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S1F: Axial Particle Kinetic Energy

1
Relativistic particle kinetic energv is: —
- ST iy
£ =(y—1)me’ v = (B +08.)ca + ek

= Particle Velocity (3D)
For a directed paraxial beam with motion primarily along the machine axis the

E=(y—1)mc* + 6 Z,ﬁé
Bb Bb
E~&E = (v — 1)mc?

kinetic energy is essentially the (Xial kinet'bc energy &p -

e e e 2
In nonrelativistic limit: 5; < 1

1 3
E = (7 — 1)me? = §mﬁgc2 + gmﬁ’gCZ + .-
1
~ §m6b202 — @(53)
Convenient units:
Electrons: B _r11 keV Electrons rapidly relativistic
m = Me = 2 due to relatively low mass
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Ions/Protons:

m = (atomic mass) - m,, m, = Atomic Mass Unit
MeV
— 931.49 —
C
Note: MoV
m, = Proton Mass = 938.27 62 MeV
C my =~ my, ~ 940 5
MeV C
m,, = Neutron Mass = 939.57 5
c
Approximate roughly for ions: M., S M.
m ~ Am,, A =Mass Number Protons/ions take much

(Number of Nucleons)

My, My > My due to nuclear binding energy

longer to become relativistic
than electrons

g, /A
gb/A ’Yb:1—|‘ 5
m. o2 Z’Yb_l — 1, C
By = \/1 —1/7;

Energy/Nucleon &,/A fixes Bp to set phase needs of RF cavities
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Contrast beam relativistic 3» for electrons and protons/ions:

Electrons Ions (and approx Protons)
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Notes: 1) plots do not overlay, scale changed
2) Ion plot slightly off for protons since " 7 My

* Electrons become relativistic easier relative to protons/ions due to light mass
* Space-charge more important for ions than electrons (see Sec. S1D)
- Low energy ions near injector expected to have strongest space-charge
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Appendix A: Gamma and Beta Factor Conversions
It is frequently the case that functions of the relativistic gamma and beta factors

are converted to superficially different appearing forms when analyzing transverse
particle dynamics in order to more cleanly express results. Here we summarize
useful formulas in that come up when comparing various forms of equations.
Derivatives are taken wrt the axial coordinate s but also apply wrt time ¢

Results summarized here can be immediately applied in the paraxial

approximation by taking: 5 ~ Bb
v =|v| =~ v, = Bc S
7=
Assume that the beam is forward going with 5 > 0 :
1 1

T AR p=vrl
o 1 2 >
7_1_52 5:1_1/7

A commonly occurring acceleration factor can be expressed in several ways:
* Depending on choice used, equations can look quite different!

(ﬁyzz+@:1;
v8) ~ B B?
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Axial derivative factors can be converted using:

5
ROk

Energy factors:

Eiot = 7m02 — £ + mc?

=y () 2 ()

Rigidity:

2 e e (2 (2

q q q q
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S2E: Solenoidal Focusing

The field of an ideal magnetic solenoid is invariant under transverse rotations
about it's axis of symmetry (z) can be expanded in terms of the on-axis field as as:

Coil (Azimuthally Symmetric)

o 00 0 0 00 00 Vacuum Maxwell equations:
//]3a V . BCL — O
7 - V xB% =0
//_’,—\

Imply B” can be expressed in

\\ terms of on-axis field Bczl("” =0, Z)

o See
E"=0 Appendix D
o _ 1 (=1)" 9% 'By(z) (\XL\>2V2 o
== Z VRN 51 X | Reiser,
2 v=1 V'(V 1)' 0z 2 Theory and Design
X (=1 aQuBz P x 2v of Charged
Bg = BzO(Z) -+ Z ( '>2 P 22( ) <| ;‘) Particle Beams,
= ) ~ Sec. 3.3.1
B.o(2) = B (x1 =0, 2) = On-Axis Field
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Writing out explicitly the terms of this expansion:

BY(r,z) =tBy(r,z) + 2B (r, 2) r=/z2 + y?
= (—%xsinf + ycos0)B,(r,z) + 2B (r, 2)
where o0
(_1)V (21/ 1) 2r—1
BA(r,z) = B! (5)
r(r:2) ;v!(l/—l) (2) 2
3 5 7 9
_ _B,;o(z)r n Bio)(z)rs _ B,:EO)(Z)TS_'_ Bz(:O)(Z)T7 B;Eo)(z) P9 1
2 16 384 18432 1474560
@ — (=1 oy (T
B (r, z) = ;) WBZO (2) (5)
""""""""" Bly(z) »  BY(2) 4 BY() s BYx)
— B, Do 2 20 4 Do 6 P20\%) 8
Beola) i T T T os0 T arase
B.o(z) = By (r =0, z) = On-axis Field _ Linear Terms
(n),  _ 0"B.o(2) . _ O0Bxo(2) _ 0?B.o(2)
BZO (Z) — Hn BZO(Z) — Oz B;/()(Z> = 822
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For modeling, we truncate the expansion using only leading-order terms to obtain:
* Corresponds to linear dynamics in the equations of motion

1 0B.(z
2 0z
BY = _lﬁBzo(z)y B.o(z) = Bg(x, =0, 2)
. 2 0z = On-Axis Field
Bz — Bzo(Z)
Note that this truncated expansion is divergence free:
10B,y 0 0
V-BY = —— : —DB,p =0
2 0z Ox| XL oz
but not curl free within the vacuum aperture:
1 32320(2)
B = — —X y
V X 5 g2 (XYY
10?8, 10°’B, R
=3 8202(2) r(—xsinf + ycosf) = 5 82(;(Z) r6

* Nonlinear terms needed to satisfy 3D Maxwell equations
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Solenoid equations of motion:
* Insert field components into equations of motion and collect terms

1" (Vbﬂb)/ ‘ ,/zO(S) . BzO(S) I __ q 0
N (76580) y 2| Bp] Y [Bp v = mRB2c2 Ox
Bs)’ 20(8)  Beols) q 09
I 4 (Wb /_|_ 2 T+ 2 =

