the initial spatial and Bs =By = Bo
angular distribution of the fragment beam
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Supplementary: Parameters for Simplified Fragment Separator
i —f2 p.0 fs —fa —fa f3 Pl —f £

0.6m Im Im 2m Im 2m 1m 2m
1.4m 1.4m

Desired isotope: 3'S'®* from “°Ar(140 MeV/u) on Be target

Im Im 0.6m

Initial conditions at production target:
(x'?) = 10 mrad

Energy: 120 MeV/u

Rigidity: ~ 3.15 Tesla-m (z?) = 1mm
€z ~ / (x2)(z’?) = 10 mm-mrad
Dipole p, 6 are fixed

Impose constraints and solve f’s numerically:
p=178m 0=mr/4

=1.12 drupol G =139T
Thus B, (0) is uniquely h - (gzrl;?iiégfso ¢ ! /m
determined by [Bp] fo=fi G2 =139T/m
B, (0) = 1.7 Tesla f3=179m  forlengths G3=87T/m
fo=4ltm (TR G =37T/m

For other isotopes:
If initial <$2> , <a¢'2> are same, scale all fields to match rigidity [Bp]
If not, the f’s also have to be re-tuned to meet the constraints

SM Lund, PHY 905, 2018 Accelerator Physics 45

Lattice functions and beam envelope

) L] X L] # Slits at mid-plane where dispersion large to
)0. Linear Achromat MAD-X 5.02.00 16/07/16 17.34.46 S0 . . . A .
B. B D collimate unwanted isotopes and discriminate
30.
momentum
30. 4.0
10. 3.

# x-envelope plotted for 3 momentum values:
ZTeny = T/ Br€x + 0D

20. '“E

0. 207

30. 2.(Q

Zz / ' j( +Aperture sizes and D (properties of lattice),
0 \ Lo determine the angular and momentum

20 [ acceptance of the fragment separator

/
I
’/' e
—~— 0.0
00 2. 4 6 8 10. 12 14 16

s (m)

B, By [m]

slits

g

°

op/p=0

z—envelope|mm)|
.
S

y—envelope[mm)|

dp/p = —2.5%

M op/p =2.5%

2 B B 17w 14 16

o

I S S—
s Imj s [m]
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Example: Charge Selection System of the FRIB Front End
Input from C.Y. Wong, MSU
An ECR ion source produces a many-species DC beam

A charge selection system (CSS) is placed shortly downstream of each source to
select the desired species for further transport and collimate the rest
+ The CSS consists of two quadrupole triplets
and two 90-degree sector dipoles ARTEMIS
+ The dipoles have slanted poles applied to Chorge sefection
increase x-focusing (x # 0) to enhance
dispersion in the middle of the CSS

FRIB CSS

VENUS-like ECR

it

(550) wanshs uopaajas ares adiey

R —
Simmmm‘!

DIVl Lullu, FI11 YUJ, ZU10
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Effective rigidity of ions emerging from ECR ion source

ECR ion sources typically emits a DC beam with several (many) species of ions
with different charges (q) and masses (m) giving different rigidities. We can
model species deviations with an effective momentum spread (6 ).
* Applied fields fixed for all species, so Rigidity measures strength of coupling
to the applied fields for all species
+ Near source, low energy heavy ions are nonrelativistic

q q q
In our formulation setup for a single species beam of charge q and mass m, the off

momentum parameter ¢ is defined by

== () (L) =tmba+a) 1

q q Po

70" = Design Value

S
p=po+dp J

Po

[Bplo = ‘% = Design Rigidity
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For a ions (species index j) of charge and mass ¢g;, m; accelerated through a
common electrostatic source potential V', we have

. _ 1 s
Energy Conservation: ¢;V' = 5m;v;

Energy Conservation: [Bp| = MY _ 2V (m;j/q;)
J

Take for the various species:
m; =mo+ Am

! 0 mg, qo = Design Species

4 = g0+ Aq

Giving:

mM;vU5 m/m 1/2
[Bp] = ™% = \/2Vm; [a) = \/2V (o an) ( mmime)

