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S1F: Axial Particle Kinetic Energy
1
L ey

Relativistic particle kinetic energy is:
= (B +0B.)cz + BLcxy

E=(y—-1mc?
= Particle Velocity (3D)
For a directed paraxial beam with motion primarily along the machine axis the

B 08| BL
E=(w—1)me® + © G ' B

kinetic energy is essentially the (Xlal klnetbc energy & :

E~& = (yw—1)me?

In nonrelativistic limit: 37 < 1

E=(w— 1)mc2 = —mﬁ 2+ mﬁbc + .

~ lm,[i’  + 0(8y)

2
Convenient units:
Electrons: 511 keV Electrons rapidly relativistic
m=mM, = —_— .
c c? due to relatively low mass
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Ions/Protons:

my, = Atomic Mass Unit
MeV

m = (atomic mass) - m,,

=931.49

Note:

— Proton Mass = 938.27 Mev

M
my ~ my, =~ 940 2\/
MeV

m,, = Neutron Mass = 939.57

Approximate roughly for ions: My > M

A =Mass Number Protons/ions take much

(Number of Nucleons) | longer to become relativistic
than electrons

m~ Am,,

Mp, Mp > My due to nuclear binding energy

& /A
/A w=1+ "/2
—— > —1 — My C

By =1/1-1/%

xes Pp to set phase needs of RF cavities
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My, C2

Energy/Nucleon &,/A
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Contrast beam relativistic 8o for electrons and protons/ions:
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Notes: 1) plots do not overlay, scale changed
2) Ton plot slightly o for protons since "u # myp

+ Electrons become relativistic easier relative to protons/ions due to light mass
+ Space-charge more important for ions than electrons (see Sec. S1D)
- Low energy ions near injector expected to have strongest space-charge
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Appendix A: Gamma and Beta Factor Conversions

It is frequently the case that functions of the relativistic gamma and beta factors
are converted to super cially di erent appearing forms when analyzing transverse
particle dynamics in order to more cleanly express results. Here we summarize
useful formulas in that come up when comparing various forms of equations.
Derivatives are taken wrt the axial coordinate s but also apply wrt time ¢

Results summarized here can be immediately applied in the paraxial
approximation by taking: B ~ Bb

Axial derivative factors can be converted using:
B g A
7T A 2

Energy factors:

Eiot = yme? = £ +mc?

2
& &
v =|V| >, = e =/ =) +2
v] b= DB = N~ 7B <m02 me2
Assume that the beam is forward going with 3 > 0 :
= 1 5 1 5T Rigidity:
/1= B2 = V7 -
11 ’ 7 p  ymv  mc mc £\ &
2 _ - 2 2 B = — = e p— _ N _|_ 2 -
R pyP pr=1-1/y Bel === =3P =7 (ch) me?
A commonly occurring acceleration factor can be expressed in several ways:
* Depending] on ch(;ice use;d, equat}ons can look quite di erent!
0By _ o B
B) v B B
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S2E: Solenoidal Focusing

Writing out explicitly the terms of this expansion:

The eld of an ideal magnetic solenoid is invariant under transverse rotations R R
about it's axis of symmetry (z) can be expanded in terms of the on-axis eld as as: B(r,2) = rBi (7?’ 2)+ ?Bz (r,2) A r=yatty?
Coil (Azimuthally Symmetric) = (_X sin 6 + y cos G)B;"(r, Z) + ZB;J’(T’ Z)
'c 00 0 0 oo oo P Vacuum Maxwell equations: where 0o (—1) I
S~ a _ (21/ 1) v
— /Ba V.Bazo BT(T7Z) UZZIV!(Vf )B ()(2)
e = TE RS, e, 500, 506 . B,
Imply B can be expressed in R 2 16 384 18432 1474560
/m terms of on-axis eld BZ(r =0, 2)
o o~ (=) ey (7Y
See Bz (7.7 Z) = Z (l/')2 20 (Z) (5)
Ea =0 : v=0
Appendix D @ © ®
v—2 a0 T 1" X
a 1 > (_1)V 62,/_1320(2) |XJ_| w2 01'- — BzO(Z) zO(z) 2 4 BzO (Z) 4 B ( )Tb + BzO (Z)T‘S 4.
1=52 (V = 1), el X1 Reiser, | | TPl 4 64 2304 147456
v=1"" ’ Theory and Design
B2 62”320(2’) <‘XJ_ | ) 2v of Charged B.o(z) = B%(r = 0, 2) = On-axis Field Linear Terms
— 5, | & Particle Beams
2v ’ n 2
0z 2 Sec. 3.3.1 B%)(z) = 9 Bu(z) gzi(z) Bly(2) = 8350( ) Bly(2) = 2 BZZ(Z)
Bao(2) = BZ (xL =0, 2) = On-Axis Field : z 9z
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For modeling, we truncate the expansion using only leading-order terms to obtain: Solenoid equations of motion:
*+ Corresponds to linear dynamics in the equations of motion *+Insert eld components into equations of motion and collect terms
10B [11¢4
By = -3, v G Bl Bal) a0
10B,o(2) _ pa (768b 2[Bp] [Bp) m; BEc? Oz
By=—3—p, v Pe=H0w=0% (wB) | Blols) ., Buols) 2
’ 2 2 = On-Axis Field (L y o+ 22y R a
B = B.o(2) B (65e) 2[Bp] [Bp] - maBEc? dy
B
Note that this truncated expansion is divergence free: [Bp] = w = Rigidity z0(s) wc(s)
10B.y 0 B q [Bol — whhe
V-B'=—-—>=—"'x;, + —B,p =0
2 0z Ox, 0z 4B.o(s)
z
but not curl free within the vacuum aperture: we(s) = ———= = Cyclotron Frequency
) m (in applied axial magnetic field)
10°B . .
V xB®= 58—Zgw(—xy+Yx)
1 9%B.o(2) 19?B.o(2) » * Equations are linearly cross-coupled in the applied eld terms
— " p(—%sin@ + ycosf) = ;7‘9 ) ion depend '
T 9T 92 27 922 X equation depends on y, y
- y equation depends on x, X'
+ Nonlinear terms needed to satisfy 3D Maxwell equations
24
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It can be shown (see: Appendix B) that the linear cross-coupling in the applied
eld can be removed by an s-varying transformation to a rotating
“Larmor” frame:

s A F= xzcosi(s)+ysini(s)
7 = —xsin 775(5) + g cos &(s)