(o) 2Bl (Bl T T magBEe? oy
B = O pigidity  D:008) _ wels)
q | Bp] Yo OpC

we(s) = aB=0(s) = Cyclotron Frequency
m (in applied axial magnetic field)

* Equations are linearly cross-coupled in the applied field terms
- x equation depends on y, y'
- y equation depends on x, X'
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It can be shown (see: Appendix B) that the linear cross-coupling in the applied
field can be removed by an s-varying transformation to a rotating
“Larmor” frame:

~. used to denote
rotating frame variables

SM Lund, MSU, Spring 2020

=Y

T= wcost(s) +ysiny(s)
= —a:sm@( ) + y cos(s)
W(s)=— [ d5kp(3)
_ Buo(s)  wels)
kL(S) o Q[Bp] B 2’)/5650
— Larmor

wave number

s = s; defines
initial condition
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If the beam space-charge is axisymmetric:
EM o a¢ or o 6¢XJ_
ox, Orox, Or r

then the space-charge term also decouples under the Larmor transformation and
the equations of motion can be expressed in fully uncoupled form:

! 0o T
~ 1/ 4 (Vbﬁb) 53/ 4 /{(S)f _ 361 — a¢_
(%5 b) ey & pC o T Will demonstrate
7"+ (’Ybﬁb)/g/ 4 R(s)j = — 3@ — 6¢Q this in pfoblems
(7555) my ﬁbc or r for the simple
) ) case of:
k(s) = ki(s) = [Bzo(s)] — [ We(5) ] B:o(s) = const
2|Bp) 27p By

* Because Larmor frame equations are in the same form as continuous and
quadrupole focusing with a different K, for solenoidal focusing we implicitly
work in the Larmor frame and simplify notation by dropping the tildes:

}EJ_—>XL
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/I Aside: Notation:
A common theme of this class will be to introduce new effects and generalizations

while keeping formulations looking as similar as possible to the the most simple
representations given. When doing so, we will often use “tildes” to denote
transformed variables to stress that the new coordinates have, in fact, a more
complicated form that must be interpreted in the context of the analysis being

carried out. Some examples:
* Larmor frame transformations for Solenoidal focusing

See: Appendix B
* Normalized variables for analysis of accelerating systems

See: S10
*+ Coordinates expressed relative to the beam centroid
See: S.M. Lund, lectures on Transverse Centroid and Envelope Model

* Variables used to analyze Einzel lenses

See: J.J. Barnard, Introductory Lectures
/1]
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Solenoid periodic lattices can be formed similarly to the quadrupole case
* Drifts placed between solenoids of finite axial length
- Allows space for diagnostics, pumping, acceleration cells, etc.
* Analogous equivalence cases to quadrupole
- Piecewise constant A often used
* Fringe can be more important for solenoids

Simple hard-edge solenoid lattice with piecewise constant

)i '

Ka(S) _("{I:"{y) B o
— ] -
i | | i _ §
Td2 T d/2 i d2 i d=(1—-n)kL,
i_. Lp --i t = 77Lp
| Lattice Period |

n = Occupancy € (0, 1]
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/// Example: Larmor Frame Particle Orbits in a Periodic Solenoidal Focusing
Lattice: T — &' phase-space for hard edge elements and applied fields

L,=0.5m

n = 0.5

$»~0 Py = const

0

% = 20 rad/m? in Solenoids Z(0) =1 mm

=0

3(0) = 0
7(0)=0

F K (scaled + shifted)

0 1 2

4

3
s/ L, |Lattice Periods]

F k (scaled + shifted)

1 T I 1

0 1 2

3

s/ L, |Lattice Periods]

SM Lund, MSU, Spring 2020
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Contrast of Larmor-Frame and Lab-Frame Orbits
+ Same initial condition
Larmor-Frame Coordinate Orbit in transformed x-plane only

x (scaled + shifted)

0 1 2 3
s/ L, [Lattice Periods]

Lab-Frame Coordinate Orbit in both x- and y-planes
10— 7 7 T T
05}
0.0f
—05E
1.0
15
0 1 2 3 4

s/ L, |Lattice Periods|

2 [mm]

v + (scaled + shilted)

= _jlg* 1 r (scaled | shifted) E
_2:0§— (') ! 1 ) _§
0 1 2 3 4 5

s/ L, [Lattice Periods]

MAavouviliviauwuvl i 11)’ O1ILD

DIVl Lund, vVid U, dpring ZuZu

4 5

Calculate
using
transfer
matrices in
Appendix C

30



Contrast of Larmor-Frame and Lab-Frame Orbits

+ Same initial condition
[armor-Frame Angl¢

] ~

ERE |
f e (scaled + shifted ) Calculate

_80—. N 1 - S 2 e 3 —_— 4 — —5 us1ng

s/ L, |Lattice Periods| transfer
i . (N | matrices in

? g iyl (S D """"“"‘""""_"""; AppendGC
£ 4 - e (scaled + shifted) :
= 6F o B

S0 4 2 s 4 s

s/ L, |Lattice Periods|

SM Leciocy ooy eopereas oo .