1+ Am/m, 1/2
/ 0) 2

By = [Bp10< i

[Bplo = 1/2V (mo/qo) = Design Rigidity

Define an effective off-momentum by the spread in Rigidity from design
s () A
P/ [Brlo

Equating Rigidity expressions for 1) (Single Species) and 2) (multi-Species)
identifies the “effective” momentum spread 6

1/2
[Belo(1 +6) = [Belo (Lxe/me )

1/2
_ ([ 1+Am/m
1+0= ( 1+Aq/qoo)

+ Common theme of physics: map new case (multi species) to simpler, familiar
case (single species with momentum spread)
+ For ECR ion source may have operating cases with Am =0
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Parameters for the CSS Lattice Functions of CSS
p,0,k k1 k3 k3 k1 p b,k Large dispersion and small beam size in x at mid-plane facilitates the collimation

[1_ [
a b c|_|c d

(1 [1
d c|_|c b a

Dipole:
6:71'/2 p:2/7rm

Mid-plane conditions:

az(8m) = ay(sm)=D" =0
2 _ 2

ke =0.1/p Ky =0.9/p

-n

02

1
where field index n = 0.9 from : 2" + kpx = 2" + z=0

n
y"+riyy:y"+ﬁy:0

Quadrupoles:

; 0.2 Drifts: Initial Conditions:

uad = U.2 1M

T .90 -2 a=04m Ba(s:) = By(si) = 3.971 m

S b=0.35m az(s;) = ay(s;) = —0.380
= —hgy = —1560m™% . _ s s e

K2z Ry c=0.13m ,

Kap = —kay = 7.51 m~? d=0.19m D(si) = D'(s:) = 0
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of unwanted species

— "

e I

8 CSS' ' . . . MAID-X'5.02.(')0 ]5/08/1.6 10.'13‘13 30
B- B, D
7A 4
L 25
6A 4
L 2.0
—~~ 5‘ 1
E -
= 4. L5 £
Q§ g
3.4
L 1.0
ZA 4
L 0.5
JA 4
0.0 : Lo
0.0 10 20 30 40 5.0 6.0
s (m)
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S9C: Chromatic Effects

Present in both x- and y-equations of motion and result from applied focusing
strength changing with deviations in momentum:
1 K (8)
z°(s) + ——==x(s) =0
(5) + gy )

+9)
V() + () =0

kz,y = Focusing Functions
with v, 8y calculated from pg

R — o

to neglect bending terms

+ Generally of lesser importance (smaller corrections) relative to dispersive
terms (S9C) except possibly:
* In rings where precise control of tunes (betatron oscillations per ring lap)
are needed to avoid resonances
* In final focus where small focal spots and/or large axial momentum spread
(in cases with longitudinal pulse compression) can occur
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Can analyze by redefining kappa function to incorporate off-momentum:

Kz (8)

(1 i 5)71 — "im,new(s)
However, this would require calculating new amplitude/betatron functions for
each particle off-momentum value d in the distribution to describe the evolution
of the orbits. That would not be efficient.

Rather, need a perturbative formula to calculate the small amplitude correction to
the nominal particle orbit with design momentum due to the off-momentum ¢ .
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Either the x- and y-equations of motion can be put in the form:

" K(s) _
x"(s) + mx(s) =0

Expand to leading order in ¢ :

2" (s) 4+ k(s)(1 —nd)z(s) =0

Set:

xo(s) = Orbit Solution for § =0

2(#) = zo(s) +n(s) n(s) = Orbit Correction to ¢ for d # 0

Giving:
xy + krg =0 )]
(w0 +1)" + 1(1 —nd)(zo +n) =0 2)

Insert Eq. 1) in 2) and neglect the 2™ order term in § - to obtain a linear
equation for 77 :

| 0" 4+ kn = nékxg |
SM Lund, PHY 905, 2018
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This equation has the form of a Driven Hill's Equation:
” =
"+ k(s)x = p(s)

p — noKI

The general solution to this equation can be solved analytically using a Green
function method (see Appendix A) as:

o) = as)C(sls) + @' (s)S6ls) + [ 5 Gls,p(6)

G(s,8) = S(s]s;)C(8]s;) — C(s]s:)S(8]s;)

