Review S1: Particle Equations of Motion

S1A: Introduction: The Lorentz Force Equation

The Lorentz force equation of a charged particle is given by (MKS Units):

\[
\frac{d}{dt} \mathbf{p}_i(t) = q_i \left[\mathbf{E}(\mathbf{x}_i, t) + \mathbf{v}_i(t) \times \mathbf{B}(\mathbf{x}_i, t) \right]
\]

- \(m_i\), \(q_i\) ... particle mass, charge
- \(i = \text{particle index}\)
- \(\mathbf{x}_i(t)\) ... particle coordinate
- \(t = \text{time}\)
- \(\mathbf{p}_i(t) = m_i \gamma_i(t) \mathbf{v}_i(t)\) ... particle momentum
- \(\mathbf{v}_i(t) = \frac{1}{\gamma_i(t)} \frac{d}{dt} \mathbf{x}_i(t) = c \beta_i(t)\) ... particle velocity
- \(\gamma_i(t) = \frac{1}{\sqrt{1 - \beta_i^2(t)}}\) ... particle gamma factor

Electric Field:
\[
\mathbf{E}(\mathbf{x}, t) = E^\text{total}(\mathbf{x}, t) + E^\text{self}(\mathbf{x}, t)
\]

Magnetic Field:
\[
\mathbf{B}(\mathbf{x}, t) = B^\text{total}(\mathbf{x}, t) + B^\text{self}(\mathbf{x}, t)
\]

S1B: Applied Fields used to Focus, Bend, and Accelerate Beam

Transverse optics for focusing:

- **Electric Quadrupole**
- **Magnetic Quadrupole**
- **Solenoid**

Dipole Bends:

Electric \(x\)-direction bend

Magnetic \(x\)-direction bend

*Research supported by:
FRIB/MSU: U.S. Department of Energy Office of Science Cooperative Agreement DE-SC000661 and National Science Foundation Grant No. PHY-1102511*
Longitudinal Acceleration:

RF Cavity

Induction Cell

Acceleration influences transverse dynamics – not possible to fully decouple

S1C: Machine Lattice

Applied field structures are often arranged in a regular (periodic) lattice for beam transport/acceleration:

- Sometimes functions like bending/focusing are combined into a single element

Example – Linear FODO lattice (symmetric quadrupole doublet)

S1E: Equations of Motion in s and the Paraxial Approximation

In transverse accelerator dynamics, it is convenient to employ the axial coordinate (s) of a particle in the accelerator as the independent variable:

- Need fields at lattice location of particle to integrate equations for particle trajectories

Transform:

\[s = s_i + \int_{t_i}^{t} dt \, v_{xi}(t) \]

Denote:

\[\dot{v}_{xi} = \frac{ds}{dt} = \frac{dx_i}{dt} \]

Neglecting term consistent with assumption of small longitudinal momentum spread (paraxial approximation)

- Procedure becomes more complicated when bends present: see S1H
S1G: Summary: Paraxial Transverse Particle Eqns of Motion

\[x'' + \left(\frac{\gamma_0 \beta_0}{\gamma_0 \beta_0} \right) x' = \frac{e}{m \gamma_0 \beta_0^2 c^2} E_x' + \frac{q}{m \gamma_0 \beta_0 c} \mathbf{A}_x + \frac{qB_0^a}{m \gamma_0 \beta_0 c} x' + \frac{qB_0^a}{m \gamma_0 \beta_0 c} x' \times \frac{qB_0^a}{m \gamma_0 \beta_0 c} \]

\[- \frac{q}{m \gamma_0 \beta_0^2 c^2} \frac{\partial}{\partial x} \phi \]

\[\mathbf{E}_a = \text{Applied Electric Field} \]
\[\mathbf{B}_a = \text{Applied Magnetic Field} \]

\[\nabla^2 \phi = \frac{\partial}{\partial x} \phi + \frac{\partial}{\partial y} \phi = -\frac{\rho}{\epsilon_0} \]

+ Boundary Conditions on \(\phi \)