N (s) = —/ ds ki (3)
U s
B.o(s) we(s)
kr(s) = =
L( ) Q[Bp] Q'Ybﬂbc
= Larmor
wave number

sy

.. used to denote
rotating frame variables

s = s; defines
initial condition
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If the beam space-charge is axisymmetric:
96  dp Ir  Ipx.
ox. Ordx, or r
then the space-charge term also decouples under the Larmor transformation and
the equations of motion can be expressed in fully uncoupled form:

/ 8 ~,
o (w5b)" - r(8)F = _+228_¢§
(7) my, Bye? dr v Will demonstrate
T (’Ybﬁb)’g, +r(s)j = — 3(] — 99y this in plToblems
(’Vb ﬁb) my, ﬂb c?orr for the simple

case of:
k(s) = k3 (s) = Bf%(;j)] = [;b(/ng

* Because Larmor frame equations are in the same form as continuous and
quadrupole focusing with adi erent ~, for solenoidal focusing we implicitly
work in the Larmor frame and simplify notation by dropping the tildes:

B.o(s) = const

)NCJ_—)XJ_
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/Il Aside: Notation:
A common theme of this class will be to introduce new e ects and generalizations

while keeping formulations looking as similar as possible to the the most simple
representations given. When doing so, we will often use “tildes” to denote
transformed variables to stress that the new coordinates have, in fact, a more
complicated form that must be interpreted in the context of the analysis being
carried out. Some examples:
+ Larmor frame transformations for Solenoidal focusing
See: Appendix B
* Normalized variables for analysis of accelerating systems
See: S10
* Coordinates expressed relative to the beam centroid
See: S.M. Lund, lectures on Transverse Centroid and Envelope Model
* Variables used to analyze Einzel lenses
See: J.J. Barnard, Introductory Lectures
"
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Solenoid periodic lattices can be formed similarly to the quadrupole case
*+ Drifts placed between solenoids of nite axial length
- Allows space for diagnostics, pumping, acceleration cells, etc.
* Analogous equivalence cases to quadrupole
- Piecewise constant # often used
+ Fringe can be more important for solenoids

. . . s . K
Simple hard-edge solenoid lattice with piecewise constant

A !
Ra(s)] | (Ka = Ky) .
! |- | ol >:<—b:
L d/2 ¢ Ldj2 0 df2t d=(1=n)i,
e o
| Lattice Period ‘ n = Occupancy € (0’ 1]
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/Il Example: Larmor Frame Particle Orbits in a Periodic Solenoidal Focusing
Lattice: & — &’ phase-space for hard edge elements and applied elds

L, =05m g =20rad/m? in Solenoids Z(0) =1mm §(0)=0
n=0.5 ¢~0 7P = const #(0)=0 7'(0)=0
1.0 ~ ; ' ' 3

__ o5t
S 00F-----Ng--mmmmmmmmme oD
E -05¢E . 3
=10} ¢ r (scaled + shifted) 1
g ~1.5F o 3
20— . . n n —
0 1 2 3 4 5
s/ L, [Lattice Periods]
4 ' ' ' ~/ ' E
= 2
B OF—g-——————-— e m e m o
g 2 :
= 4 P r (scaled + shifted)
w6 0 ]
0 1 2 3 4 s

s/ L, [Lattice Periods|
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Contrast of Larmor-Frame and Lab-Frame Orbits
*+ Same initial condition
Larmor-Frame Coordinate Orbit in transformed x-plane only

1.0
__ 05 z
00F —— === <g-mmmmmm e oD
-0.5
—-10 E x (scaled + shifted)
w3 -1.5 o

—2.0 = . ; n ; ra—

4

2 3
s/ L, [Lattice Periods]
Lab-Frame Coordinate Orbit in both x- and y-planes

=)
= o5
= s It r (scaled shifted)
20 o
o] 1 4

2 3
s/ L, [Lattice Periods]

ALLuIliaun 1y s
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Calculate
using
transfer
matrices in
Appendix C
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Contrast of Larmor-Frame and Lab-Frame Orbits

* Same initial condition
Larmor-Frame Angle
4

= 2

< Ob—c-————————f =t —— = -—————————1
St

= .

= 4 E r (scaled + shifted) :
= 6 o - - 3

0 1 2 3 4 5

Lab-Frame Anele s/L, |Lattice Periods|

4t
2k

7' |mrad|
Adbo
/

|
\
|
|
i
|
|
|
‘
‘
‘
‘
;
|
|
1
;
|
\
|
\
|
|
|
|
|
|
|
\
!
|
|
|
|
i
|
\
‘

> r (scaled + shifted) Calculate
13 O .
5 T 2 3 4 5 using

s/ Ly, |Lattice Periods| transfer

matrices in

2. v
g _g “““““““““““““““““ :(;; Appendix C
= -4 : t (scaled + shifted)
= -6t —
B 1 2 3 “a 5
s/ L, |Lattice Periods|
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Additional perspectives of particle orbit in solenoid transport channel

# Same initial condition
Radius evolution  (Lab or Larmor Frame: radius same)

T T T

# (scaled + shifted)

r [mm]

0 1 2 3 4
s/ L, |Lattice Periods|

Side- (2 view points) and End-View Projections of 3D Lab-Frame Orbit

&

0 2 : 7
Peroid
T
—l
1}\11”1‘\ |
) |

= w[mm]

Peroid
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Calculate
using
transfer
matrices in
Appendix C
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Larmor angle and angular momentum
of particle orbit in solenoid transport channel