Cosine-Like Solution
C"(s|s;) + K(s)C(s|s;) =0
C’(si|si) =0

Sine-Like Solution

8" (s]s;) + k(s)S(s|s;) =0
S(si|si) =0

8/(Si|8i) =1

z(s;) = Initial value z

2’ (s;) = Initial value 2’
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Using this result, the general solution for the chromatic correction to the particle
orbit can be expressed as:

n(s) = n(s;)C(s|s;) +n'(s;)S(s]s;) + nd f:’id§ G(s, 5)k(8)xo(5)
G(s,8) = S(s|s:)C(8]si) — C(s]s:)S(5]s;)
n(s;) = Initial value n

7' (s;) = Initial value 7’
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Chromatic orbit perturbations are typically measured from a point in the lattice
where they are initially zero like a drift where the orbit was correct before
focusing quadrupoles. In this context, can take:

n(si) =0=1'(si)

n(s) = nd f:id§ G(s,38)k(8)x0(3)

The Green function can be simplified using results from S6F:

5 ds
C(s|s;) = wu(j) cos Ath(s) — wiw(s) sin Awp(s) A(s) = /S w?(3)

S(s|si) = ww(s) sin Ap(s) w; = w(s =s;)

Giving after some algebra:

G(s,8) = S(s|s:)C(8]si) — C(s]s:)S(5]s:)
= w(s)w(3)[sin A)(s) cos Ay(8) — cos Ag)(s) sin A(8)]
= w(s)w(8) sin[A(s) — Ay(3)]
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Using this and the phase amplitude form of the orbit:
zo(s) = Aiw(s) cos[ih(s)]
= Vew(s) cos[Av(s) + 4]

+ Initial phase ¢; implicitly chosen (can always do) for initial amplitude A4; > 0

the orbit deviation from chromatic effects can be calculated as:

n(s) =nd /sd§ G(s, 8)k(8)xo(3)
= ndv/ew(s) /Sd§ #(8)w?(8) sin[Av(s) — A(8)] cos[ A (3) + 1]

Si

Formula applicable to all types of focusing lattices:
+ Quadrupole: electric and magnetic
+ Solenoid (Larmor frame)
+ Linac and rings

Add examples in future editions of notes ...
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In terms of the more commonly used betatron function:

B(s) = w?(s)

n(s) =nd /sdé G(s,8)r(8)xo(3)
= 0V [ 05 ()5 sinlA0(s) — AU(E)] coslAv(3) + ]

[ ds

Ay(s) = B3
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Comments:

+ Perturbative formulas can be derived to calculate the effect on betatron tunes
(particle oscillations per lap) in a ring based on integrals of the unpreturbed
betatron function: see Wiedemann, Particle Accelerator Physics

+ For magnetic quadrupole lattices further detailed analysis (see Steffen, High
Energy Beam Optics) it can be shown that:

- Impossible to make an achromatic focus in any quadrupole system.
Here achromatic means if

n(si) =0 =n'(s:)
that there is some achromatic point S = Sy post optics with
n(sg) =0=1n'(sy)

+ More detailed analysis of the chromatic correction to particle orbits in rings
show that a properly oriented nonlinear sextupole inserted into the periodic
ring lattice with correct azimuthal orientation at a large dispersion points can
to leading order compensate for chromatic corrections. See Wille, The
Physics of Particle Accelerators for details.

- Correction introduces nonlinear terms for large amplitude
- Correction often distributed around ring for practical reasons
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Chromaticity

When a particle has higher/lower momentum (6 ), we expect focusing strength to
go down/up
» Important for rings since a relatively small shift in tune can drive the particle
into a nearby low-order resonance condition resulting in particle losses
Denote:

v, = z-Tune including off-momentum §

= Number z-Betatron Oscillations in Ring

1 ds
== 7= Bz = Betatron Function including ¢
21 | Bi(s)
Yoz = Design 2-Tune (6 = 0)
L [ ds Bo. = Design Betatron Function (5 = 0)
=5 « = Design Betatron Function (6 =
27 ] Box(s) 0 §

Av, = v, — 1y, = x-Tune Shift
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Define the chromaticity as the change in tune per change in momentum (9 ) to
measure the chromatic change in focusing strength of the lattice:
+ Analogous treatment in y-plane