Drop particle \(i \) subscripts (in most cases) henceforth to simplify notation:

Neglects axial energy spread, bending, and electromagnetic radiation \(\gamma \) factors different in applied and self-field terms:

\[\gamma_0 \rightarrow \text{Kinematics} \]
\[\gamma_0^2 \rightarrow \text{Self-Magnetic Field Corrections (leading order)} \]

Transverse equations of motion in component form

Write out transverse particle equations of motion in explicit component form:

\[x'' + \left(\frac{\gamma_0 \beta_0}{\gamma_0 \beta_0} \right) x' = \frac{e}{m \gamma_0 \beta_0^2 c^2} E_x' - \frac{q}{m \gamma_0 \beta_0 c} B_y + \frac{q}{m \gamma_0 \beta_0 c} B_y' \]
\[- \frac{q}{m \gamma_0 \beta_0^2 c^2} \frac{\partial}{\partial x} \phi \]

\[y'' + \left(\frac{\gamma_0 \beta_0}{\gamma_0 \beta_0} \right) y' = \frac{e}{m \gamma_0 \beta_0^2 c^2} E_y' + \frac{q}{m \gamma_0 \beta_0 c} B_x - \frac{q}{m \gamma_0 \beta_0 c} B_x' \]
\[- \frac{q}{m \gamma_0 \beta_0^2 c^2} \frac{\partial}{\partial y} \phi \]

In this perspective, dipoles are adjusted given the design momentum of the reference particle to bend the orbit through a radius \(R \).

- Bends usually only in one plane (say \(x \))
 - Implemented by a dipole applied field: \(B_y' \) or \(B_x' \)
- Easy to apply material analogously for \(y \)-plane bends, if necessary

Denote:

\[p_0 = \frac{m \gamma_0 \beta_0 c}{ \text{design momentum} } \]

Then a magnetic x-bend through a radius \(R \) is specified by:

\[\mathbf{B}^a = B_y'^2 \mathbf{y} = \text{const in bend} \]

\[\frac{1}{R} = \frac{q B_y'^2}{p_0} \]

The particle rigidity \(\mathbf{B} \) is defined as \(\mathbf{B}_0 \) (read as one symbol called “B-Rho”):

\[|B_\rho| = \frac{p_0}{q} = \frac{m \gamma_0 \beta_0 c}{q} \]

is often applied to express the bend result as:

\[\frac{1}{R} = \frac{B_y'^2}{|B_\rho|} \]
Comments on bends:
- \(R \) can be positive or negative depending on sign of \(\frac{B_y^a}{[B\rho]} \)
- For straight sections, \(R \to \infty \) (or equivalently, \(B_y^a = 0 \))
- Lattices often made from discrete element dipoles and straight sections with separated function optics
 - Bends can provide “edge focusing”
 - Sometimes elements for bending/focusing are combined
- For a ring, dipoles strengths are tuned with particle rigidity/momentum so the reference orbit makes a closed path lap through the circular machine
 - Dipoles adjusted as particles gain energy to maintain closed path
 - In a Synchrotron dipoles and focusing elements are adjusted together to maintain focusing and bending properties as the particles gain energy. This is the origin of the name “Synchrotron.”
- Total bending strength of a ring in Tesla-meters limits the ultimately achievable particle energy/momentum in the ring

For a magnetic field over a path length \(S \), the beam will be bent through an angle:
\[
\Theta = \frac{S}{R} = \frac{SB_y^a}{[B\rho]}
\]

To make a ring, the bends must deflect the beam through a total angle of \(2\pi \):
- Neglect any energy gain changing the rigidity over one lap

\[
2\pi = \sum_{i,Dipoles} \Theta_i = \sum_i \frac{S_i}{R_i} = \sum_i \frac{S_i B_y^a}{[B\rho]}
\]

For a symmetric ring, \(N \) dipoles are all the same, giving for the bend field:
- Typically choose parameters for dipole field as high as technology allows for a compact ring

\[
B_y^a = 2\pi \frac{[B\rho]}{NS}
\]