> s Py - S
Same initial condition _ / ds k1 (5) ki (s) = B:o(s)

Larmor Angle

2[Bp]
0
¥, Larmor Angle

3o
& =200
&-300
3 & (scaled | shilted)
Sl

0 i 2 3
s/ L, [Lattice Periods|

Angular Momentum and Canonical Angular Momentum (see Sec. S2G )

S
ol

2y — ya' /— T T /~
g o X |_> >
I N N
E e +9%) s (soalod + shifrod)
= 10}
% i 2 3 4 5
s/ L, |Lattice Periods] "
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Comments on Orbits:
* See Appendix C for details on calculation
- Discontinuous fringe of hard-edge model must be treated carefully if
integrating in the laboratory-frame.
* Larmor-frame orbits strongly deviate from simple harmonic form due to
periodic focusing
- Multiple harmonics present
- Less complicated than quadrupole AG focusing case when interpreted
in the Larmor frame due to the optic being focusing in both planes
* Orbits transformed back into the Laboratory frame using Larmor
transform (see: Appendix B and Appendix C)
- Laboratory frame orbit exhibits more complicated x-y plane coupled
oscillatory structure
* Will nd later that if the focusing is su ciently strong, the orbit can
become unstable (see: S5)
* Larmor frame y-orbits have same properties as the x-orbits due to the equations
being decoupled and identical in form in each plane
- In example, Larmor y-orbit is zero due to simple initial condition in x-plane

- Lab y-orbit is nozero due to x-y coupling
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Comments on Orbits (continued):
*+ Larmor angle advances continuously even for hard-edge focusing
* Mechanical angular momentum jumps discontinuously going into and out of the
solenoid
- Particle spins up and down going into and out of the solenoid
- No mechanical angular momentum outside of solenoid due to the
choice of intial condition in this example (initial x-plane motion)
+ Canonical angular momentum P is conserved in the 3D orbit evolution
- As expected from analysis in S2G
- Invariance provides a good check on dynamics
- Py in example has zero value due to the speci ¢ (x-plane)
choice of initial condition. Other choices can give nonzero values
and nite mechanical angular momentum in drifts.

Some properties of particle orbits in solenoids with piecewise x = const
will be analyzed in the problem sets

i
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S2F: Summary of Transverse Particle Equations of Motion
In linear applied focusing channels, without momentum spread or radiation, the
particle equations of motion in both the x- and y-planes expressed as:

wo (wbB) _ q 9
- (766) Tt o (s)e = mfyb 32 mr3B2c2 aﬁ’

v (wbB) _ q 0
v (708s) Yty (s)y = m’yb ,Bb my332c2 8y¢

kz(s) = x-focusing function of lattice

ky(s) = y-focusing function of lattice

Common focusing functions:
Continuous: 5
Kz(8) = ky(s) = ko = const
Quadrupole (Electric or Magnetic):
K (s) = —ty(s) = K(s)

Solenoidal (equations must be interpreted in Larmor Frame: see Appendix B):
ri(s) = hiy(s) = £(s)
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Although the equations have the same form, the couplings to the elds are
di erent which leads to di erent regimes of applicability for the various focusing

technologies with their associated technology limits:
Focusing:

Continuous:
Kz(8) = Ky(s) = kgo = const
Good qualitative guide (see later material/lecture)
BUT not physically realizable (see S2B)
Quadrupole:

_G(s) y S
k (S) = -k (S) — ) Bue[Bp]’ Electric [Bp] _
I ’ T Magnetic q
c[Bp]’ g

G is the eld gradient which for linear applied elds is:
OEZ _ OE; _ 2V,

— o = Ty = 2 Electric
G(S) OB? OBY B g .
L= 4 ==L M t
oy = s e agnetic
Solenoid:

Ky (8) = ky(s) = k2 (s) =

{Bz()(s)r _ { we(s) } () = 1B

It is instructive to review the structure of solutions of the transverse particle
equations of motion in the absence of:

96 96

. Y ~—=~0
Space-charge: O oy

(7))’

= ) "

In this simple limit, the x and y-equations are of the same Hill's Equation form:

Acceleration: 7y, >~ const

2" + ke (s)z =0
Yy’ +ry(s)y =0

+ These equations are central to transverse dynamics in conventional
accelerator physics (weak space-charge and acceleration)
- Will study how solutions change with space-charge in later lectures

In many cases beam transport lattices are designed where the applied focusing
functions are periodic:

Kz(s+ Lp) = Kz(s)

L, = Lattice Period

2[Bp] 27 Bpc m Ky(s+ Lp) = ky(s)
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Common, simple examples of periodic lattices: However, the focusing functions need not be periodic:
Periodic Solenoid * Often take periodic or continuous in this class for simplicity of interpretation
,{I(S)A (ky = Ky) L Focusing functions can vary strongly in many common situations:
’ R ””” T * Matching and transition sections
i * Strong acceleration
| | o + Signi cantly di erent elements can occur within periods of lattices in rings
3 i ! i s G » .
! : P | Panofsky” type (wide aperture along one plane) quadrupoles for beam
P od/2 14 bdj2 o dji2l d= (1—n)L, insertion and extraction in a ring
} | Periodic FODO Quadrupole | E=nly Example of Non-Periodic Focusing Functions: Beam Matching Section
wa(s)] | (ke = *“y) 777777777777777777 = Maintains alternating-gradient structure but not quasi-periodic
d ¢ d I_\{Iaichipg Sef:tion ‘x—Fo‘cusin‘g Strgngth ]
F Quad -——biqi-fq-—-
: : o Example corresponds to
! - N . i
3 D Quad : 5 £ High Current Experiment
¢! I Matching Section
oo B - & — '5; (hard edge equivalent)
| ! x
» L - - at LBNL (2002)
T | d=(1—n)ly/2 —oal ,
Lattice Period i b . . . . . ;
¢ =mnL,/2 0 50. 100. 150. 200. 250. 300. 350.
s [em]
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Equations presented in this section apply to a single particle moving in a beam
under the action of linear applied focusing forces. In the remaining sections, we
will (mostly) neglect space-charge (¢p — () as is conventional in the standard
theory of low-intensity accelerators.
* What we learn from treatment will later aid analysis of space-charge e ects
- Appropriate variable substitutions will be made to apply results
* Important to understand basic applied eld dynamics since space-charge
complicates
- Results in plasma-like collective response