Additional perspectives of particle orbit in solenoid transport channel

* Same initial condition
Radius evolution (Lab or Larmor Frame: radius same)

10| . ' '
— 0S¢ f
S 00f------- M- e B T T T T ——
;ﬁ o5F - # (scaled 4 shifted)
T 0f - ]
o 1 2 3 4 5

s/ L, |Latticc Periods]

Side- (2 view points) and End-View Projections of 3D Lab-Frame Orbit

@’
_ /\ - Calculate
' | transfer
i : ‘ T o .
Peroid £ matrices in
_1 /,/.:i/ll Tl AL 1 .
— e \ | Appendix C
E 0 : =135, L L L "
I-:_,.__'g‘ 1 —M \ -15 —1 1
0 5 : ) x[mim]

Peroid
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Larmor angle and angular momentum
of particle orbit in solenoid transport channel

* Same initial condition -~ L B.o(s)

Larmor Angle (s) = _/ ds kr(5) kr(s) = 2[Bg
Si
0 HLarmor Angle

§—100;—

=00 T ';

%_300 « (scaled | shilted) \

;—400;— —_— e —_—

o 1 2 3 4 5
s/ L, |Lattice Periods|

Angular Momentum and Canonical Angular Momentum (see Sec. S2G )

5 y_JT -
§0 /— \ /‘
| | N =
E _10 : B ("Llf‘d + shifted) _
B 2z 3 4 s

s/ L, [Lattice Periods] /1]
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Comments on Orbits:
* See Appendix C for details on calculation
- Discontinuous fringe of hard-edge model must be treated carefully if
integrating in the laboratory-frame.
* Larmor-frame orbits strongly deviate from simple harmonic form due to
periodic focusing
- Multiple harmonics present
- Less complicated than quadrupole AG focusing case when interpreted
in the Larmor frame due to the optic being focusing in both planes
* Orbits transformed back into the Laboratory frame using Larmor
transform (see: Appendix B and Appendix C)
- Laboratory frame orbit exhibits more complicated x-y plane coupled
oscillatory structure
* Will find later that if the focusing is sufficiently strong, the orbit can
become unstable (see: S5)
* Larmor frame y-orbits have same properties as the x-orbits due to the equations
being decoupled and identical in form in each plane
- In example, Larmor y-orbit is zero due to simple initial condition in x-plane

- Lab y-orbit is nozero due to x-y coupling
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Comments on Orbits (continued):
* Larmor angle advances continuously even for hard-edge focusing
* Mechanical angular momentum jumps discontinuously going into and out of the
solenoid
- Particle spins up and down going into and out of the solenoid
- No mechanical angular momentum outside of solenoid due to the
choice of intial condition in this example (initial x-plane motion)
* Canonical angular momentum % is conserved in the 3D orbit evolution
- As expected from analysis in S2G
- Invariance provides a good check on dynamics
- Py in example has zero value due to the specific (x-plane)
choice of initial condition. Other choices can give nonzero values
and finite mechanical angular momentum in drifts.

Some properties of particle orbits in solenoids with piecewise x = const
will be analyzed in the problem sets

/1!
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S2F: Summary of Transverse Particle Equations of Motion

In linear applied focusing channels, without momentum spread or radiation, the
particle equations of motion in both the x- and y-planes expressed as:

(%51)) q 0
(%Bb) vt ra(s) - mP R Ox
(%ﬁb)' B q 0
(%519) vt ry(s)y = - mypBEc? dy

Kk (s) = z-focusing function of lattice

Ky (s) = y-focusing function of lattice

Common focusing functions:
Continuous: 5
ke (S) = ky(s) = k3o = const

Quadrupole (Electric or Magnetic):
a(s) = —fiy(s) = r(s)

Solenoidal (equations must be interpreted in Larmor Frame: see Appendix B):
ba(s) = iy (5) = A(s)
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Although the equations have the same form, the couplings to the fields are
different which leads to different regimes of applicability for the various focusing

technologies with their associated technology limits:
Focusing:

Continuous:

Kz(8) = Ky(s) = k’%o = const
Good qualitative guide (see later material/lecture)
BUT not physically realizable (see S2B)

Quadrupole: o | e
ko(s) = —ry(s) = | Byelpal> loetne Bp) =
' ’ Gls) Magnetic q
c[Bp]’ g

G is the field gradient which for linear applied fields is:

( a
OE®  OE 2V, :
—5 =54 =5 Hlectric
(;(S) — < X Y TP
oB; 8B,Z __ B, £
e T Magnetic

Solenoid:

=== [8] - [£] -2t
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It is instructive to review the structure of solutions of the transverse particle
equations of motion in the absence of:

op  0¢
Space-charge: O ~ (9_y ~

(768s)"

Acceleration: 7, [3p =~ const — —— -+ ~0
! (768p)

In this simple limit, the x and y-equations are of the same Hill's Equation form:

" 4+ ky(s)x =0
1/

Y +ry(s)y =0

* These equations are central to transverse dynamics in conventional

accelerator physics (weak space-charge and acceleration)
- Will study how solutions change with space-charge in later lectures

In many cases beam transport lattices are designed where the applied focusing
functions are periodic:

Kz(8 + Lp) = Ka(s)
Ky(s + Lp) = ky(s)

L, = Lattice Period
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Common, simple examples of periodic lattices:

i Periodic Solenoid

ma(s)] | (e = ) R .
— -
| | | | | 5
!t ot =, :
Ty TR T d=(-a,
i EPeﬂodic FODO Quadrupole € =nly
ra(s)] | (e = —Hy) i ~
e _____ _'}{) _———  _______ —
d ¢ d
F Quad | +u -
| | ' -
—» D Quad . §
T ;
S R —K R
- Lo ) g d=(1—-n)Ly/2
i Lattice Perio | 0 — n Lp /2
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However, the focusing functions need not be periodic:

+ Often take periodic or continuous in this class for simplicity of interpretation
Focusing functions can vary strongly in many common situations:

* Matching and transition sections

* Strong acceleration

* Significantly different elements can occur within periods of lattices in rings

- “Panofsky” type (wide aperture along one plane) quadrupoles for beam
insertion and extraction in a ring

Example of Non-Periodic Focusing Functions: Beam Matching Section
Maintains alternating-gradient structure but not quasi-periodic
Matching Section x—Focusing Strength

1.0F :
0-8¢ 1 Example corresponds to
g :'j 1 High Current Experiment
Z 0: o Matching Section
S o0 (hard edge equivalent)
RPPY: at LBNL (2002)

—0.4F

0 50. 100. 150. 200. 250. 300. 350.
S [em]

SM Lund, MSU, Spring 2020 Accelerator Physics
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Equations presented in this section apply to a single particle moving in a beam
under the action of linear applied focusing forces. In the remaining sections, we
will (mostly) neglect space-charge (¢ — () as is conventional in the standard
theory of low-intensity accelerators.
* What we learn from treatment will later aid analysis of space-charge effects
- Appropriate variable substitutions will be made to apply results
* Important to understand basic applied field dynamics since space-charge
complicates
- Results in plasma-like collective response

/l/ Example: We will see in Transverse Centroid and Envelope Descriptions of
Beam Evolution that the linear particle equations of motion can be applied to
analyze the evolution of a beam when image charges are neglected

r— x.=(x), x — centroid

Yy — Y. = (y)L 1y — centroid »
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S2G: Conservation of Angular Momentum in

Axisymmetric Focusing Systems
Background:

Goal: find an invariant for axisymmetric focusing systems which can help us

further interpret/understand the dynamics.