For a symmetric ring of total circumference \(C \) with straight sections of length \(L \) between the bends:
- Features of straight sections typically dictated by needs of focusing, acceleration, and dispersion control

\[
C = NS + NL
\]

Example: Typical separated function lattice in a Synchrotron
Focus Elements in Red
Bending Elements in Green

Ring Lattice: 12 Periods
(SiS~18, GSI)
18 Tesla-Meter

For “off-momentum” errors:

\[
p_s = p_0 + \delta p
\]

\[
p_0 = m\gamma_0\beta_0c = \text{design momentum}
\]

\[
\delta p = \text{off- momentum}
\]

This will modify the particle equations of motion, particularly in cases where there are bends since particles with different momenta will be bent at different radii

Common notation:
\[
\delta \equiv \frac{\delta p}{p_0} = \text{Fractional Momentum Error}
\]

- Not usual to have acceleration in bends
 - Dipole bends and quadrupole focusing are sometimes combined
Derivatives in accelerator Frenet-Serret Coordinates
Summarize results only needed to transform the Maxwell equations, write field derivatives, etc.

Reference: Chao and Tigner, *Handbook of Accelerator Physics and Engineering*

\[\psi(x, y, s) = \text{Scalar} \]
\[\mathbf{v}(x, y, s) = \mathbf{v}_x(x, y, s) \mathbf{i} + \mathbf{v}_y(x, y, s) \mathbf{j} + \mathbf{v}_z(x, y, s) \mathbf{k} = \text{Vector} \]

Vector Dot and Cross-Products: \(\mathbf{V}_1 \cdot \mathbf{V}_2 = \mathbf{V}_{1x} \mathbf{V}_{2x} + \mathbf{V}_{1y} \mathbf{V}_{2y} + \mathbf{V}_{1z} \mathbf{V}_{2z} \)
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{V}_{1x} & \mathbf{V}_{1y} & \mathbf{V}_{1z} \\ \mathbf{V}_{2x} & \mathbf{V}_{2y} & \mathbf{V}_{2z} \end{vmatrix} = (\mathbf{V}_{1z} \mathbf{V}_{2y} - \mathbf{V}_{1y} \mathbf{V}_{2z}) \mathbf{i} + (\mathbf{V}_{1z} \mathbf{V}_{2x} - \mathbf{V}_{1x} \mathbf{V}_{2z}) \mathbf{j} + (\mathbf{V}_{1x} \mathbf{V}_{2y} - \mathbf{V}_{1y} \mathbf{V}_{2x}) \mathbf{k} \]

Elements:
\[d^2x_\perp = dxdy \]
\[d^3x_\perp = \left(1 + \frac{x}{R}\right) dxdyds \]

Comments:

- See texts such as Edwards and Syphers for guidance on derivation steps
- Full derivation is beyond needs/scope of this class
- Equations are often applied linearized in \(\delta \)
- Achromatic focusing lattices are often designed using equations with momentum spread to obtain focal points independent of \(\delta \) to some order
- \(x \) and \(y \) equations differ significantly due to bends modifying the \(x \)-equation when \(R(s) \) is finite
- It will be shown in the problems that for electric bends:

\[\nabla \psi = \frac{x}{1 + x/R} \frac{\partial \psi}{\partial x} + \frac{y}{1 + x/R} \frac{\partial \psi}{\partial y} + \frac{1}{1 + x/R} \frac{\partial \psi}{\partial s} \]

Divergence:
\[\nabla \cdot \mathbf{v} = \frac{1}{1 + x/R} \frac{\partial}{\partial x} [(1 + x/R) \mathbf{v}_x] + \frac{\partial \mathbf{v}_y}{\partial y} + \frac{\partial \mathbf{v}_z}{\partial z} \]