/Il Example: We will see in Transverse Centroid and Envelope Descriptions of
Beam Evolution that the linear particle equations of motion can be applied to
analyze the evolution of a beam when image charges are neglected

r — x. = (x), x— centroid

S2G: Conservation of Angular Momentum in

Axisymmetric Focusing Systems
Background:

Goal: nd an invariant for axisymmetric focusing systems which can help us
further interpret/understand the dynamics.
In Hamiltonian descriptions of beam dynamics one must employ proper canonical
conjugate variables such as (x-plane):

x = Canonical Coordinate
P, = Dz + qu =
Here, A denotes the vector potential of the (static for cases of eld models

considered here) applied magnetic eld with:
=V xA

+ analogous

Canonical Momentum y-plane

For the cases of linear applied magnetic elds in this section, we have:

Yy —ye=(y)L ¥y — centroid W 25 (y? — 22), Magnetic Quadrupole Focusing
A =4 —%iB.oy + y3B.oz, Solenoidal Focusing
0, Otherwise
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For continuous, electric or magnetic quadrupole focusing without acceleration For solenoidal magnetic focusing without acceleration, it can be veri ed that we
(VP = const) | it is straightforward to verify that x,x' and y,y' are canonical can take (tilde) canonical variables:
coordinates and that the correct equations of motion are generated by the * Tildes fﬁ’ not denote Larmor tramf_orm variables here !
Hamiltonian: T=2z y=yY mYp By
B B [Bp] = ——
Ho=tery Ly Lo 1o ey 00 = g /=yt 5,
= -z — — Ko T —K —
it iltonian:
i oH, 4 oH, ith Hamiltonian _ -
" o =" oy (g Bo N (o B, a9
Y H =7+ y) +\v — z t—=53
ix/:_aHL d ;. 8HJ_ 2 Z[Bp] ~2[Bp] m’ybﬂbc
ds ox %y - Ay d_ OH | ig _ 0H Caution:
%x = W ds ag/ Primes do not mean d/ds in
Giving the familiar equations of motion: d OH d g, ilde variables here: just
— 5 = L _g’ — __NL notation to distinguish
2+ kpr=— q acb ds oz ds oy “momentum” variable!
2T =
myy ﬁb myBc? Oz Giving (after some algebra) the familiar equations of motion:
" ey = — q 6(25 "_ B;O(S)y _ B:o(s) _ q 8¢
Y vy = myR B2 By 2[Bp] [Bp] - m B O
! B, 0
v+ zo(s)x_'_ 0(5)1:/:_3L22_Qs
2[Bp] (Bp] my;, Byc® Oy
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Canonical angular momentum

One expects from general considerations (Noether's Theorem in dynamics) that
systems with a symmetry have a conservation constraint associated with the
generator of the symmetry. So for systems with azimuthal symmetry (9/00 = 0),
one expects there to be a conserved canonical angular momentum (generator of
rotations). Based on the Hamiltonian dynamics structure, examine:

Pp=xxP]l-z=[xx(p+qA)]- -z

This is exactly equivalent to
# Here ! factor is exact (not paraxial)

Py = (xpy — ypa) +q(zAy — yA,)
r(pe + qAp) = m’yr29 + qrAg

Or employing the usual paraxial approximation steps:
Py ~ myByc(xy’ — ya') + q(z Ay, — yAs)
= mypBpcr0 + qrig
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Inserting the vector potential components consistent with linear approximation
solenoid focusing in the paraxial expression gives:
* Applies to (superimposed or separately) to continuous, magnetic or electric

quadrupole, or solenoidal focusing since “*¢ only for solenoidal
focusing
B
Py ~ mypBpc(ay’ — ya') + q—zo(xQ +1?)

B,
= mybﬂbmz@' + 420 > 0,.2

For a coasting beam (0B = const), it is often convenient to analyze:
+ Later we will nd this is analogous to use of “unnormalized” variables used in
calculation of ordinary emittance rather than normalized emittance

Py , , B.o , o 9 mYpBpC
—=ay —yr + ——(z° + Bpl= ————
mypPpc vy~ 2[Bp]( v) [Bp)

B
2/ 20 2
=r0 +
2[Bp]
46
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Conservation of canonical angular momentum

To investigate situations where the canonical angular momentum is a constant of
the motion for a beam evolving in linear applied elds, we di erentiate Po with
respect to s and apply equations of motion
Equations of Motion:
Including acceleration e ects again, we summarize the equations of motion as:
+ Applies to continuous, quadrupole (electric + magnetic), and solenoid
focusing as expressed
+ Several types of focusing can also be superimposed

__- Show for superimposed solenoid
" + (’Yb/Bb)/x/ + K — B;O(S)y _ B.o(s) _ q %
(763) 2[Bp [Bp] my B c? Ox
y// + ('Ybﬂb)/y/ T kY + B;O(S)x + B.o(s) e q %
(555) 7 2[Bp] [Bp) m; Bye? dy
k3, = const, Continuous Focus (k, = f.)
[Bp] Mo +(8) = ﬂI,GcEfB)p] Electric Quadrupole Focus (k, = —k;)
%, Magnetic Quadrupole Focus (ky = —kz)
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Employ the paraxial form of I consistent with the possible existence of a

solenoid magnetic eld:
* Formula also applies as expressed to continuous and quadrupole focusing

Py = mvypBoc(zy’ — yx') + —quzo (22 +y?)