In Hamiltonian descriptions of beam dynamics one must employ proper canonical
conjugate variables such as (x-plane):

xr = Canonical Coordinate + analogous
P, =p, +qgA, = Canonical Momentum y-plane

Here, A denotes the vector potential of the (static for cases of field models

considered here) applied magnetic field with:

B =V x A
For the cases of linear applied magnetic fields in this section, we have:
ig(yz — z?), Magnetic Quadrupole Focusing
A=< —x %Bzoy + Sf%Bzox, Solenoidal Focusing
0, Otherwise
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For continuous, electric or magnetic quadrupole focusing without acceleration
(V68p = const) | it s straightforward to verify that x,x" and y,y" are canonical
coordinates and that the correct equations of motion are generated by the

Hamiltonian:
1 1 1 1 qo

H — /2 - /2 — Ky 2 - 2

d 8HL d aHJ_

— L = —r =

ds ox’ ds oy’

d_,_ OHL d ,  O0HL

dS @x dsy o 8y

Giving the familiar equations of motion:

T N o\
¥ my; 52c? Ox

0
i Kyy = — q ¢

my; By Oy
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For solenoidal magnetic focusing without acceleration, it can be verified that we

can take (tilde) canonical variables:

+ Tildes do not denote Larmor transform variables here !

r =0T o
Y Byl = M PpC
/ — aj/ — BZO y y/ . y/ _|_ BZO [ p] — q
2| Bo) 2[Bp]
With Hamiltonian:
' 1 BzO ~ ° - B 50 -~ 2 ng
3o i) - i) |-
2 2[Bp] 2[By] my, By ¢
d . O0H, d . O0H, Caution:
%x — o' E‘y B (‘)g/ Primes do not mean d/ds in
d OH d OH tilde variables here: just
— = — i = _ L notation to distinguish
ds 0T ds 83} “momentum’” variable!

Giving (after some algebra) the familiar equations of motion:

2" B;O(S)y . BzO(S) y/ _ q %

2[Bpl [Bp) my, By c? Ox

7 B,/zO(S) Bz()(s) / q 8¢
+ T+ r = —

Y B T By mA Bc? Oy

SM Lund, MSU, Spring 2020
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Canonical angular momentum

One expects from general considerations (Noether's Theorem in dynamics) that
systems with a symmetry have a conservation constraint associated with the
generator of the symmetry. So for systems with azimuthal symmetry (9/00 = 0),
one expects there to be a conserved canonical angular momentum (generator of
rotations). Based on the Hamiltonian dynamics structure, examine:

Pp=xxPl-z=[xx(p+qA)| -z

This is exactly equivalent to
* Here | factor is exact (not paraxial)

Py = (zpy — ypz) + q(zAy — yA,)
= 1(po + qAg) = myr’0 + qrag

Or employing the usual paraxial approximation steps:
Py =~ mypBpc(zy’ — yz') + q(zAy — yAs)
= myBper?0 + qrAy
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Inserting the vector potential components consistent with linear approximation
solenoid focusing in the paraxial expression gives:
+ Applies to (superimposed or separately) to continuous, magnetic or electric
quadrupole, or solenoidal focusing since Ag 7 0 only for solenoidal

focusing
/ / qu0 2 2
Py =~ mypfyc(ry’ —ya') + == (2" +y°)
B,
= myBper6 + d ; 0,2

For a coasting beam (v8p = const), it is often convenient to analyze:
* Later we will find this is analogous to use of “unnormalized” variables used in
calculation of ordinary emittance rather than normalized emittance

Py / / Bo 2 2 MYy ByC
=Y —Yyr + T+ Bp| =
e~ Y 2[Bp]( y°) | Bp) .
B
2 n/ 20 2
=r70 + r
2[Bp)
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Conservation of canonical angular momentum

To investigate situations where the canonical angular momentum is a constant of
the motion for a beam evolving in linear applied fields, we differentiate Fo with
respect to s and apply equations of motion
Equations of Motion:
Including acceleration effects again, we summarize the equations of motion as:
* Applies to continuous, quadrupole (electric + magnetic), and solenoid
focusing as expressed
* Several types of focusing can also be superimposed
- Show for superimposed solenoid

oy OeBe) y o Baals), Baols) o a 09
(765) 2[Bp] [Bp] - ma B Ox
(Vbﬁb)/y b gy + : (S)w n Bzo(S)x/ _ q 09
(%Bb) ’ 2[310] By - mBEc2 Oy

(k2, = const, Continuous Focus (k, = k)
mYp BpC o Y
[Bp] = Yot Ke(S) = 4 Bzi%gp]’ Electric Quadrupole Focus (k, = —ky)
1 \ c([;gp)], Magnetic Quadrupole Focus (k, = —ky)
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Employ the paraxial form of 9 consistent with the possible existence of a
solenoid magnetic field:
* Formula also applies as expressed to continuous and quadrupole focusing

Py = mypfyc(zy’ — ya') + B2 (22 + ¢?)