Av, Av, ..
= —— = x-Chromaticit
¢ op/po ) Y

Av, Av, .
= —7 =< -Chromaticit

+ Expect &, < 0 for any linear focusing lattice
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Go back to the leading order orbit equation of motion describing chromatic
effects:

2" (s) 4+ kz(s)(1 = nd)z(s) =0

This is the form of:
2"+ kyx =p1x with  p1 = ndk,

Which suggests use of a Floquet transformation as in resonance theory:

T
u = Bow Radial coordinate
1 5 ds
p=— po Angle advances by 2.7 over rin
Vor Jo Boa(3) y £

vy = Unperturbed z-betatron oscillations in ring
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Then the same steps in the analysis as employed in our study or resonance effects
shows that

2+ kpr = pr
becomes:

U+ l/ga:u = VgacB(Q)xplu
. d
= i

On the RHS of this perturbation equation, the coefficient of u is periodic with
period 27in ¥ , so we can complex Fourier expand it as
* Analogous to steps used to analyzed perturbations in resonances

i=v-1

o0
2 ;32 ik
Vo2 BozP1 = Z Cre™™ Cj = Complex Constants

jon: _ 1 —ik
Insert the expansion: Cp =5 §ringd5 Vou Bozspre”*¢

o0
. 2 2 52 ik
U+ Vipu = v, Boapiu = { E Cre™? | u

k=—c

Isolate the constant k= 0 value in sum and move to LHS, then all terms on RHS
have variation in ¥ :

Tune-Shift Perturbation
oo
i+ 13, — Colu = Z Cre*® | u
k#£0
k=—o00

Co = %= §5,.05 Pozp1

The homogeneous part of this equation has the form:

k=—oc
Lo L ds Uy + yguh =0 v, = x-Tune (shifted)
_ 2 52 —ike o=—[| —= i
Cy = o _Wdcp Vo BozD1€ vor Jo Box(3) with:
, ds 2 _ 2 _ 2 Yoz
= — ds Vozﬂozple_lkq’ = dp= Vo =Vog — CO = Vog — 2 ds /6093101
27 ring VO(L'B(L‘ s ring
» U measures the x-tune shift due to off momentum 6 contained in p,
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The tune-shift AV, due to off-momentum 6 can now be evaluated:

Vy = Voz + Avy

with

~ ygx + 29, Avy

(Leading Order)
Identifies:
1 _
Avp=——¢ dsfop | PL= "0k
4 ring
nod
= - ds ﬁOvaz

4T ring

Giving the chromaticity as:

f — Av, — Av,
T = ép/po o

SM Lund, PHY 905, 2018

= _% ﬁingds BOm/’im

Accelerator Physics 67

Summary of results with an analogous y-plane derivation:

Tunes
1 )
AV;L‘ = ds BOEPII = _n_ ds 601751
dr ring 4 ring
1 nd
AV.U B _E ringds Boyply N _E ringds ﬁoyﬁy
Chromaticities
A 1
51 = e = 5 ds BOzpﬂ = _E ds BOszz
g am ring J am ring
Al/y 1 50 P1 n
é.y 1) 47 fi‘ing 5 ) 47 ring y BOyﬁy

+ Formulas, as expressed, apply to rings but can be adapted for linacs
+ Chromaticities &z, are always negative in any linear focusing lattice
- Example: see FODO lattice function in following slides
+ The same formulas can be derived from an analysis of thin lens transfer matrix
corrections used to model off-momentum
- See Problem sets
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Reminder: Periodic Quadrupole FODO Lattice Phase-Space Evolution (see also: S7):