Di erentiate and apply equations of motion:
* Intermediate algebraic steps not shown

d

EP(; = mc(wh) (zy’ — yz') + me(wfBy) (zy” — ya')
B/

+ 9220 (22 4 2y 4 gBLo (2 + )

2
0 13
= mc(wf) ke — kylry — % (xa—(yb _ ya_i)

So IF: B 96 o6 96

1) Kz = Ky 2)x8—y—y%:%:0
* Valid continuous or solenoid focusing
* Invalid for quadrupole focusing

d
— P, =
dse 0 —
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+ Axisymmetric beam

Py = const
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For:
+ Continuous focusing
* Linear optics solenoid magnetic focusing
* Other axisymmetric electric optics not covered such as Einzel lenses ...

Py = myByc(zy’ — ya') + 4522 (2% + y?) = const

mYpBrc(xy’ — yx') = Mechanical Angular Momentum Term
qBTZO(xQ + y2) = Vector Potential Angular Momentum Term
In S2E we plot for solenoidal focusing :
+ Mechanical angular momentum o 2’ — ya’
+ Larmor rotation angle &
+ Canonical angular momentum (constant) P
Comments:
* Where valid, P» = const provides a powerful constraint to check dynamics
* If Py = const for all particles, then (Py) = const for the beam as a whole
and it is found in envelope models that canonical angular momentum can act
e ectively act phase-space area (emittance-like term) defocusing the beam

+ Valid for acceleration: similar to a “normalized emittance”: see S10
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Example: solenoidal focusing channel

Employ the solenoid focusing channel example in S2E and plot:
+ Mechanical angular momentum o zy’ — ya’
+ Vector potential contribution to canonical angular momentum Bzo(g;2 + yz)
+ Canonical angular momentum (constant) * ¢
— =ay —y2' + Bz (2% + y?) = const = Canonical
myBpe 2[Bp] Angular Momentum
— 2y —ya’ =20’ = Mechanical Angular Momentum

B
—_ %(ﬁ +4?) = Vk(z? + 4?) = Vector Potential Component
[Br] Canonical Angular Momentum
5[ PRI ' ' /— ' ]
= \ /_ N |> ]
E gt L~ \.I L~ \J ]
g o 5% (@ +y?) = (scalod + shifrod)
15— : : : =
0 1 2 3 4 5
s/L, [Lattice Periods]
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Comments on Orbits (see also info in S2E on 3D orbit):
* Mechanical angular momentum jumps discontinuously going into and out of the
solenoid
- Particle spins up ( #’ jumps) and down going into and out of the solenoid
- No mechanical angular momentum outside of solenoid due to the
choice of intial condition in this example (initial x-plane motion)
+ Canonical angular momentum £ is conserved in the 3D orbit evolution
- Invariance provides a strong check on dynamics
- P in example has zero value due to the speci ¢ (x-plane)
choice of initial condition of the particle. Other choices can give
nonzero values and nite mechanical angular momentum in drifts.
* Solenoid provides focusing due to radial kicks associated with the “fringe” eld
entering the solenoid
- Kick is abrupt for hard-edge solenoids
- Details on radial kick/rotation structure can be found in Appendix C
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Alternative expressions of canonical angular momentum

It is insightful to express the canonical angular momentum in (denoted tilde here)
in the solenoid focusing canonical variables used earlier in this section and
rotating Larmor frame variables:

* See Appendix B for Larmor frame transform

* Might expect simpler form of expressions given the relative simplicity of the

formulation in canonical and Larmor frame variables
Canonical Variables:

T=c Y=y
. B.o _ B.o
I x/ _ z y y/ o /_|_ z
2[Bp] 2[Bp]
Py / / B:o 2 2
— — =ay —yTr + r° +
mwBe Y 2[Bp]( v
=7y — &y

* Applies to acceleration also since just employing transform as a

de nition here
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Larmor (Rotating) Frame Variables:

Larmor transform following formulation in Appendix B:
+ Here tildes denote Larmor frame variables

S
x cos P 0 —singy 0 7 ¥(s) —/ ds kr(3)
' | | kpsin " costp kpcosy —sineg z’ si
Y o Sin& 0 coswﬁ 0 7 20(s)
Y —kpcost sing kpsing  cosv ¥ ki ls) = 2[Bp]

gives after some algebra:

2= 4P

B.o
~~/ z ~2 ~2
xy—ya;—xy—yx— °+y
2[Bp]( )

Showing that:

Py

0 2 2
v 2%ty
my P ( )

2[Bp

=zxy —

=& — &y

+ Same form as previous canonical variable case due to notation choices.

However, steps/variables and implications di erent in this case !
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Bush's Theorem expression of canonical angular momentum
conservation
Take:

=V x A

and apply Stokes Theorem to calculate the magnetic ux ¥ through a
circle of radius r:

\p:/d%Ba.z :/d2x(vXA>.z:7§A.dZ

For a nonlinear, but axisymmetric solenoid, one can always take:
+ Also applies to linear eld component case

A =0Ay(r,2)
0A 10
= B'=-— 6—9 + 2o (rdy)
Thus:
U = 27TTA9
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/I Aside: Nonlinear Application of Vector Potential

Given the magnetic eld components
Bi(r, 2) Bi(r, 2)
the equations

19}
Bf(ﬁ Z) = _aAF)(n Z)

B2(r.2) = - 2 [rdo(r, )

can be integrated for a single isolated magnet to obtain equivalent

— [ B0
T/OdFFB( 2)

* Resulting Ao contains consistent nonlinear terms with magnetic eld
1
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expressions for Ao

Ap(r, 2)

Ap(r,z) =

SM Lund, MSU, Spring 2020

Then the exact form of the canonical angular momentum for for solenoid

focusing can be expressed as:
+ Here 7 factor is exact (not paraxial)

Py = myr?0 + qrAy

= m7r29 + =
27

This form is often applied in solenoidal focusing and is known as “Bush's
Theorem” with