Differentiate and apply equations of motion:

+ Intermediate algebraic steps not shown

d / / / 7 1
-y =me(whh) (zy” —ya') +me(b)(xy” — y2")
B’ / /
1 5 (22 +y) + aBzo(za’ + yy)
- - _a (90 _ 09
- = mc( ) ke — Kylzy — 5190 (x yag;)
oIF:
_ op  Jdp 0o
1) Fa = Ry )'Ty Yor — 36’_0

* Valid continuous or solenoid focusing

* Invalid for quadrupole focusing ¥ Axisymmetric beam

d
— Py =0 — Py = const
ds
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For:
+ Continuous focusing
* Linear optics solenoid magnetic focusing
* Other axisymmetric electric optics not covered such as Einzel lenses ...

Py = my,Bpc(xy’ — yx') + QBTZO(:EQ + 3?) = const

mypBpc(zy’ — yx') = Mechanical Angular Momentum Term

quO

2
In S2E we plot for solenoidal focusing :

(z* + y*) = Vector Potential Angular Momentum Term

* Mechanical angular momentum o zy’ — yx’

*+ Larmor rotation angle 1;

+ Canonical angular momentum (constant)

Comments:

* Where valid, Iy = const provides a powerful constraint to check dynamics

* If Py = const for all particles, then (FP,) = const for the beam as a whole
and it is found in envelope models that canonical angular momentum can act
effectively act phase-space area (emittance-like term) defocusing the beam

+ Valid for acceleration: similar to a “normalized emittance’: see S10
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Example: solenoidal focusing channel

Employ the solenoid focusing channel example in S2E and plot:
* Mechanical angular momentum oc vy’ — yx'’
* Vector potential contribution to canonical angular momentum o B,o(z? 4 y?)

* Canonical angular momentum (constant) Py
P, B, :
—_— b _ vy — yx' + 0 (372 + y2) = const = Canonical
m~pOpC 2[Bp) Angular Momentum

— gy — ya’ = r?0’ = Mechanical Angular Momentum

B
— 5 50 (z* + y?) = V/k(2® + y?) = Vector Potential Component
[ '0] Canomcal Angular Momentum
5 - y T T y y y / ]
: ~ya :
= 5 I\.I L \_I "
é 0 Tﬁg‘%(i’ g k. (scaled 4+ shifred) ]
0 1 2 3 4 5

s/ L, [Lattice Periods]
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Comments on Orbits (see also info in S2E on 3D orbit):
* Mechanical angular momentum jumps discontinuously going into and out of the
solenoid
- Particle spins up ( #’ jumps) and down going into and out of the solenoid
- No mechanical angular momentum outside of solenoid due to the
choice of intial condition in this example (initial x-plane motion)
* Canonical angular momentum £% is conserved in the 3D orbit evolution
- Invariance provides a strong check on dynamics
- Py in example has zero value due to the specific (x-plane)
choice of initial condition of the particle. Other choices can give
nonzero values and finite mechanical angular momentum in drifts.
* Solenoid provides focusing due to radial kicks associated with the “fringe” field
entering the solenoid
- Kick is abrupt for hard-edge solenoids
- Details on radial kick/rotation structure can be found in Appendix C
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Alternative expressions of canonical angular momentum

It is insightful to express the canonical angular momentum in (denoted tilde here)
in the solenoid focusing canonical variables used earlier in this section and
rotating Larmor frame variables:

* See Appendix B for Larmor frame transform

* Might expect simpler form of expressions given the relative simplicity of the

formulation in canonical and Larmor frame variables
Canonical Variables:

r=x Y=y
~ B 0 ~ B 0
Py Z Y y/_y/_l_ 0.
2|Bp] 2|Bp]
Py / / B.o 2 2
— =xy —Yyr + o +y
MY BpC Z[BP]( )
=2y — 27y

* Applies to acceleration also since just employing transform as a

definition here
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Larmor (Rotating) Frame Variables:

Larmor transform following formulation in Appendix B:

+ Here tlldes denote Larmor frame variables s
] Cos 1) 0 —siney 0 172 7 9s)= —/ ds kr.(5)
x | krsin w COS @b k1 cos @b — sin @2 T’ 84
y | | sine 0 cos 1 0 Y _ B.o(s)
y' | —krcost sintg  kpsing cosv Y bils) = 2| Bp]

gives after some algebra:

i 2 + y2 — 724 gQ
B.g
~ ~/ ~ ~/ Z ~2 ~2
vy —yr' =3y — 93 — o= (" + 7°)
| 2|Bp]
Showing that:
Py / / B.o 2
=Ty —Yxr + "ty
mYpBpC Q[BP]( )
=2y — 2y

+ Same form as previous canonical variable case due to notation choices.

However, steps/variables and implications different in this case !
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Bush's Theorem expression of canonical angular momentum

conservation
Take:

B =V x A

and apply Stokes Theorem to calculate the magnetic flux ¥ through a
circle of radius r:

\If:/deBa-i :/dzx(VxA)-i:]{A-dZ

For a nonlinear, but axisymmetric solenoid, one can always take:
* Also applies to linear field component case

A =0A4y(r, 2)
6A9 1 (9
— a __ _f "7 7
B P +Z7“(9r (rdyp)
Thus:
U = 271rAp
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// Aside: Nonlinear Application of Vector Potential

Given the magnetic field components
Bi(r,z)  B(r2)

the equations
0

B (r,z) = —&Ag(r, 2)
. 10
BZ(r, z) = ;E[TAG(T»Z)]

can be integrated for a single isolated magnet to obtain equivalent
expressions for Ao

Ag(r,z) = —/ dz B (r, Z)

1 'S
Ag(r,2) = X / diF B (F, 2)
0

r

* Resulting 4o contains consistent nonlinear terms with magnetic field
//
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Then the exact form of the canonical angular momentum for for solenoid

focusing can be expressed as:
* Here 7 factor is exact (not paraxial)

Py = mAyr20 + qrAy

: 1
= mAyr2h + =
27

This form is often applied in solenoidal focusing and is known as “Bush's
Theorem” with