Parameters: Characteristics:
L, = Lattice Period nL,/2 ={=F/D Len b= g $ngS Bukic = = §ioads Buks <0
1 € (0,1] = Occupancy (1—n)L,/2 = d = Drift Len 3 e ; : : 3
R = Strength Il 04 | o B | Lattice
[ - ' e 0'2 ! ! ! ]
els) | (K= = 7%) ,,,,,,,,,,,,,,,,,, | R _ iy k=1 0.0 ! ] o L,=05m
a ¢ d i 02 L D S i p=
FQuad[a——mla—nia—n . 0.0 02 i 04 E 0.6 o o 1T 05
> - 15 : ' ' oo =m/3 =60°
| » D Quad s 3 10 | ' | 17 /
A 3 05 ! ! ! ] (k=39.24m™?)
: —~ ‘ — OO0k —— e e eV e e e e TS = ]
B R e A —K - — ] | i
! I -o5 i ' .
: Ly ‘ d=(1-n)L,/2 & -10 ! ! !
: Lattice Period | - T T 1
‘ e =Nlp 0.0 021 04 1 06 1 08 10
¢ nL /2 15
1 1 ! 1
. . ) - 's/L, [Lattice Periods| !
Formula connecting phase advance to field strength via % : ! ' / z [ , ]: !
1— . 1 ' | .
cos og = cos © cosh © + —nG(cosG)sinh@ — sin © cosh ©) z' I7 z' H xr[h z! |ﬁ
Ui
N /= Area
—n)2 O =—+/|k|L
—(12—277)(92sin®sinh® 2 I~ILp € = const D‘ T * IQI \V * D‘ T
" Diverging Horizontal ~ Converging Upright Diverging
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Chromaticity correction in a quadrupole focusing lattice with Review: Symmetries of applied field components
Sextupoles Within a 2D transverse model it was shown that transverse applied magnetic field

components entering the equations of motion can be expanded as:
* See: S3, Transverse Particle Dynamics: 2D components axial integral 3D components
+ Applied electric fields can be analogously expanded

To leading order, we will find that nonlinear focusing Sextupole optics can
introduce the correct form of perturbation to compensate for chromatic aberrations
in a quadrupole focusing lattice

+ Important to do with limited amplitude since a large sextupole can also drive

o] n—1
. Z
nonlinear resonances B*(z) = Bi(z,y) — iBy (x,y) = g b, <r—)
Particle equations of motion in this context for a transverse magnetic field are: n=1 P

q B b,, = const (complex) = A,, — iB3, z=x+1iy i=+—-1
no_ a __ Yy . . .
= myBec ¥ |Bp] n = Multipole Index rp = Aperture ”Pipe” Radius
q B [Bp] = [Bplo(1 +6) B, = ”Normal” Multipoles
y' = By = —=° A, = ”Skew” Multipoles
x
mPc (Bp] = = P —
K N Cartesian projections: B, —iB, = (A, —iB,)(z +iy)" ' /r}~
Expand to leading order in 0: Index | Name Iilorrnal (A4, =0) - Skew (B,, = 0)
B n B, '/B,  B,r"1/B, B, YA, B,rn=1/A,
7~ ——%(1-9) I Dipole 0 T T ’
[B p]O 2 Quadrupole | y T z —y
B¢ 3 Sextupole 2zy 2?2 —y? 2% —y? —2zy
y// ~ z (1 - 5) 4 Octupole 32y — o3 2 — 3xy? 2% — 3zy? —32%y +¢°
[Bp]o 5 Decapole 4Py —day® 2t — 622y +yt | 2t — 622y’ 4yt —dady + day?
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Applied Quadrupole Field Component: linear focusing, normal orientation

B2 = Gy = rlBploy G(s)

K(s) = G = Mag. Field Gradient
By, = Gz = k[Bplox [Bplo

Applied Sextupole Field Component: nonlinear focusing, normal orientation

B =2Szxy B, . .
5 o S(s) = — = Sextupole Field Amplitude
By =S8 (z° —y°) T,

Superimpose quadrupole and sextupole field components (outside dipole bend):

By = k[Bploy + 2Szy
By = K[Bplox + S(2* —y?)