Py = m’yrzé + % = const,

+ In a static applied magnetic eld, 7 = const further simplifying use of eqn

+ Exact as expressed, but easily modi ed using familiar steps for paraxial form
and/or linear eld components

+ Expresses how a particle “spins up” when entering a solenoidal magnetic eld
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Appendix B: The Larmor Transform to Express Solenoidal
Focused Particle Equations of Motion in Uncoupled Form

Solenoid equations of motion:

" (’Ybﬁby r BQO(S) N BzO(S) _ q 8¢
) 2B YT B Y T e o
(wB)' ,  Blo(s) | Baols) , q 09
b T 2B T B T iR ay
B,o(s) = BZ(r =0,z = s) = On-Axis Field
[Bp] = @ = Rigidity

To simplify algebra, introduce the complex coordinate

iE\/——l |

|g£:1:+iy

Note* context clari es use of i

(particle index, initial cond, complex i)

If the potential is axisymmetric with ¢ = ¢(r)

00,00 %02 . _ fmiy

R + - R —
then the complex form equation of motion reduces to:

Ox oy  orr
/ /
(’Ybﬂb) S _’_,L-Bzo(s)z_}_iBZO(s) ’r_ q

S aE )

¢
[Bp] 2= m'ybﬁb@E

= R

Following Wiedemann, Vol II, pg 82, introduce a transformed complex variable that

is a local (s-varying) rotation: g A

" ©
3= ée—w(S) = Z+ij

7/;(5) = phase-function
(real-valued) N

Then the two equations can be expressed as a single complex equation v
! ‘o(s B.o(s
_//_I_ (Vbﬁb) g/_1_2- zO( )§+i ZO( )§I: _qa —— <_¢+ ¢) A ‘L;
(765) 2[Bp] [Bp] ma; By dy
Bl B2
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Then: 2z = Zew_’ Using these results, the complex form equations of motion reduce to: B4
r— (% + »~/~) i 3 N
z Zriwz)e 3 4 (’Vbﬁb)/ 34 < B0 ) 5 q 8¢ £
2= (2 +2'E + iz - §72) S BT \2ABAl) T mgB orr
and the complex form equations of motion become: Orusing Z = T + 1y , the equations can be expressed in decoupled
» [ ( ., Bu ) (%Bb)/} , T, y variables in the Larmor Frame as:
zZ 4+ |2 + z
[Bp] (6/8b) 4 (”Ybﬂb) ~/ ~ . qa a¢ z
, ST+ R(S)T = 5
+ |:7,(;12 7 Bz w < " B (’Vbﬁb) 1/;/>:| 3 (,Ybﬁb) m’Yb Bbc 87" r
[Bp] Q[Bp] (75) B - (65)" - - q 8¢ Y
o "+ 7 +R(s))=———5255
— q ¢ £ (’Ybﬂb) mYy Bb c? 87’ r
m’yb 362 my3B2c2 or r
mc
Free to choose the form of 7# Can choose to eliminate imaginary terms in i( .... ) K(s) = k%(s) kp(s) = g »[Z;(S]) 2(%(;) Bp] = %
in equation by taking: p Toi7bC
= Larmor Wave-Number
~ ~ B! B !
Y =— B — "= 3] éo] 3] é O] ((%Bﬁb)) Equations of motion are uncoupled but must be interpreted in
2[Bp] p PEATb0 the rotating Larmor frame
B3 * Same form as quadrupoles but with focusing function same sign in each plane
59 60
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The rotational transformation to the Larmor Frame can be e ected by integrating

. ~ B.o
the equation for ¢/ = —
Y= 3By
[ B /SN i
P(s) = /&1 ds aBs . ds kr,(3)

Here, s; is some value of s where the initial conditions are taken.
* Take s = s; where axial eld is zero for simplest interpretation
(see: pg B6)

Because

1;/ - BzO _ We
2[Bp]  2vPhe

the local & — ¢ Larmor frame is rotating at ¥2 of the local s-varying cyclotron
frequency
+If B.o = const | then the Larmor frame is uniformly rotating as is well
known from elementary textbooks (see problem sets)

B5
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The complex form phase-space transformation and inverse transformations are:

z= ge“ﬁ z= ge_“z

g/ _ Z’ +7ﬂ/}/2) ew Z — <§/ _ “Z)/&) 67“1}
z=x+iy Z=T+iy 7= —k,
élle'i'iy/ lei,/_i_igl

Apply to:
* Project initial conditions from lab-frame when integrating equations
* Project integrated solution back to lab-frame to interpret solution

If the initial condition § = S; is taken outside of the magnetic eld where
B.o(si) =0, then:

T(s=s;) =x(s=s;) i'(s=s;) =2 (s =s5;)
J(s=s:1) = y(s = s;) j'(s=s)=y'(s=s)
Ho—s)—zls=s)  Z(s=s)=2(s=s)
B6
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The transform and inverse transform between the laboratory and rotating frames
can then be applied to project initial conditions into the rotating frame for
integration and then the rotating frame solution back into the laboratory frame.

Using the real and imaginary parts of the complex-valued transformations:

T z z T
x ~ g T’ ~ —1 x
=M, (s|s;) - | - - =M, (s|s;)-

’ CORE ; (shso)- | &
Y v ] y

[ cos } 0  —sin 1/~1~ 0 }
~ kp siny cos® kpcosy —sinv
M'r i) = T ~
(s]s:) sin 0 cos 0
|l —krcosy siny kpsinyg cosip
[ cosp 0 sin 0
~—1 kpsind  cosv —kpcosy  siny
M ) = - .
e (slsi) —singy 0 _costyp 0
L kpcostyp —siney kpsiney cos? |

Here we used:

U = —kr

SM Lund, MSU, Spring 2020

and it can be veri ed that:

M. = Inverse[M, ]

T
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Appendix C: Transfer Matrices for Hard-Edge