Curl:
\[\nabla \times \mathbf{v} = \hat{x} \left(\frac{\partial \mathbf{v}_z}{\partial y} - \frac{1}{1 + x/R} \frac{\partial \mathbf{v}_y}{\partial x} \right) + \hat{y} \frac{1}{1 + x/R} \left(\frac{\partial \mathbf{v}_x}{\partial z} - \frac{\partial \mathbf{v}_z}{\partial x} \right) + \hat{z} \frac{1}{1 + x/R} \left(\frac{\partial \mathbf{v}_y}{\partial x} - \frac{\partial \mathbf{v}_x}{\partial y} \right) \]

Laplacian:
\[\nabla^2 \psi = \frac{1}{1 + x/R} \frac{\partial}{\partial x} \left[\frac{1 + x}{R(s)} \frac{\partial \psi}{\partial x} \right] + \frac{\partial^2 \psi}{\partial y^2} + \frac{1}{1 + x/R} \frac{\partial}{\partial s} \left[\frac{1}{1 + x/R} \frac{\partial \psi}{\partial s} \right] \]

Applied fields for focusing: \(\mathbf{E}^a \), \(\mathbf{B}^a \)
- Must be expressed in the bent \(x, y, s \) system of the reference orbit
- Includes error fields in dipoles
- Self fields may also need to be solved taking into account bend terms

Comments continued:
- Equations contain only low-order terms in momentum spread \(\delta \)
- Design bends only in \(x \) and \(B^a \), \(E^a \) contain no dipole terms (design orbit)
- Dipole components set via the design bend radius \(R(s) \)

Equations contain only low-order terms in momentum spread \(\delta \)

Comments continued:

- Often can be neglected in Poisson’s Equation

\[\phi = \frac{\rho}{\epsilon_0} \]

If \(R \to \infty \)

reduces to familiar:

\[\phi = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \]
S2: Transverse Particle Equations of Motion in Linear Applied Focusing Channels

S2A: Introduction

Write out transverse particle equations of motion in explicit component form:

\[
\dddot{x} + \left(\frac{\gamma_b \beta_b}{\gamma_b \beta_b} \right) \ddot{x} = -\frac{q}{m \gamma_b \beta_b c^2} E_x - \frac{q}{m \gamma_b \beta_b c} B_y' + \frac{q}{m \gamma_b \beta_b c} B_z y' - \frac{q}{m \gamma_b \beta_b c^2} \partial \phi \frac{\partial}{\partial x}
\]

\[
\dddot{y} + \left(\frac{\gamma_b \beta_b}{\gamma_b \beta_b} \right) \ddot{y} = -\frac{q}{m \gamma_b \beta_b c^2} E_y + \frac{q}{m \gamma_b \beta_b c} B_z - \frac{q}{m \gamma_b \beta_b c} B_x' x' - \frac{q}{m \gamma_b \beta_b c^2} \partial \phi \frac{\partial}{\partial y}
\]

Equations previously derived under assumptions:
- No bends (fixed x-y-z coordinate system with no local bends)
- Paraxial equations \((x^2 + y^2 \ll 1)\)
- No dispersive effects \(\beta_b,\) same all particles, acceleration allowed \((\beta_b \neq \text{const})\)
- Electrostatic and leading-order \((\beta_b)\) self-magnetic interactions

Common situations that realize these linear applied focusing forms will be overviewed:
- Continuous Focusing (see: S2B)
- Quadrupole Focusing
- Electric (see: S2C)
- Magnetic (see: S2D)
- Solenoidal Focusing (see: S2E)

Other situations that will not be covered (typically more nonlinear optics):
- Einzel Lens (see: J.J. Barnard, Intro Lectures)
- Plasma Lens
- Wire guiding

Why design around linear applied fields?
- Linear oscillators have well understood physics allowing formalism to be developed that can guide design
- Linear fields are “lower order” so it should be possible for a given source amplitude to generate field terms with greater strength than for “higher order” nonlinear fields

The applied focusing fields

<table>
<thead>
<tr>
<th>Electric</th>
<th>Magnetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_x^n, E_y^n)</td>
<td>(B_x^n, B_y^n, B_z^n)</td>
</tr>
</tbody>
</table>

must be specified as a function of \(s\) and the transverse particle coordinates \(x, y\) to complete the description.