Po = mvrQQ + % = const

* In a static applied magnetic field, v = const further simplifying use of eqn

* Exact as expressed, but easily modified using familiar steps for paraxial form
and/or linear field components

* Expresses how a particle “spins up” when entering a solenoidal magnetic field
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Appendix B: The Larmor Transform to Express Solenoidal
Focused Particle Equations of Motion in Uncoupled Form

Solenoid equations of motion:

7 (’Vbﬁb)/ / ;O(S) BzO(S) / q a¢
T + T — — =
(whs) "~ 2Bpl T (Bl YT mapBe Ox
/ : B.o(s) q oo
" (78s)" 4 ZO(S):U—I— 0\ 1
T wB) T 20Ba T Bl T T mopBe Oy
B.o(s) = BZ(r =0,z = s) = On-Axis Field
By = 20 quc — Rigidity

To simplify algebra, introduce the complex coordinate
Note* context clarifies use of i

Z=r+y 1 =v—l (particle index, initial cond, complex i)
Then the two equations can be expressed as a single complex equation
! 'o(s B.o(s
g//_|_(7bﬁb) 2+ 20 >§—|—’i 20 )é,: q 2( ¢ gb)
(768p) 2|Bp) | Bp] myy, 65 ¢ ay
Bl
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If the potential is axisymmetric with ¢ = ¢(7)

06 00 _ 09z >
= r =%+ y?
8x (9y or r v Y
then the complex form equation of motion reduces to:

/
wo(s)  .B.o(s) , q 09z
Z+t [Bp] £ = mq/bﬁbCQ or r

7 (f)/bﬁb)/ / -
= (Bs) - o 2[Bp]

Following Wiedemann, Vol II, pg 82, introduce a transformed complex variable that

y A

is a local (s-varying) rotation:
‘&

ze” W0 = F 4 i

[

(s) = phase-function
(real-valued) N ;

<

=Y

B2
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|2
|

1 ~1 T~ - T~ T12~\ i
= (z + 202" + i)z — 2&) eV

and the complex form equations of motion become:

_ ~ BZ ,

Bp) (7650)
__ 2 _ Bz0 7 (~// By (765p)’ ~,>] -
T T e e )
q 09z

mfyg’BI?CQ or r

Free to choose the form of % Can choose to eliminate imaginary terms in i( .... )
in equation by taking:

T B.o o ,/zo 520 (Vbﬁb)/
V= 3By = Y= "3BT 2By ()

B3
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Using these results, the complex form equations of motion reduce to: B4

(%519)/2/ n B.o \° _ g 09z
2|Bp] m’yb ﬁb c2orr

[

Or using 2z = x + 1y , the equations can be expressed in decoupled

~ ~

x, Yy variables in the Larmor Frame as:

74 (768)" ! ~ q 0o 'f
(%519) Fals)E = - myBEc? Or v
v (’Vbﬁb)/ / ~ q Doy Y
7 (%Bb) )y = - mAEBE Or v
B _ Bo(s)  we(s) Bl — Vb Opmc
k(s) = ki (s) kr(s) = 2B~ 2ubic [Bp] p
— Larmor Wave-Number

Equations of motion are uncoupled but must be interpreted in

the rotating Larmor frame

* Same form as quadrupoles but with focusing function same sign in each plane
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The rotational transforma%on to the Larmor Frame can be effected by integrating
20

2|Bp]

P(s) = — /:d§ ‘zf%(;) = - /:d§ kr(3)

1 1

the equation for ¢/’ = —

Here, s; is some value of s where the initial conditions are taken.
* Take s = s; where axial field is zero for simplest interpretation
(see: pg B6)

Because

?;/ _ BzO _ We
Q[Bp] 2’)/56(,6

the local x — ¢y Larmor frame is rotating at ¥2 of the local s-varying cyclotron

frequency
*If B,o = const | then the Larmor frame is uniformly rotating as is well
known from elementary textbooks (see problem sets)

B5
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The complex form phase-space transformation and inverse transformations are:

z = ze" Z=ze ™

g/ _ (Z ‘|‘i¢/2> eup Z, _ (gl —i¢/§) e—up
z=x+ 1y z=x+ 1y 12/_—161:

g/ — ,/L'/ _|_Zy/ Zl — 5:'/ _I_Zg/

Apply to:
* Project initial conditions from lab-frame when integrating equations
* Project integrated solution back to lab-frame to interpret solution

If the initial condition S = S; is taken outside of the magnetic field where
B.o(si) =0, then:

(s =s;) = x(s = s;) (s =s;) =2'(s = s;)
y(s =s;) = y(s = s;) J'(s=5i) =y'(s = s;)
Z(s =s;) = z(s = s;) Z(s=s;) =2 (s =s;)
B6
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The transform and inverse transform between the laboratory and rotating frames

can then be applied to project initial conditions into the rotating frame for

integration and then the rotating frame solution back into the laboratory frame.

Using the real and imaginary parts of the complex-valued transformations:

[ T
x’ ~ T’
=M, (s|s;) - | -
. (slsi) - |
N N
COS@E 0
~ kr Sinzﬁ COSZZ
Mol =1 gng o
—kr, COS@Z Sin@Z
COSZZ 0
Mr 1(5|82) kr, §1n3p COS Y
—siny 0
krcosy —siny

- -
T’ ~ —1
- =M, (s|s;)-
o= s

A i

—siny 0 |

kr cos®y —siny

COS Y 0

krsinty cosy

sin ) 0 |

—kp costy  sin

COs 0

kr siny COos Y

X
/

/

x
Y
Y

Here we used:

J =

SM Lund, MSU, Spring 2020

—kr

and it can be verified that:

~ —1

M

T

~

= Inverse[M,]

Accelerator Physics
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Appendix C: Transfer Matrices for Hard-Edge

Solenoidal Focusing

Using results and notation from Appendix B, derive transfer matrix for
single particle orbit with: * Details of decompositions can be found in: Conte
and Mackay, “An Introduction to the Physics of