Solenoidal Focusing

Using results and notation from Appendix B, derive transfer matrix for

+ Details of decompositions can be found in: Conte
and Mackay, “An Introduction to the Physics of
Particle Accelerators” (2nd edition; 2008)

single particle orbit with:
+ No space-charge
+ No momentum spread
First, the solution to the Larmor-frame equations of motion:

(V/8)'

~11 ~/ =~ 2
T4+ =3 + k()T =0 B.o
(78p) =ki= =
(630’ 2[Bp]
~/ ~/ ~
'+ 25y +r(s)y =0
(1)
Can be expressed as:
z T
.i" ~ (i’l
g = ML (Z|Z7;) . :l}
v U
* In this appendix we use z rather than s for the axial coordinate since there are
not usually bends in a solenoid Cl
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Transforming the solution back to the laboratory frame:

From project of initial conditions
to Larmor Frame

T

x . - . %
y | = Mr(zlz) - Me(zlz) M (22)
Y

SN

~

n
<

= [ Identity Matrix

* Here we assume the initial condition is outside the ma%netic eld so that there

is no adjustment to the Larmor frame angles, i.e., M, (zlz)=1

8 8

~

T
2
Y
Y

z 2=2z; Z=Zi

T
2
Y
Y

< <

M(z2i) = M, (2]z) - ML (2]2)

+ Care must be taken when applying to discontinuous (hard-edge) eld models
of solenoids to correctly calculate transfer matrices
- Fringe eld in uences beam “spin-up” and “spin-down”
entering and exiting the magnet C2
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Apply formulation to a hard-edge solenoid with no acceleration [(v,3;) = 01:
Ba(2)
B, B.o(z) = B, [0(2) — ©(z — 0)]
E\Z = const = Hard-Edge Field
{ = const = Hard-Edge Magnet Length

\ Note coordinate choice: z=0 is start of magnet
z2=0 z=¢ “

Calculate the Larmor-frame transfer matrix in 0 < z < /¢ :

:ZJ/ + kLi‘ =0 quo BzO E\z const
L = = = = n
7 +k25=0 2vfByme  2[Bp]  2[Bp]
0" <z< et Subtle Point:
C S/kr 0 0 Larmor frame transfer
~ _ kS C 0 0 matrix is valid both sides
M =
2(=l07) 0 0 c S/ky of discontinuity in
0 0 —kLS C focusing entering and
C=cos(krz) §=sin(k.z) exiting solenoid.
C3
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The Larmor-frame transfer matrix can be decomposed as:
¢ Useful for later constructs

e S/ky 0 0
- | —ks C 0 0 _| F») o
M (z|07) = 0 - 0 C S/kr |~ { 0 F(z) }
I 0 0 7]€LS C
with
o [Cl) Sk =00
FO=| Dise) ) L} 02{0 0}

Using results from Appendix E, F can be further decomposed as:

=y | C(2) S(2)/kr

F(z) = { —k1S(z) C(2) }
_{1 étan(%z)}.[l 0}_[1 = tan (%4%)
1o 1 —kpsin(kpz) 1 0 1

= Mdrift(z) : Mthin—lens(z) . Mdrift (Z)

C4
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Applying these results and the formulation of Appendix B, we obtain the rotation
matrix within the magnet 0 < z < {

* Here we apply M, formula with ¥ =—krz for the hard-edge solenoid
p 0 S 0 Comment: Careful

kS C ki C S with minus signs!

s 0o C 0 Here, C and S here
—k,C —-S —kpS C have positive
arguments as de ned.

M, (2/07) =

With special magnet end-forms:
+ Here we exploit continuity of M in Larmor frame

Entering solenoid
1 00 O *Direct plug-in from
M,.(0F]07) = 8 (1] IICL 8 formula above for M,
_ ot
—kp 0 0 1 at z=0
Exiting solenoid
. .
1 00 0 'Slope of f;mge f;ld
- _ is reversed so replace
Ny = | 0L Tk 0 . p
0 01 0 in entrance formula:
kL 0 1 kr, — =k, C5
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The rotation matrix through the full solenoid is (plug in to previous formula for

M, (2/07) )

cos ¢ 0 sin® 0
~ _ 0 cos P 0 sin @ Tcos® Isin®
M, (€ +]07) = —sin® 0 cos® 0 [ —Isin® Icos® ]
0 —sin® 0 cos ¢
I= 10
d=kpt =10 1

and the rotation matrix within the solenoid is (plug into formula for M,.(z]0~)
and apply algebra to resolve sub-forms):

The lab-frame advance matrices are then (after expanding matrix products):

Inside Solenoid 07 <z < (¢~
M(2]07) = M. (2|07)M (2|0~ )
cos? ¢ T sm(2¢) 1 sin(2¢) i sin? ¢
—kr, sin(2¢) cos(2¢) kr cos(2¢)  sin(2¢)
—3$sin(2¢) —ﬁ sin2¢  cos?¢ ﬁ sin(2¢)
—kr cos(2¢) —sin(2¢)  —kpsin(2¢) cos(2¢)
o=krz

:[f(zgzlﬂ o } { ng(z) %u)]

C(z) 0 S(z) 0 1 00 0
~ _ 0 C(z) 0 S(z) 0 1 kr O C(2)I - S(z )K c(
M,.(2]07) = . 2K+ ST | [ F(z) 0
10) —=S(2) OS C(z) % 0 01 0 [ —C(x)K-S()I C()I-S(zK 0 F(2)
0 s 0 G Lk 00 [ CHFE) - SEK F()  CEK-F(:)+ SEFR)
_ | C@I ST P T K 0 0 " | ~C:)K-F(z) - S(z)F(z) C(2)F(z) - S(z)K-F(2)
—-S(z)I C(2)1 -K I K= { P ]
~ ~ L
= M, (z|0") - M,.(0"]07) 0<z</? + 2™ forms useful to see structure of transfer matrix
Note that the rotation matrix kick entering the solenoid is expressible as
~ I K
+10-) —
st = [ Ly c6 c7
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Through entire Solenoid z = ¢*
M(£]07) = M,(¢¥07)ML(€7]07)

cos? @ 25 sin(2®) 5 sin(2) é sin? @
_ | —Eesin(2@) cos? @ —kpsin®® 1 sin(2<1>)
| —3sin(2®) - % sin?®  cos? ® e sm(2<1>)
ky sin® @ —1sin(29) —%L sin(2®) 0032 @

(I)EkLé

_ | cos®I sin®l | | F(¢) O
" | —sin®I cos PI 0 F()

Due to fringe exiting
kicking angles of beam

M(£7[07) # M(£7]07)

In more realistic model with a continuously varying fringe to zero, all transfer
matrix components will vary continuously across boundaries
- Still important to get this right in idealized designs
often taken as a rst step!