- Consistent change in axial velocity \((\beta_c)\) due to \(E_x^n\) must be evaluated
- Typically due to RF cavities and/or induction cells

Restrict analysis to fields from applied focusing structures

Intense beam accelerators and transport lattices are designed to optimize linear applied focusing forces with terms:

- Electric: \(E_x^n \simeq \text{function of } s \times (x, y)\)
- Magnetic: \(B_x^n \simeq \text{function of } s \times (x, y)\)

Solenoid equations of motion:

Insert field components into equations of motion and collect terms

\[
\dddot{x} + \left(\frac{\gamma_b \beta_b}{\gamma_b \beta_b} \right) \ddot{x} = -\frac{B_{x0}(s)}{2[B\rho]} y - \frac{B_{x0}(s)}{[B\rho]} y' = -\frac{q}{m \gamma_b \beta_b c^2} \partial \phi \frac{\partial}{\partial x}
\]

\[
\dddot{y} + \left(\frac{\gamma_b \beta_b}{\gamma_b \beta_b} \right) \ddot{y} = + \frac{B_{y0}(s)}{2[B\rho]} x + \frac{B_{y0}(s)}{[B\rho]} x' = -\frac{q}{m \gamma_b \beta_b c^2} \partial \phi \frac{\partial}{\partial y}
\]

\[
[B\rho] \equiv \frac{\gamma_b \beta_b m c}{q} = \text{Rigidity} \quad \frac{B_{y0}(s)}{[B\rho]} = \frac{\omega_c(s)}{\gamma_b \beta_b c}
\]

\[
\omega_c(s) = \frac{q B_{z0}(s)}{m} = \text{Cyclotron Frequency} \quad \text{(in applied axial magnetic field)}
\]

- Equations are linearly cross-coupled in the applied field terms
 - \(x\) equation depends on \(y, y'\)
 - \(y\) equation depends on \(x, x'\)
If the beam space-charge is axisymmetric:

\[\frac{\partial \phi}{\partial x_{\perp}} = \frac{\partial \phi}{\partial r} \frac{\partial r}{\partial x_{\perp}} = \frac{\partial \phi}{\partial r} \]

then the space-charge term also decouples under the Larmor transformation and the equations of motion can be expressed in fully uncoupled form:

\[\ddot{x} + \left(\frac{\gamma_b \beta_b}{\gamma_b \beta_b} \right) \dot{x}' + \kappa(s) \dot{x} = -\frac{q}{m \gamma_b^3 \beta_b^2 c^2} \frac{\partial \phi}{\partial r} \dot{x} \]

\[\ddot{y} + \left(\frac{\gamma_b \beta_b}{\gamma_b \beta_b} \right) \dot{y}' + \kappa(s) \dot{y} = -\frac{q}{m \gamma_b^3 \beta_b^2 c^2} \frac{\partial \phi}{\partial r} \dot{y} \]

\[\kappa(s) = k_x^2(s) = \frac{B_{z0}(s)}{2 |B|} = \frac{\omega_c(s)}{2 \gamma_b \beta_b c} \]

Because Larmor frame equations are in the same form as continuous and quadrupole focusing with a different \(\kappa \), for solenoidal focusing we implicitly work in the Larmor frame and simplify notation by dropping the tildes:

\[\tilde{x}_{\perp} \rightarrow x_{\perp} \]

S2F: Summary of Transverse Particle Equations of Motion

In linear applied focusing channels, without momentum spread or radiation, the particle equations of motion in both the \(x \)- and \(y \)-planes expressed as:

\[z'' + \left(\frac{\gamma_b \beta_b}{\gamma_b \beta_b} \right) z' + \kappa_x(s) z = -\frac{q}{m \gamma_b^3 \beta_b^2 c^2} \frac{\partial \phi}{\partial x} \]

\[y'' + \left(\frac{\gamma_b \beta_b}{\gamma_b \beta_b} \right) y' + \kappa_y(s) y = -\frac{q}{m \gamma_b^3 \beta_b^2 c^2} \frac{\partial \phi}{\partial y} \]

\[\kappa_x(s) = x \text{-focusing function of lattice} \]

\[\kappa_y(s) = y \text{-focusing function of lattice} \]