Insert in equations of motion:
a

Taking the sextupole amplitude small so that S(1 — ) ~ S
and rearranging

"+ kx| dkx -

| s
Y — Ky ~ i—0RY | §—|-2—pxy

Former New
(Quadrupole) (Sextupole)

Set, and consider only x-plane dispersion and resolve the particle orbit as:

2(s) = w5(s) + 6Dy (s)
y(s) = ya(s)

x4(s), ya(s) =Linear betatron motion
D, (s) =Dispersion Function
(Periodic Ring Lattice)

+ Here we bring the periodic dispersion component back for the ring lattice

B S
o — [pr]o (1-6)=—rzx(l-0)— m(xQ - yz)(l —0) though we are analyzing the evolution outside a bend
B S Insert these into the equations of motion, and neglect all second order amplitude
"~ [B””] (1-9)= ry(l—9)+ Zny(l =) terms considering the orbits Z3, ¥ small and the momentum spread § to be
plo Plo small.
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S
(s) = xp(s) + 6 Dp(s) o' +Rhr~ Okr - W(Z‘Q —v?) S
. "'—ky~ -0k +2——=x plo
Using S g ,, 5 (s-22m,)
—RKYyg~ -0 |k —2——
D! 4Dy =0 v T U8 Bl ")

+ Equations are applied outside of bend
and
Skx = dkag + 6Kk D) ~ Skrg
OKY =~ 0KYg

S S
2 _ 2 = 2 212 22N
(@® —y°) [Bp}o(xﬁ +20Dpap + 6°D; — y3) ~ 2—[Bp]o(stxﬁ
S

S S
2 Ty =2 T + 4D, ~2——§D
Brlo ™ = 2 Bl "Ve + OPevs) = 2 0Dsvs

+ Requires small particle oscillation amplitudes =3, yg
Gives:
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In the previous section we showed that the betatron tune shift in the equations

" + Ky = p1T Y+ Kyy = pryy

is given by
Vy = —— ds BozP1z
™ ring
Identify:
AVy = —4— ds ﬁprly
7y ring Dizly 9 S D
with chromaticities s T [Bolo™ ¥
Al/w 1 Pizx
= = —— ds —
§ac 0 dr ring BO-’E 0
Av. 1
g =2 _ L[ Dby
0 dr ring 0
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This gives for the chormaticities including the sextupole applied field to leading
order:

1 S
5 L ()

ring
1 S
- — ¢ d 2. ° p
gy 4w ring i /80?/ (KV [Bp]o P>

» 1* term previous result, also called the natural chromaticity due to linear focus
+ 2" term leading order shifted chromaticity due to sextupole optic S # 0

€o

Result shows that if you place a normal orientation sextupole optic at a point of
nonzero dispersion (D), # 0), then you can adjust the amplitude S to null the
chromatic shift in focusing strength to leading order.
+ Correction independent of &
+ Want to place also where both betatron amplitudes 5z,y and Dispersion D,,
are large to limit setupole amplitudes
+ Need min of 2 sextupoles to correct both x- and y-chromaticities
+ Typically want more sextupoles in ring for flexibility and to keep amplitudes
limited to maintain validity of ordering assumptions made
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+ Will generally also have 3 => 8, at one setupole and 3y > 3, at the other
sextupole (min 2 for correction in each plane simultaneously)
- Design lattice to take advantage so correction amplitudes do not “fight”
+ Formulation applicable to bends in linacs also
- Can apply to Fragment Separators, LINAC folding sections (FRIB), ....

Have problem to illustrate chromatic corrections more

Numerous other examples of creative optical corrections exploiting properties of
nonlinear focusing magnets exist.

+ Creativity and may years of thinking / experience

+ Often specific to application and needs

+ Electron microscope optics provides examples
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Appendix A: Green Function for Driven Hill's Equation

Following Wiedemann (Particle Accelerator Physics, 1993, pp 106) first, consider more
general Driven Hill's Equation

2" + k(s)x = p(s)

The corresponding homogeneous equation:

2+ k(s)x =0

has principal solutions

x(s) = C1C(s|si) + C28(s|s:)
where

Cosine-Like Solution

C"+k(s)C=0
Cls=s;)=1 S(s=1s;)=0
C'(s=s)=0 S'(s=s;)=1
Recall that the homogeneous solutions have the Wronskian symmetry:
*+ See S5C

W (s) =C(5)S'(s) = C'(s)S(s) =1
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C1,Cy = constants

Sine-Like Solution

S" +k(5)S =0

C(s) =C(s|s;) etc.
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A particular solution to the Driven Hill's Equation can be constructed using a
Greens' function method:

2(s) = / %dg G(s,5)p(5)
G(s,8) = S(s|s:)C(8]si) — C(s]s:)S(5]s;)

Demonstrate this works by first takmg derivatives: C(s) =C(s|si), ete.