Focusing kicks on particles entering/exiting the solenoid can be calculated as:

Entering:

_ | cos®F(()  sin®F(() 2(07) = 2(07) 2/ (07) =2/ (07) + kry(07)
—sin®F({) cos PF({) n B 't S _
y(07) =»y(07)  y'(07) =¢(07) = krz(07)
*+ 2™ forms useful to see structure of transfer matrix Exiting:
' () = (0~ (0 =2' (7)) = kry(l~
Note that due to discontinuous fringe eld: 2(€7) = a(e7) ,( +) ,( _) z( _)
1 00 0 y(er) = y(e™) y' (7)) =y (€7) + kra(”)
_ 0 1 kr O [ I K ] Fringe going in
M(0F)07) = = I ge going . - " e
(07]07) 0 01 0 K I Kicks angles of beam * Beam spins up/down on entering/exiting the (abrupt) magnetic fringe eld
-k, 0 0 1 C8 + Sense of rotation changes with entry/exit of hard-edge eld. 9
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The transfer matrix for a hard-edge solenoid can be resolved into thin-lens
kicks entering and exiting the optic and an rotation in the central region of
the optic as:

M(£+]07) = M,(£F]07)Mp(£+]07)

[ cos® ® 35 sin(2®)  §sin(2) o sin’ @
_ —%Lsin(2<1>) cos? @ —kz sin? @ 1 sin(2®)
| —3sin(29) —%81112(13 cos? @ ﬁsin@(})

| kpsin®® —1sin(20) —“Lsin(2®) cos’®

(1 00 0][1 z-sin2b) 0 Lsin’@ L 00 0
10 1 =k O 0 cos(29) 1 sin(2®) 0 1 kr O
o o1 o0 0 Asin®® 1 5l-sin(20) 0 01 o0

L L
| ko 0 0 1 1 —sin(2®) 0 cos(2®) —kr 0 1

= M(£[67) - M(£-|0*) - M(0+]07)

where ® = k¢

+ Focusing e ecte ectively from thin lens kicks at entrance/exit of solenoid as
particle traverses the (abrupt here) fringe eld

The transfer matrix for the hard-edge solenoid is exact within the context of linear

optics. However, real solenoid magnets have an axial fringe eld. An obvious

need is how to best set the hard-edge parameters Bz; ¢ from the real fringe eld.
D.olz)

Real Magnet

B. Hard-Edge and Real Magnets
axially centered to compare

Hard—Edge Magne

-/ N

= —£/2 z=4£/2 =

Simple physical motivated prescription by requiring:

1) Equivalent Linear Focus Impulse / dz k% x / dz Bgo

. / dz B%(z) = (B,

— 00

2) Equivalent Net Larmor Rotation Angle & / dz kr, o / dz Bzo

— / dz B,o(2) — (B,

— 00

C10 Cl1
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Solve 1) and 2) for harde edge parameters B,, / Appendix D: Axisymmetric Applied Magnetic or Electric Field
o0 Expansion
—~ [T dz B(z) p P
e R —— Static, rationally symmetric static applied elds E“, B® satisfy the vacuum
f _ dz BzO (Z) . .
J—0 Maxwell equations in the beam aperture:
2 i Rl a __ R — a _
/72 dz Bao(2)] V-E'=0 VxE*=0 V-B*=0 VxB*=0
€ m
? = = 5 This implies we can take for some electric potential ¢“and magnetic potential ¢"":
J_oedz BZy(2) E® = —V¢° B = —V¢™
which in the vacuum aperture satis es the Laplace equations:
VZ¢© =0 V2™ =0
We will analyze the magnetic case and the electric case is analogous. In
axisymmetric (0/00 = 0) geometry we express Laplace's equation as:
19 [ 9™\ 9%m
V2™ (r,z) = —=— (r + =0
o (r:2) r Or or 022
m . . 8¢’77L
@™ (r, z) can be expanded as (odd terms in r would imply nonzero B, = “or
atr=0): 00
" (1, 2) = ngu(z)r2" =fo+ for? + far* + ...
v=0
Ci12 where fo = ¢""(r =0, 2) is the on-axis potential DI
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Plugging ¢" into Laplace's equation yields the recursion relation for -
(2v +2)* fovso + f3, = 0

Iteration then shows that

oo

m o (D)0 F(0,2) 2
o (rz) = uz_:—o whHz 9z (5)
0dm (0,
Using BZ(r=0,2) = B.o(2) = —% and di rentiating yields:

Obm
Be(rz) =20 = 3

—1)¥ 9% 1B,y(2) sr\2v-1
(l/!g(lll)— 1)! 8z2€*1( ) (5)

v=1

Bl(r,z) =

Opm _ i (=1)" 0*"Bzo(2) (v“)”
2

0z — w2 9%

+ Electric case immediately analogous and can arise in electrostatic Einzel
lens focusing systems often employed near injectors
*+ Electric case can also be applied to RF and induction gap structures in

the quasistatic (long RF wavelength relative to gap) limit. D2
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Corrections and suggestions for improvements welcome!
These notes will be corrected and expanded for reference and for use in future
editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams

Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517)908 = 7291 0 ce
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/msu/phy905_2020

Redistributions of class material welcome. Please do not remove author credits.
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