Common focusing functions:

Continuous:

\[\kappa_x(s) = \kappa_y(s) = k_0^2 = \text{const} \]

Quadrupole (Electric or Magnetic):

\[\kappa_x(s) = -\kappa_y(s) = \kappa(s) \]

Solenoidal (equations must be interpreted in Larmor Frame: see Appendix B):

\[\kappa_x(s) = \kappa_y(s) = \kappa(s) \]

It can be shown (see: Appendix B) that the linear cross-coupling in the applied field can be removed by an s-varying transformation to a rotating “Larmor” frame:

\[\ddot{x} = x \cos \psi(s) + y \sin \psi(s) \]

\[\ddot{y} = -x \sin \psi(s) + y \cos \psi(s) \]

\[\dot{\psi}(s) = -\int_{s_i}^{s} ds k_L(s) \]

\[k_L(s) = \frac{B_{z0}(s)}{2 |B|} = \frac{\omega_c(s)}{2 \gamma_b \beta_b c} \]

\(s \) = \(s_i \), defines initial condition

/// Aside: Notation:

A common theme of this class will be to introduce new effects and generalizations while keeping formulations looking as similar as possible to the most simple representations given. When doing so, we will often use “tildes” to denote transformed variables to stress that the new coordinates have, in fact, a more complicated form that must be interpreted in the context of the analysis being carried out. Some examples:

- Larmor frame transformations for Solenoidal focusing
 See: Appendix B
- Normalized variables for analysis of accelerating systems
 See: S10
- Coordinates expressed relative to the beam centroid
 See: S.M. Lund, lectures on Transverse Centroid and Envelope Model
- Variables used to analyze Einzel lenses
 See: J.J. Barnard, Introductory Lectures

///
Although the equations have the same form, the couplings to the fields are different which leads to different regimes of applicability for the various focusing technologies with their associated technology limits:

Focusing:
- **Continuous:**
 \[\kappa_x(s) = \kappa_y(s) = k_{p0}^2 = \text{const} \]
 Good qualitative guide (see later material/lecture)
 BUT not physically realizable (see S2B)

Quadrupole:
\[\kappa_x(s) = -\kappa_y(s) = \begin{cases} \frac{G(s)}{\partial G(s)} \text{Electric} \quad [B\rho] = \frac{m\gamma_h\beta_bc}{q} \\ \frac{\partial B_x}{\partial y} \text{Magnetic} \end{cases} \]

\(G \) is the field gradient which for linear applied fields is:
\[G(s) = \begin{cases} -\frac{\partial E_x}{\partial x} = \frac{\partial E_y}{\partial y} = \frac{2V}{r^2} \text{ Electric} \\ \frac{\partial B_x}{\partial y} = \frac{\partial B_y}{\partial x} = \frac{B_x}{r} \text{ Magnetic} \end{cases} \]

Solenoid:
\[\kappa_x(s) = \kappa_y(s) = k_L^2(s) = \left[\frac{B_{10}(s)}{2[B\rho]} \right]^2 = \left[\frac{\omega_c(s)}{2\gamma_h\beta_bc} \right]^2 \omega_c(s) = \frac{qB_{10}(s)}{m} \]

Common, simple examples of periodic lattices:

<table>
<thead>
<tr>
<th>Periodic Solenoid</th>
<th>Periodic FODO Quadrupole</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa_x(s) = \kappa_y(s))</td>
<td>(\kappa_x(s) = -\kappa_y(s))</td>
</tr>
<tr>
<td>(\hat{\kappa})</td>
<td>(\hat{\kappa})</td>
</tr>
<tr>
<td>(\frac{d}{2})</td>
<td>(\frac{d}{2})</td>
</tr>
<tr>
<td>(\ell)</td>
<td>(\ell)</td>
</tr>
<tr>
<td>(\frac{d}{2})</td>
<td>(\frac{d}{2})</td>
</tr>
<tr>
<td>(d = (1 - \eta)L_p)</td>
<td>(\hat{\ell} = \eta L_p)</td>
</tr>
<tr>
<td>(\frac{d}{2})</td>
<td>(\frac{d}{2})</td>
</tr>
<tr>
<td>(\ell)</td>
<td>(\ell)</td>
</tr>
<tr>
<td>F Quad</td>
<td>D Quad</td>
</tr>
<tr>
<td>(L_p)</td>
<td>(L_p)</td>
</tr>
<tr>
<td>(\hat{\kappa})</td>
<td>(\hat{\kappa})</td>
</tr>
<tr>
<td>(d = (1 - \eta)L_p/2)</td>
<td>(\hat{\ell} = \eta L_p/2)</td>
</tr>
</tbody>
</table>

It is instructive to review the structure of solutions of the transverse particle equations of motion in the absence of:

Space-charge: \[\frac{\partial \phi}{\partial x} \sim \frac{\partial \phi}{\partial y} \sim 0 \]

Acceleration: \[\gamma_h\beta_b \simeq \text{const} \Rightarrow \frac{\gamma_h\beta_b'}{\gamma_h\beta_b} \simeq 0 \]

In this simple limit, the \(x \) and \(y \)-equations are of the same Hill’s Equation form:

\[x'' + \kappa_x(s)x = 0 \]
\[y'' + \kappa_y(s)y = 0 \]

- These equations are central to transverse dynamics in conventional accelerator physics (weak space-charge and acceleration)
- Will study how solutions change with space-charge in later lectures

In many cases beam transport lattices are designed where the applied focusing functions are periodic:

\[\kappa_x(s + L_p) = \kappa_x(s) \]
\[\kappa_y(s + L_p) = \kappa_y(s) \]

\(L_p \) = Lattice Period

However, the focusing functions need not be periodic:
- Often take periodic or continuous in this class for simplicity of interpretation
- Focusing functions can vary strongly in many common situations:
 - Matching and transition sections
 - Strong acceleration
 - Significantly different elements can occur within periods of lattices in rings
 - “Panofsky” type (wide aperture along one plane) quadrupoles for beam insertion and extraction in a ring

Example of Non-Periodic Focusing Functions: Beam Matching Section

Maintains alternating-gradient structure but not quasi-periodic

Example corresponds to High Current Experiment Matching Section (hard edge equivalent) at LBNL (2002)
S5: Linear Transverse Particle Equations of Motion without Space-Charge, Acceleration, and Momentum Spread

S5A: Hill’s Equation

Then the transverse particle equations of motion reduce to Hill’s Equation:

\[x''(s) + \kappa(s)x(s) = 0 \]

Neglect:
- Space-charge effects: \(\partial \phi / \partial x \approx 0 \)
- Nonlinear applied focusing and bends: \(E^a, B^a \) have only linear focus terms
- Acceleration: \(\gamma_0 \beta_0 \approx \text{const} \)
- Momentum spread effects: \(v_2 \approx \beta_0 c \)

For a periodic lattice:

\[\kappa(s + L_p) = \kappa(s) \]

\(L_p = \text{Lattice Period} \)

For a ring (i.e., circular accelerator), one also has the “superperiod” condition:

\[\kappa(s + C) = \kappa(s) \]

\(C = NL_p = \text{Ring Circumference} \)

\(N = \text{Superperiod Number} \)

Distinction matters when there are (field) construction errors in the ring
- Repeat with superperiod but not lattice period
- See lectures on: Particle Resonances

What happens now to particle orbits when the axial momentum/Rigidity is not the design value?
Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future editions of US Particle Accelerator School (USPAS) and Michigan State University (MSU) courses. Contact:

Prof. Steven M. Lund
Facility for Rare Isotope Beams
Michigan State University
640 South Shaw Lane
East Lansing, MI 48824

lund@frib.msu.edu
(517) 908 – 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:

https://people.nscl.msu.edu/~lund/msu/phy905_2018

Redistributions of class material welcome. Please do not remove author credits.