2= S(s )/SdSC() - C(s)/ 43 S(3)p(3)
m':S()/dgcr) —C(s)/dsS

s) [S(s)C(s) 7/19(9

:S@)/déaamv —c%s/lﬁsr>r>

"= S"(s)/ ds C(8)p(
s)[S'(s)C 7/2

w@+y@/ﬁam®fW@/%aW®

- C( s)/ ds S(3)p(3)
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Insert these results for x, =" in the Driven Hill's Equation:
Definition of Principal Orbit Functions

O s 0 s
2" +K(s)z = p(s) + [S” /25] / 45 C(p(3) — [ /14@0] / 45 SEp(3)

= p(s)

Thereby proving we have a valid particular solution. The general solution to the
Driven Hill's Equation is then:

x(s) = x(s;)C(s|s;) + 2'(s:)S(s|si) + /sd§ G(s, 8)p(3)
G(s,8) = S(s|s:)C(8]si) — C(s|s:)S(8]s:) /

+ Choose constants C7, C5 consistent with particle initial conditions at s = s;
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Appendix B: Uniqueness of the Dispersion Function in a
Periodic (Ring) Lattice
Consider the equation for the dispersion function in a periodic lattice

7 _ l Kz (s + Lyp) = Ka(s)
Dramb =5 R(s+L,) = R(s)

It is required that the solution for a periodic (ring) lattice has the periodicity of the
lattice:

D(s+Ly) = D(s)

Assume that there are two unique solutions to D and label them as D; Each must
satisfy:

1
D;—l —+ KJJ;D]‘ = —

7 DilstL)=Dis) =1 2

Subtracting the two equations shows that D1 — Dy satisfies Hill’s equation:

(D1 — Dg)// + HI(D1 — DQ) =0
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The solution can be expressed in terms of the usual principal orbit functions of
Hill’s Equation in matrix form as:

{ %1_—%2)' ]9 N { g'(ili;z)) ggflfgz) ] ' { %1_—%2)' LL

Because C and S do not, in general, have the periodicity of the lattice, we must
have:
v D1 (Sz) = DQ(Si)
Di(si) = Dj(si)

which implies a zero solution for Dy — Dy and:

| D;(s) = Da(s) == D us unique for a periodic lattice

The proof fails for o 0z/(2m) = integer however, this exceptional case should
never correspond to a lattice choice because it would result in unstable particle
orbits.

An alternative proof based on the eigenvalue structure of the 3x3 transfer matrices
for D can be found in “Accelerator Physics” by SY Lee.
+ Proof helps further clarify the structure of D
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Appendix C: Transfer Matrix of a Negative Bend
Input from C.Y. Wong, MSU
For a clockwise bend (derived in the problem set):

D D T
D/ :MB D/ \/'
1/, 1), 7 ° %
cosf psin® p(1—cosb)
Mpg = —% cos 6 sin 6 p>0
0 0 1 6>0

This definition of the X,y,s coordinates is right-handed

The transfer matrix for a negative (anti-clockwise) bend is obtained by making the
transformation p — —p, 0 — —0

cos|0] olsin 0] o] (1 —cos o))

10 ]
—% cos |6 —sin |6
0 0 1
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If one finds the result counterintuitive, it can be derived as follows:
j Define T = —x

(The new set of coordinates is not right-handed,
but this does not affect the reasoning)

The dispersion functions in the two coordinate systems are related by

? D -1 0 0
D]l =R|[D where R=R'!'=|0 -1 0
1 1 0 0 1

The anti-clockwise bend is effectively clockwise in the primed coordinate system:

D D D D

| =Mz | D —> R(D| =MzR[D

1 p 1/ . 1 f 1/.
7 1

Transfer matrix of anti-clockwise bend in normal coordinates:

cos 0] |p|sin|f] —|p[ (1 —cos|6])

Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future
editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:

https://people.nscl.msu.edu/~lund/msu/phy905_2018

- in 6] .
M_p=R 'MpR= [ -2l co5)0 —sinlf o . .
B B (I)p\ Ol | ) 161 Redistributions of class material welcome. Please do not remove author credits.
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