* No space-charge , »
Particle Accelerators” (2nd edition; 2008)

* No momentum spread
First, the solution to the Larmor-frame equations of motion:

/
jfj// + Mfél -+ /{/(8)[}5 = O 9 BZO 2
(V68) k =k =
~// ~/ ~
g+ J +k(s)y =0
(765)
Can be expressed as:
- - -
ﬂg = M (2|2) - Zj
_g/_z _g/_z:zi

* In this appendix we use z rather than s for the axial coordinate since there are

not usually bends in a solenoid Cl
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Transforming the solution back to the laboratory frame:

From project of initial conditions
to Larmor Frame

= M, (2lz) - Mz (2]z:) - M (z1] ) -

/ /

Y

L - Z L - 2=Z;

= [ Identity Matrix

+ Here we assume the initial condition is outside the ma%netlc field so that there

< K S

is no adjustment to the Larmor frame angles, i.e., M, (2i|2;) =1

= M(z|z;) - = M, (z]2;) - My (z2]2) -

x
x
Y
y/

- -z - - z=z; = Jd z=z;

M(2[2:) = M, (2|2) - M (2]z2)

+ Care must be taken when applying to discontinuous (hard-edge) field models
of solenoids to correctly calculate transfer matrices
- Fringe field influences beam “spin-up” and “spin-down”
entering and exiting the magnet C2
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Apply formulation to a hard-edge solenoid with no acceleration [ (v,3;,)" = 0 ]:
B.y(z)

A

B, B.o(2) = B. [0(2) — ©(z — 0)

—

B, = const = Hard-Edge Field
¢ = const = Hard-Edge Magnet Length

Fo—

=~ Note coordinate choice: z=0 is start of magnet
z=10 2= =

Calculate the Larmor-frame transfer matrix in 0 < z < /¢ :

" + kLa? =0 L, — qB.0 . B.g . B\z — const
[ = — — —
T k%g _ 2vpBpmec  2[Bp|  2|Bp]
0- <z< /0" Subtle Point:
e S/kr 0 0 Larmor frame transfer
. B kS C 0 0 matrix is valid both sides
M L(Z|O ) = . . . .
0 0 C S/kr of discontinuity in
| 0 0 —krS C focusing entering and
C=cos(krz) S =sin(kpz) exiting solenoid.
C3
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The Larmor-frame transfer matrix can be decomposed as:
* Useful for later constructs

e, S/kr 0 0
) B kS C 0 0 F(z) 0
M (207) = | 0 C S/kr | — [ 0 F(z) ]
0 0 —kLS C
with
- [ O(») S(z)/kL _ |00
F(z) = [ —krS(z) C(2) ] 0= [ 00 ]

Using results from Appendix E, F can be further decomposed as:

F(z) _ — C(z) g(z)/kll ]

] —krS(z) 2)
1 g;tan(ng) |1 0] [1 g;tan(ng)
N | 0 1 —ky, Sin(kLz) 1 0O 1

= Muyrist (Z) - Mthin-lens (Z> * Marift (Z)
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Applying these results and the formulation of Appendix B, we obtain the rotation
matrix within the magnet 0 < z < ¢
* Here we apply M, formula with ¥ = —KLZ for the hard-edge solenoid

- . Comment: Careful
C 0 S 0 h mi L
) | =S ¢ mo s with minus signs!
M, (2[07) = | _ g 0o C 0 Here, C and S here
|~k C =S —kiS C | have positive

With special magnet end-forms: arguments as defined.

+ Here we exploit continuity of M, in Larmor frame

Entering solenoid
1 0 0 0] <Direct plug-in from
M.,.(07]07) = 8 é II“L 8 formula above for M.
_ 0t
b, 00 1| atz=0
Exiting solenoid
] _ > i
L0 o 0 $10pe of f;lnge ﬁeild
. _ is reversed so replace
0 0 1 0 in entrance formula:
i kr, 0 O 1 | kL — —kL C5
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The rotation matrix through the full solenoid is (plug in to previous formula for

M, (2(07) )

[ cos D 0 sin® 0
~ _ 0 cos ¢ 0 sin @ Icos® Isin®
M,(£+]07) = —sin® 0 cos® 0 - [ —Isin® Icos® ]
0 —sin® 0 cos @
- - I — 1 0

and the rotation matrix within the solenoid is (plug into formula for M,.(z|0™)
and apply algebra to resolve sub-forms):

 O(z) 0 S(z) 0 ! 0 0 0
~ - |0 C(z) O S(z) 0 1 kr O
M, (2|07) = _5(2) 0 C(z) 0 o 01 o0
0 ~S(z) 0 Cz) | | kL 0 0 1
[ oI S I K
_[—S(Z)I (2)1] [—K I] KEHL 8]
= M,.(2/0") - M,.(07]07) 0<z</

Note that the rotation matrix kick entering the solenoid is expressible as

M,.(07|07) = [ I_K f ] 6

SM Lund, MSU, Spring 2020 Accelerator Physics 69



The lab-frame advance matrices are then (after expanding matrix products):

Inside Solenoid 0~+ <z<
M(z|07) = M,-(2|07 )M (2]07)

[ cos? ¢ ﬁ sin(2¢) % sin(2¢) é sin®¢ ]
_ | —krsin(2¢) cos(2¢) kr cos(2¢)  sin(2¢)
—3s8in(2¢) —-sin®¢  cos? st 5in(2¢)
| —kpcos(2¢) —sin(2¢)  —kpsin(2¢) cos(2¢) |
qb = kLZ
_ | O S(z)I] [I K] [F(z) 0 ]
—S(z)I C»)1 —K 1 0 F(z)
_ | CEI=-S(K  C(z)K+S5(z)1 ] [ F(z) O ]
| —C(z)K—-S(2)I C(x)I-S(»)K 0 F(2)
_ [ C(2)F(2) = S)K-F(z) C(2)K-F(2)+ S(2)F(2) ]
—C(2)K-F(z) —S(2)F(2) C(2)F(z) —S(2)K-F(2)

» 2" forms useful to see structure of transfer matrix
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Through entire Solenoid 2z = ¢*
M(£7]07)

= M,.(¢7[07)Mz(£7]07)

i C082 ¢ i sin(2®) 3 sin(2®) % sin® ®
B —7 sin(2®) cos? @ —krsin®®  1sin(29)
| —3sin(2@) - sin®®  cos? @ 55 Sin(20)
| kp sin® ® —$sin(20) —ELsin(20) cos? @ |
b = kL€
| cos®I  sin®I F) 0
- | —sin®I cos @I 0 F(/)
| cos®F(¢)  sin®F (/)
| —sin®F({) cos®F (/)

* 2" forms useful to see structure of transfer matrix

Note that due to discontinuous fringe field:

C 1 00 0

_ 0 1 kr O
M(07(07) = 0 0 1L 0
—k, 0 0 1

SM Lund, MSU, Spring 2020
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£ T Fringe going in
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M(£~|07) # M(>1|07) Due to fringe exiting
kicking angles of beam

In more realistic model with a continuously varying fringe to zero, all transfer
matrix components will vary continuously across boundaries
- Still important to get this right in idealized designs
often taken as a first step!

Focusing kicks on particles entering/exiting the solenoid can be calculated as:

HEE 07 = 2(07)  2/(07) = /(07) + kuy(07)
y(07) =y(07) y' (0%) =4'(07) — krz(07)
Exiting: x(€+) :ZE(E_) x/(€+) :x’(ﬁ_)—kLy(E_)
y(U™) =y(l7) y' () =o' (07) + kpa(0T)

* Beam spins up/down on entering/exiting the (abrupt) magnetic fringe field

* Sense of rotation changes with entry/exit of hard-edge field. C9
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The transfer matrix for a hard-edge solenoid can be resolved into thin-lens
kicks entering and exiting the optic and an rotation in the central region of

the optic as:

M(£7]07) = M,(£+]07 )M (¢+]07)

" cos? @ ﬁsin(Q@) 2 sin(2®)
B ——Sm(2<I>) cos? @ —Fkp sin® @
| —5sin(2®)  —5- sin®®  cos? ®

kr sin® ® —2sin(20) —EL sin(20)

1 0 0 011 z=sin(2®) 0
10 1 —kr O 0 cos(29) 1
10 01 0 0 sin®® 1

| kr 0 0 L1 —sin(2®) 0
= M(£7[67) - M(£7|07) - M(07]07)
where ® = k¢

ki sin® ®
L

1 sin(2)
ﬁ sin(29)
cos?

L sin? ®
sin(29)

2; sin(29)
COS(QCI))

S o= O

O = X O

— O O O

* Focusing effect effectively from thin lens kicks at entrance/exit of solenoid as
particle traverses the (abrupt here) fringe field

SM Lund, MSU, Spring 2020

Accelerator Physics

C10
73




The transfer matrix for the hard-edge solenoid is exact within the context of linear
optics. However, real solenoid magnets have an axial fringe field. An obvious
need is how to best set the hard-edge parameters Bz, £ from the real fringe field.

BZO(Z)

Real Magnet

Hard-Edge and Real Magnets
axially centered to compare

PR 5= £/ z
Simple physical motivated prescription by requiring:

1) Equivalent Linear Focus Impulse / dz k% x / dz Bgo

— / dz B2y(2) zéé\zz

— 0

2) Equivalent Net Larmor Rotation Angle X / dz kp / dz B

:>/ dz B.o(z) =(B.

—

Cl1
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T

Solve 1) and 2) for harde edge parameters B,, ¢
—~ ffooodz B?,(2)
© [ dz Bo(2)

[ffooodz Bzo(z)} ’
ffooodz By (2)

0 —

Cl12
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Appendix D: Axisymmetric Applied Magnetic or Electric Field
Expansion

Static, rationally symmetric static applied fields E“, B® satisfy the vacuum
Maxwell equations in the beam aperture:

V-E*=0 VXE*=0 V-B*=0 V xB*=0
This implies we can take for some electric potential ¢“and magnetic potential ¢
E¢ — —nge B¢ — _v¢m
which in the vacuum aperture satisfies the Laplace equations:
VZ¢® =0 Vg™ =0

We will analyze the magnetic case and the electric case is analogous. In
axisymmetric (0/00 = 0) geometry we express Laplace's equation as:

19 [ Op™ %™
Vip™(r,z) = —— [ r + —0
P (r2) r or ( or ) 02 ;
¢ (r, 2) can be expanded as (odd terms in r would imply nonzero B, = — g:b
atr =0): o0
qu(n Z) — Z fZV(Z)TZV — fo + f27“2 + f47“4 =+ ...

v=0

where fo = ¢ (r = 0, 2) is the on-axis potential D1
76
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Plugging ¢ into Laplace's equation yields the recursion relation for f,
(2v + 2)° fopi2 + fo, =

Iteration then shows that
s (1) P (0,5)
I (r2) =) W2 022 (5)

vr=0
09, (0, z
Using B (r=0,2z) = B,o(2) = — e 6(2 ) and diffrentiating yields:

a  00m - (=1)Y 0%’ !B.o(z) /r\2v—1
Brire) ==, _Z( Ny —1)1 9221 (5)

a 8gbm 82’/320 r\ 2V
Be(rz) = - 0z Z ((V')) 6’22’/( 2 (5)

V=

* Electric case immediately analogous and can arise in electrostatic Einzel
lens focusing systems often employed near injectors
* Electric case can also be applied to RF and induction gap structures in

the quasistatic (long RF wavelength relative to gap) limit. D2
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Corrections and suggestions for improvements welcome!
These notes will be corrected and expanded for reference and for use in future

editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/msu/phy905_2020

Redistributions of class material welcome. Please do not remove author credits.
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